1
|
Nyakio M, Were M, Wekesa C, Lungayia H, Okoth P, Were H. Molecular Footprints of Potato Virus Y Isolate Infecting Potatoes ( Solanum tuberosum) in Kenya. Adv Virol 2024; 2024:2197725. [PMID: 39139708 PMCID: PMC11321891 DOI: 10.1155/2024/2197725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2024] [Revised: 06/06/2024] [Accepted: 07/05/2024] [Indexed: 08/15/2024] Open
Abstract
Potato virus Y (PVY) is a highly diverse and genetically variable virus with various strains. Differential evolutionary routes have been reported in the genus Potyvirus, caused by natural selection pressure, mutation, and recombination, with their virulence being dependent on different environmental conditions. Despite its significance and economic impact on Solanaceous species, the understanding of PVY's phylogeography in Kenya remains limited and inadequately documented. The study centers on the molecular characterization of a Kenyan PVY isolate, GenBank accession number PP069009. In-depth phylogenetic analysis unveiled a strong evolutionary association between the Kenyan isolate and isolate [JQ924287] from the United States of America, supported by a robust 92% probability. Recombinant analyses exposed a mosaic-like genetic architecture within the Kenyan isolate, indicating multiple gene recombination events. Selection pressure scrutiny identified specific sites under selective pressure, with evidence of positive/diversifying and negative/purifying selection. Population genetics analysis revealed a calculated nucleotide diversity (π) of 0.00354881, while analysis of molecular variance (AMOVA) unveiled a structured genetic landscape with an øST value of 0.45224. The extensive haplotype network depicted the possibility of diverse PVY strains occurring across continents. This analysis provides valuable insights into the genetic diversity and distribution of PVY globally, highlighting the importance of understanding evolutionary dynamics for effective management and control strategies of PVY on a global scale.
Collapse
Affiliation(s)
- Maryrose Nyakio
- Department of Biological SciencesSchool of Natural SciencesMasinde Muliro University of Science & Technology, P.O. Box 190, Kakamega 50100, Kenya
| | - Mariam Were
- Department of Biological SciencesSchool of Natural SciencesMasinde Muliro University of Science & Technology, P.O. Box 190, Kakamega 50100, Kenya
| | - Clabe Wekesa
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena 07745, Germany
| | - Henry Lungayia
- Department of Biological SciencesSchool of Natural SciencesMasinde Muliro University of Science & Technology, P.O. Box 190, Kakamega 50100, Kenya
| | - Patrick Okoth
- Department of Biological SciencesSchool of Natural SciencesMasinde Muliro University of Science & Technology, P.O. Box 190, Kakamega 50100, Kenya
| | - Hassan Were
- Department of Agriculture and Land Use ManagementSchool of AgricultureVeterinary Sciences and TechnologyMasinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya
| |
Collapse
|
2
|
Cui H, Wu Z, Zhang L, Wu D, Hu D, Zhang J. Discovery of Pyrido[1,2-α] Pyrimidinone Mesoionic Compounds as Potential Control Agents Against Potato Virus Y. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12925-12934. [PMID: 38809684 DOI: 10.1021/acs.jafc.3c09867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/31/2024]
Abstract
Potato virus Y (PVY) relies on aphids and tubers to spread in the field and causes serious economic losses in the potato industry. Here, we found that pyrido[1,2-α] pyrimidinone mesoionic compounds with insecticidal activity against aphids possessed a good inhibitory effect on PVY. Among them, compound 35 had the best inhibitory activity against PVY (EC50 = 104 μg/mL), even superior to that of ningnanmycin (125 μg/mL). The fluorescence and qPCR results confirmed that compound 35 could inhibit the proliferation of PVY in Nicotiana benthamiana. Preliminary experiments on the mechanism of action indicated that compound 35 had good binding affinity with the coat protein (CP), which plays an essential role in aphid-PVY interactions. Molecular docking revealed that compound 35 could bind to the pocket of CP formed by Ser52, Glu204, and Arg208. Compound 35 had substantially lower binding affinity (Kd) values with CPS52A (219 μM), CPE204A (231 μM), and CPR208A (189 μM) than those with CPWT (5.80 μM). A luciferase assay confirmed that mutating Ser52, Glu204, and Arg208 significantly affected the expression level of CP and further reduced virus proliferation. Therefore, the broad-spectrum activity of compound 35 provides a unique strategy for the prevention and treatment of PVY.
Collapse
Affiliation(s)
- Honghao Cui
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi, Guiyang 550025, China
- Guizhou Institute of Soil and Fertilizer/Agricultural Resources and Environment, Guizhou Academy of Agricultural Sciences, Huaxi, Guiyang 550025, PR China
| | - Zengxue Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi, Guiyang 550025, China
| | - Luoman Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi, Guiyang 550025, China
| | - Duanpu Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi, Guiyang 550025, China
| | - Jian Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi, Guiyang 550025, China
| |
Collapse
|
3
|
Cao M, Huang S, Li J, Zhang X, Zhu Y, Sun J, Zhu L, Deng Y, Xu J, Zhang Z, Li Q, Ai J, Xie T, Li H, Yin H, Kong W, Gu Y. Disease-induced changes in bacterial and fungal communities from plant below- and aboveground compartments. Appl Microbiol Biotechnol 2024; 108:315. [PMID: 38689185 PMCID: PMC11061026 DOI: 10.1007/s00253-024-13150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/24/2023] [Revised: 01/31/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
The plant microbes are an integral part of the host and play fundamental roles in plant growth and health. There is evidence indicating that plants have the ability to attract beneficial microorganisms through their roots in order to defend against pathogens. However, the mechanisms of plant microbial community assembly from below- to aboveground compartments under pathogen infection remain unclear. In this study, we investigated the bacterial and fungal communities in bulk soil, rhizosphere soil, root, stem, and leaf of both healthy and infected (Potato virus Y disease, PVY) plants. The results indicated that bacterial and fungal communities showed different recruitment strategies in plant organs. The number and abundance of shared bacterial ASVs between bulk and rhizosphere soils decreased with ascending migration from below- to aboveground compartments, while the number and abundance of fungal ASVs showed no obvious changes. Field type, plant compartments, and PVY infection all affected the diversity and structures of microbial community, with stronger effects observed in the bacterial community than the fungal community. Furthermore, PVY infection, rhizosphere soil pH, and water content (WC) contributed more to the assembly of the bacterial community than the fungal community. The analysis of microbial networks revealed that the bacterial communities were more sensitive to PVY infection than the fungal communities, as evidenced by the lower network stability of the bacterial community, which was characterized by a higher proportion of positive edges. PVY infection further increased the bacterial network stability and decreased the fungal network stability. These findings advance our understanding of how microbes respond to pathogen infections and provide a rationale and theoretical basis for biocontrol technology in promoting sustainable agriculture. KEY POINTS: • Different recruitment strategies between plant bacterial and fungal communities. • Bacterial community was more sensitive to PVY infection than fungal community. • pH and WC drove the microbial community assembly under PVY infection.
Collapse
Affiliation(s)
- Mingfeng Cao
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Songqing Huang
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Jingjing Li
- Technology Center of China Tobacco Fujian Company, Xiamen, China
| | - Xiaoming Zhang
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Yi Zhu
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Jingzhao Sun
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Li Zhu
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Yong Deng
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Jianqiang Xu
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Zhihua Zhang
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Qiang Li
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Jixiang Ai
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Tian Xie
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Hengli Li
- Changde Tobacco Company of Hunan Province, Changde, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Wuyuan Kong
- Changde Tobacco Company of Hunan Province, Changde, China.
| | - Yabing Gu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.
| |
Collapse
|
4
|
Jiang G, Zhang Y, Chen M, Ramoneda J, Han L, Shi Y, Peyraud R, Wang Y, Shi X, Chen X, Ding W, Jousset A, Hikichi Y, Ohnishi K, Zhao FJ, Xu Y, Shen Q, Dini-Andreote F, Zhang Y, Wei Z. Effects of plant tissue permeability on invasion and population bottlenecks of a phytopathogen. Nat Commun 2024; 15:62. [PMID: 38167266 PMCID: PMC10762237 DOI: 10.1038/s41467-023-44234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Pathogen genetic diversity varies in response to environmental changes. However, it remains unclear whether plant barriers to invasion could be considered a genetic bottleneck for phytopathogen populations. Here, we implement a barcoding approach to generate a pool of 90 isogenic and individually barcoded Ralstonia solanacearum strains. We used 90 of these strains to inoculate tomato plants with different degrees of physical permeability to invasion (intact roots, wounded roots and xylem inoculation) and quantify the phytopathogen population dynamics during invasion. Our results reveal that the permeability of plant roots impacts the degree of population bottleneck, genetic diversity, and composition of Ralstonia populations. We also find that selection is the main driver structuring pathogen populations when barriers to infection are less permeable, i.e., intact roots, the removal of root physical and immune barriers results in the predominance of stochasticity in population assembly. Taken together, our study suggests that plant root permeability constitutes a bottleneck for phytopathogen invasion and genetic diversity.
Collapse
Affiliation(s)
- Gaofei Jiang
- College of Resources and Environment, College of Plant Protection, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yuling Zhang
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Min Chen
- College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - Josep Ramoneda
- Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Liangliang Han
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Rémi Peyraud
- iMEAN, Ramonville Saint Agne, Occitanie, FR, France
| | - Yikui Wang
- Vegetable Research Institute, Guangxi Academy of Agricultural Science, Nanning, China
| | - Xiaojun Shi
- College of Resources and Environment, College of Plant Protection, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Xinping Chen
- College of Resources and Environment, College of Plant Protection, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Wei Ding
- College of Resources and Environment, College of Plant Protection, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Alexandre Jousset
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Fang-Jie Zhao
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yangchun Xu
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Francisco Dini-Andreote
- Department of Plant Science & Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- The One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Yong Zhang
- College of Resources and Environment, College of Plant Protection, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China.
- College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China.
| | - Zhong Wei
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
5
|
Naiqing X, Tang X, Wang X, Cai M, Liu X, Lu X, Hu S, Gu M, Hu J, Gao R, Liu K, Chen Y, Liu X, Wang X. Hemagglutinin affects replication, stability and airborne transmission of the H9N2 subtype avian influenza virus. Virology 2024; 589:109926. [PMID: 37952465 DOI: 10.1016/j.virol.2023.109926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
H9N2 subtype avian influenza virus (AIV) can transmit by direct as well as airborne contacts. It has been widespread in poultry and continued to contribute to zoonotic spillover events by providing its six internal genes for the reassortment of novel influenza viruses (eg, H7N9) that infect poultry and humans. Compared to H7N9, H9N2 virus displays an efficient airborne transmissibility in poultry, but the mechanisms of transmission difference have been insufficiently studied. The Hemagglutinin (HA) and viral polymerase acidic protein (PA) have been implicated in the airborne transmission of influenza A viruses. Accordingly, we generated the reassortant viruses of circulating airborne transmissible H9N2 and non-airborne transmissible H7N9 viruses carrying HA and/or PA gene. The introduction of the PA gene from H7N9 into the genome of H9N2 virus resulted in a reduction in airborne transmission among chickens, while the isolated introduction of the HA gene segment completely eliminated airborne transmission among chickens. We further showed that introduction of HA gene of non-transmissible H7N9 did not influence the HA/NA balance of H9N2 virus, but increased the threshold for membrane fusion and decreased the acid stability. Thus, our results indicate that HA protein plays a key role in replication, stability, and airborne transmission of the H9N2 subtype AIV.
Collapse
Affiliation(s)
- Xu Naiqing
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xinen Tang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xin Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Miao Cai
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Xiaolong Lu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Kaituo Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.
| | - Yu Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
| |
Collapse
|
6
|
Wu Q, Kinoti WM, Habili N, Tyerman SD, Rinaldo A, Constable FE. Genetic Diversity of Grapevine Virus A in Three Australian Vineyards Using Amplicon High Throughput Sequencing (Amplicon-HTS). Viruses 2023; 16:42. [PMID: 38257742 PMCID: PMC10819895 DOI: 10.3390/v16010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Shiraz disease (SD) is one of the most destructive viral diseases of grapevines in Australia and is known to cause significant economic loss to local growers. Grapevine virus A (GVA) was reported to be the key pathogen associated with this disease. This study aimed to better understand the diversity of GVA variants both within and between individual SD and grapevine leafroll disease (LRD) affected grapevines located at vineyards in South Australia. Amplicon high throughput sequencing (Amplicon-HTS) combined with median-joining networks (MJNs) was used to analyze the variability in specific gene regions of GVA variants. Several GVAII variant groups contain samples from both vineyards studied, suggesting that these GVAII variants were from a common origin. Variant groups analyzed by MJNs using the overall data set denote that there may be a possible relationship between variant groups of GVA and the geographical location of the grapevines.
Collapse
Affiliation(s)
- Qi Wu
- School of Agriculture, Food and Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, SA 5064, Australia (S.D.T.)
- Australian Wine Research Institute, Wine Innovation Central Building, Hartley Grove crn Paratoo Road, Urrbrae, SA 5064, Australia
| | - Wycliff M. Kinoti
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
| | - Nuredin Habili
- School of Agriculture, Food and Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, SA 5064, Australia (S.D.T.)
- Australian Wine Research Institute, Wine Innovation Central Building, Hartley Grove crn Paratoo Road, Urrbrae, SA 5064, Australia
| | - Stephen D. Tyerman
- School of Agriculture, Food and Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, SA 5064, Australia (S.D.T.)
| | - Amy Rinaldo
- Australian Wine Research Institute, Wine Innovation Central Building, Hartley Grove crn Paratoo Road, Urrbrae, SA 5064, Australia
| | - Fiona E. Constable
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
7
|
Yarmus I, Gelbart D, Shemesh-Mayer E, Teper DD, Ment D, Faigenboim A, Peters R, Kamenetsky-Goldstein R. Pathogen Eradication in Garlic in the Phytobiome Context: Should We Aim for Complete Cleaning? PLANTS (BASEL, SWITZERLAND) 2023; 12:4125. [PMID: 38140452 PMCID: PMC10747685 DOI: 10.3390/plants12244125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/14/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Global food production is challenged by plant pathogens that cause significant crop losses. Fungi, bacteria, and viruses have long threatened sustainable and profitable agriculture. The danger is even higher in vegetatively propagated horticultural crops, such as garlic. Currently, quarantine, rouging infected plants, and control of natural vectors are used as the main means of disease and pest control in garlic crops. Agricultural biotechnology, meristem-tip culture, and cryotherapy offer solutions for virus eradication and for the multiplication of 'clean stocks', but at the same time, impact the symbiotic and beneficial components of the garlic microbiome. Our research involves the first metatranscriptomic analysis of the microbiome of garlic bulb tissue, PCR analyses, and a biological assay of endophytes and pathogens. We have demonstrated that in vitro sanitation methods, such as shoot tip culture or cryotherapy can alter the garlic microbiome. Shoot tip culture proved ineffective in virus elimination, but reduced bacterial load and eliminated fungal infections. Conversely, cryotherapy was efficient in virus eradication but demolished other components of the garlic microbiome. Garlic plants sanitized by cryotherapy exhibited a lower survival rate, and a longer in vitro regeneration period. The question arises whether total eradication of viruses, at the expense of other microflora, is necessary, or if a partial reduction in the pathogenic load would suffice for sanitized garlic production. We explore this question from both scientific and commercial perspectives.
Collapse
Affiliation(s)
- Itay Yarmus
- Agricultural Research Organization, the Volcani Center, Risho LeZion 7505101, Israel; (I.Y.); (D.G.); (E.S.-M.); (D.D.T.); (D.M.); (A.F.); (R.P.)
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Dana Gelbart
- Agricultural Research Organization, the Volcani Center, Risho LeZion 7505101, Israel; (I.Y.); (D.G.); (E.S.-M.); (D.D.T.); (D.M.); (A.F.); (R.P.)
| | - Einat Shemesh-Mayer
- Agricultural Research Organization, the Volcani Center, Risho LeZion 7505101, Israel; (I.Y.); (D.G.); (E.S.-M.); (D.D.T.); (D.M.); (A.F.); (R.P.)
| | - Doron Dov Teper
- Agricultural Research Organization, the Volcani Center, Risho LeZion 7505101, Israel; (I.Y.); (D.G.); (E.S.-M.); (D.D.T.); (D.M.); (A.F.); (R.P.)
| | - Dana Ment
- Agricultural Research Organization, the Volcani Center, Risho LeZion 7505101, Israel; (I.Y.); (D.G.); (E.S.-M.); (D.D.T.); (D.M.); (A.F.); (R.P.)
| | - Adi Faigenboim
- Agricultural Research Organization, the Volcani Center, Risho LeZion 7505101, Israel; (I.Y.); (D.G.); (E.S.-M.); (D.D.T.); (D.M.); (A.F.); (R.P.)
| | - Ross Peters
- Agricultural Research Organization, the Volcani Center, Risho LeZion 7505101, Israel; (I.Y.); (D.G.); (E.S.-M.); (D.D.T.); (D.M.); (A.F.); (R.P.)
| | - Rina Kamenetsky-Goldstein
- Agricultural Research Organization, the Volcani Center, Risho LeZion 7505101, Israel; (I.Y.); (D.G.); (E.S.-M.); (D.D.T.); (D.M.); (A.F.); (R.P.)
| |
Collapse
|
8
|
Mäkinen K, Aspelin W, Pollari M, Wang L. How do they do it? The infection biology of potyviruses. Adv Virus Res 2023; 117:1-79. [PMID: 37832990 DOI: 10.1016/bs.aivir.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/15/2023]
Affiliation(s)
- Kristiina Mäkinen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| | - William Aspelin
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Maija Pollari
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Linping Wang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Nyirakanani C, Tamisier L, Bizimana JP, Rollin J, Nduwumuremyi A, Bigirimana VDP, Selmi I, Lasois L, Vanderschuren H, Massart S. Going beyond consensus genome sequences: An innovative SNP-based methodology reconstructs different Ugandan cassava brown streak virus haplotypes at a nationwide scale in Rwanda. Virus Evol 2023; 9:vead053. [PMID: 37692897 PMCID: PMC10491861 DOI: 10.1093/ve/vead053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/06/2023] [Revised: 06/14/2023] [Accepted: 08/20/2023] [Indexed: 09/12/2023] Open
Abstract
Cassava Brown Streak Disease (CBSD), which is caused by cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), represents one of the most devastating threats to cassava production in Africa, including in Rwanda where a dramatic epidemic in 2014 dropped cassava yield from 3.3 million to 900,000 tonnes (1). Studying viral genetic diversity at the genome level is essential in disease management, as it can provide valuable information on the origin and dynamics of epidemic events. To fill the current lack of genome-based diversity studies of UCBSV, we performed a nationwide survey of cassava ipomovirus genomic sequences in Rwanda by high-throughput sequencing (HTS) of pools of plants sampled from 130 cassava fields in thirteen cassava-producing districts, spanning seven agro-ecological zones with contrasting climatic conditions and different cassava cultivars. HTS allowed the assembly of a nearly complete consensus genome of UCBSV in twelve districts. The phylogenetic analysis revealed high homology between UCBSV genome sequences, with a maximum of 0.8 per cent divergence between genomes at the nucleotide level. An in-depth investigation based on Single Nucleotide Polymorphisms (SNPs) was conducted to explore the genome diversity beyond the consensus sequences. First, to ensure the validity of the result, a panel of SNPs was confirmed by independent reverse transcription polymerase chain reaction (RT-PCR) and Sanger sequencing. Furthermore, the combination of fixation index (FST) calculation and Principal Component Analysis (PCA) based on SNP patterns identified three different UCBSV haplotypes geographically clustered. The haplotype 2 (H2) was restricted to the central regions, where the NAROCAS 1 cultivar is predominantly farmed. RT-PCR and Sanger sequencing of individual NAROCAS1 plants confirmed their association with H2. Haplotype 1 was widely spread, with a 100 per cent occurrence in the Eastern region, while Haplotype 3 was only found in the Western region. These haplotypes' associations with specific cultivars or regions would need further confirmation. Our results prove that a much more complex picture of genetic diversity can be deciphered beyond the consensus sequences, with practical implications on virus epidemiology, evolution, and disease management. Our methodology proposes a high-resolution analysis of genome diversity beyond the consensus between and within samples. It can be used at various scales, from individual plants to pooled samples of virus-infected plants. Our findings also showed how subtle genetic differences could be informative on the potential impact of agricultural practices, as the presence and frequency of a virus haplotype could be correlated with the dissemination and adoption of improved cultivars.
Collapse
Affiliation(s)
- Chantal Nyirakanani
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux 5030, Belgium
- Department of Crop Sciences, School of Agriculture and Food Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze 210, Rwanda
| | - Lucie Tamisier
- Integrated and Urban Plant Pathology Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux 5030, Belgium
| | - Jean Pierre Bizimana
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux 5030, Belgium
- Department of Research, Rwanda Agriculture and Animal Resources Development Board, Huye 5016, Rwanda
| | - Johan Rollin
- Integrated and Urban Plant Pathology Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux 5030, Belgium
- Department of Research, DNAVision, Gosselies, Charleroi 6041, Belgium
| | - Athanase Nduwumuremyi
- Department of Research, Rwanda Agriculture and Animal Resources Development Board, Huye 5016, Rwanda
| | - Vincent de Paul Bigirimana
- Department of Crop Sciences, School of Agriculture and Food Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze 210, Rwanda
| | - Ilhem Selmi
- Integrated and Urban Plant Pathology Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux 5030, Belgium
| | - Ludivine Lasois
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux 5030, Belgium
| | - Hervé Vanderschuren
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux 5030, Belgium
- Tropical Crop Improvement Laboratory, Department of Biosystems, Katholieke Universiteit Leuven, Heverlee, Leuven 3001, Belgium
| | - Sébastien Massart
- Integrated and Urban Plant Pathology Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux 5030, Belgium
| |
Collapse
|
10
|
Fontdevila Pareta N, Khalili M, Maachi A, Rivarez MPS, Rollin J, Salavert F, Temple C, Aranda MA, Boonham N, Botermans M, Candresse T, Fox A, Hernando Y, Kutnjak D, Marais A, Petter F, Ravnikar M, Selmi I, Tahzima R, Trontin C, Wetzel T, Massart S. Managing the deluge of newly discovered plant viruses and viroids: an optimized scientific and regulatory framework for their characterization and risk analysis. Front Microbiol 2023; 14:1181562. [PMID: 37323908 PMCID: PMC10265641 DOI: 10.3389/fmicb.2023.1181562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/07/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
The advances in high-throughput sequencing (HTS) technologies and bioinformatic tools have provided new opportunities for virus and viroid discovery and diagnostics. Hence, new sequences of viral origin are being discovered and published at a previously unseen rate. Therefore, a collective effort was undertaken to write and propose a framework for prioritizing the biological characterization steps needed after discovering a new plant virus to evaluate its impact at different levels. Even though the proposed approach was widely used, a revision of these guidelines was prepared to consider virus discovery and characterization trends and integrate novel approaches and tools recently published or under development. This updated framework is more adapted to the current rate of virus discovery and provides an improved prioritization for filling knowledge and data gaps. It consists of four distinct steps adapted to include a multi-stakeholder feedback loop. Key improvements include better prioritization and organization of the various steps, earlier data sharing among researchers and involved stakeholders, public database screening, and exploitation of genomic information to predict biological properties.
Collapse
Affiliation(s)
| | - Maryam Khalili
- Univ. Bordeaux, INRAE, UMR BFP, Villenave d'Ornon, France
- EGFV, Univ. Bordeaux, INRAE, ISVV, Villenave d’Ornon, France
| | | | - Mark Paul S. Rivarez
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- College of Agriculture and Agri-Industries, Caraga State University, Butuan, Philippines
| | - Johan Rollin
- Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- DNAVision (Belgium), Charleroi, Belgium
| | - Ferran Salavert
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Coline Temple
- Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Miguel A. Aranda
- Department of Stress Biology and Plant Pathology, Center for Edaphology and Applied Biology of Segura, Spanish National Research Council (CSIC), Murcia, Spain
| | - Neil Boonham
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marleen Botermans
- Netherlands Institute for Vectors, Invasive Plants and Plant Health (NIVIP), Wageningen, Netherlands
| | | | - Adrian Fox
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
- Fera Science Ltd, York Biotech Campus, York, United Kingdom
| | | | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Armelle Marais
- Univ. Bordeaux, INRAE, UMR BFP, Villenave d'Ornon, France
| | | | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ilhem Selmi
- Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Rachid Tahzima
- Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Plant Sciences Unit, Institute for Agricultural, Fisheries and Food Research (ILVO), Merelbeke, Belgium
| | - Charlotte Trontin
- European and Mediterranean Plant Protection Organization, Paris, France
| | - Thierry Wetzel
- DLR Rheinpfalz, Institute of Plant Protection, Neustadt an der Weinstrasse, Germany
| | - Sebastien Massart
- Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Bioversity International, Montpellier, France
| |
Collapse
|
11
|
Dumas M, Borges DF, Priesing S, Tippett E, Ambrosio MMDQ, Luís da Silva W. Gathered from the Vine: A Survey of Seven Grapevine Viruses Within New England Vineyards. PLANT DISEASE 2023; 107:644-650. [PMID: 36018550 DOI: 10.1094/pdis-03-22-0668-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/15/2023]
Abstract
Vineyards in the Southeastern New England American Viticultural Area were surveyed for the incidence of seven major viruses: grapevine leafroll-associated viruses (GLRaV-1, GLRaV-2, GLRaV-3, and GLRaV-4), grapevine fanleaf virus (GFLV), tomato ringspot virus (ToRSV), and tobacco ringspot virus (TRSV). Viruses were detected by DAS-ELISA and confirmed by RT-PCR and Sanger sequencing. Multiple viruses were present in 19 out of the 25 vineyards surveyed between 2018 and 2020. GLRaV-3 (27.59%) was the most prevalent virus followed by GLRaV-4 (14.90%), GLRaV-1 (13.52%), GLRaV-2 (11.03%), ToRSV (6.34%), GFLV (5.24%), and TRSV (2.62%). Furthermore, phylogenetic analyses of the viral partial genome sequences acquired in this study revealed that the grapevine viruses present in this area are diverse, indicating that they may have been introduced from different sources. Our findings stress the need for improving the sanitary status of planting materials to avoid the introduction and dissemination of viruses to vineyards in this important wine-producing region of New England.
Collapse
Affiliation(s)
- Madeleine Dumas
- The Connecticut Agricultural Experiment Station, Department of Plant Pathology and Ecology, New Haven, CT 06504, U.S.A
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, U.S.A
| | - Darlan Ferreira Borges
- The Connecticut Agricultural Experiment Station, Department of Plant Pathology and Ecology, New Haven, CT 06504, U.S.A
- Universidade Federal Rural do Semi-Árido, Departamento de Ciências Agronômicas e Florestais, Mossoró 59625-900, RN, Brazil
| | - Stephanie Priesing
- The Connecticut Agricultural Experiment Station, Department of Plant Pathology and Ecology, New Haven, CT 06504, U.S.A
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, U.S.A
- Biology Department, Southern Connecticut State University, New Haven, CT 06504, U.S.A
| | - Ethan Tippett
- The Connecticut Agricultural Experiment Station, Department of Plant Pathology and Ecology, New Haven, CT 06504, U.S.A
- College of Art and Sciences, Ferris State University, Big Rapids, MI 49307, U.S.A
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, U.S.A
| | | | - Washington Luís da Silva
- The Connecticut Agricultural Experiment Station, Department of Plant Pathology and Ecology, New Haven, CT 06504, U.S.A
- Universidade Federal Rural do Semi-Árido, Departamento de Ciências Agronômicas e Florestais, Mossoró 59625-900, RN, Brazil
- College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT 06268, U.S.A
| |
Collapse
|
12
|
Plant Virus Adaptation to New Hosts: A Multi-scale Approach. Curr Top Microbiol Immunol 2023; 439:167-196. [PMID: 36592246 DOI: 10.1007/978-3-031-15640-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023]
Abstract
Viruses are studied at each level of biological complexity: from within-cells to ecosystems. The same basic evolutionary forces and principles operate at each level: mutation and recombination, selection, genetic drift, migration, and adaptive trade-offs. Great efforts have been put into understanding each level in great detail, hoping to predict the dynamics of viral population, prevent virus emergence, and manage their spread and virulence. Unfortunately, we are still far from this. To achieve these ambitious goals, we advocate for an integrative perspective of virus evolution. Focusing in plant viruses, we illustrate the pervasiveness of the above-mentioned principles. Beginning at the within-cell level, we describe replication modes, infection bottlenecks, and cellular contagion rates. Next, we move up to the colonization of distal tissues, discussing the fundamental role of random events. Then, we jump beyond the individual host and discuss the link between transmission mode and virulence. Finally, at the community level, we discuss properties of virus-plant infection networks. To close this review we propose the multilayer network theory, in which elements at different layers are connected and submit to their own dynamics that feed across layers, resulting in new emerging properties, as a way to integrate information from the different levels.
Collapse
|
13
|
Bhoi TK, Samal I, Majhi PK, Komal J, Mahanta DK, Pradhan AK, Saini V, Nikhil Raj M, Ahmad MA, Behera PP, Ashwini M. Insight into aphid mediated Potato Virus Y transmission: A molecular to bioinformatics prospective. Front Microbiol 2022; 13:1001454. [PMID: 36504828 PMCID: PMC9729956 DOI: 10.3389/fmicb.2022.1001454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Potato, the world's most popular crop is reported to provide a food source for nearly a billion people. It is prone to a number of biotic stressors that affect yield and quality, out of which Potato Virus Y (PVY) occupies the top position. PVY can be transmitted mechanically and by sap-feeding aphid vectors. The application of insecticide causes an increase in the resistant vector population along with detrimental effects on the environment; genetic resistance and vector-virus control are the two core components for controlling the deadly PVY. Using transcriptomic tools together with differential gene expression and gene discovery, several loci and genes associated with PVY resistance have been widely identified. To combat this virus we must increase our understanding on the molecular response of the PVY-potato plant-aphid interaction and knowledge of genome organization, as well as the function of PVY encoded proteins, genetic diversity, the molecular aspects of PVY transmission by aphids, and transcriptome profiling of PVY infected potato cultivars. Techniques such as molecular and bioinformatics tools can identify and monitor virus transmission. Several studies have been conducted to understand the molecular basis of PVY resistance/susceptibility interactions and their impact on PVY epidemiology by studying the interrelationship between the virus, its vector, and the host plant. This review presents current knowledge of PVY transmission, epidemiology, genome organization, molecular to bioinformatics responses, and its effective management.
Collapse
Affiliation(s)
- Tanmaya Kumar Bhoi
- Forest Protection Division, ICFRE-Arid Forest Research Institute (AFRI), Jodhpur, Rajasthan, India
| | - Ipsita Samal
- Department of Entomology, Sri Sri University, Cuttack, Odisha, India
| | - Prasanta Kumar Majhi
- Department of Plant Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - J. Komal
- Department of Entomology, Navsari Agricultural University, Navsari, Gujarat, India,J. Komal
| | - Deepak Kumar Mahanta
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India,*Correspondence: Deepak Kumar Mahanta
| | - Asit Kumar Pradhan
- Social Science Division, ICAR-National Rice Research Institute (NRRI), Cuttack, Odisha, India
| | - Varun Saini
- Division of Entomology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - M. Nikhil Raj
- Division of Entomology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Mohammad Abbas Ahmad
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India
| | | | - Mangali Ashwini
- Department of Entomology, Navsari Agricultural University, Navsari, Gujarat, India
| |
Collapse
|
14
|
Shemesh-Mayer E, Gelbart D, Belausov E, Sher N, Daus A, Rabinowitch HD, Kamenetsky-Goldstein R. Garlic Potyviruses Are Translocated to the True Seeds through the Vegetative and Reproductive Systems of the Mother Plant. Viruses 2022; 14:2092. [PMID: 36298648 PMCID: PMC9612218 DOI: 10.3390/v14102092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/28/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 10/15/2023] Open
Abstract
Garlic lost its ability to produce true seeds millennia ago, and today non-fertile commercial cultivars are propagated only vegetatively. Garlic viruses are commonly carried over from one generation of vegetative propagules to the other, while nematodes and arthropods further transmit the pathogens from infected to healthy plants. A recent breakthrough in the production of true (botanical) garlic seeds resulted in rapid scientific progress, but the question of whether viruses are transmitted via seeds remains open and is important for the further development of commercial seed production. We combined morpho-physiological analysis, fluorescence in situ hybridization (FISH), and PCR analysis to follow potyvirus localization and translocation within garlic fertile plants and seeds. Spatial distribution was recorded in both vegetative and reproductive organs. We conclude that garlic potyviruses are translocated to the seeds from the infected mother plant during flower development and post-fertilization, while pollen remains virus-free and does not contribute to seed infection. Therefore, the main practical goal for virus-clean seed production in garlic is the careful maintenance of virus-free mother plants. Although garlic pollen is free of potyviral infection, the male parents' plants also need to be protected from contamination, since viral infection weakens plants, reducing flowering ability and pollen production.
Collapse
Affiliation(s)
- Einat Shemesh-Mayer
- Institute of Plant Sciences, Agricultural Research Organization—The Volcani Institute, Risho LeZion 7505101, Israel
| | - Dana Gelbart
- Institute of Plant Sciences, Agricultural Research Organization—The Volcani Institute, Risho LeZion 7505101, Israel
| | - Eduard Belausov
- Institute of Plant Sciences, Agricultural Research Organization—The Volcani Institute, Risho LeZion 7505101, Israel
| | - Nisan Sher
- Institute of Plant Sciences, Agricultural Research Organization—The Volcani Institute, Risho LeZion 7505101, Israel
| | - Ahuva Daus
- Institute of Plant Sciences, Agricultural Research Organization—The Volcani Institute, Risho LeZion 7505101, Israel
| | - Haim D. Rabinowitch
- Robert H. Smith Faculty of Agricultural, Food, and Environmental Quality Sciences, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Rina Kamenetsky-Goldstein
- Institute of Plant Sciences, Agricultural Research Organization—The Volcani Institute, Risho LeZion 7505101, Israel
| |
Collapse
|
15
|
Grech‐Baran M, Witek K, Poznański JT, Grupa‐Urbańska A, Malinowski T, Lichocka M, Jones JDG, Hennig J. The Ry sto immune receptor recognises a broadly conserved feature of potyviral coat proteins. THE NEW PHYTOLOGIST 2022; 235:1179-1195. [PMID: 35491734 PMCID: PMC9322412 DOI: 10.1111/nph.18183] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/02/2022] [Accepted: 04/13/2022] [Indexed: 05/05/2023]
Abstract
Knowledge of the immune mechanisms responsible for viral recognition is critical for understanding durable disease resistance and successful crop protection. We determined how potato virus Y (PVY) coat protein (CP) is recognised by Rysto , a TNL immune receptor. We applied structural modelling, site-directed mutagenesis, transient overexpression, co-immunoprecipitation, infection assays and physiological cell death marker measurements to investigate the mechanism of Rysto -CP interaction. Rysto associates directly with PVY CP in planta that is conditioned by the presence of a CP central 149 amino acids domain. Each deletion that affects the CP core region impairs the ability of Rysto to trigger defence. Point mutations in the amino acid residues Ser125 , Arg157 , and Asp201 of the conserved RNA-binding pocket of potyviral CP reduce or abolish Rysto binding and Rysto -dependent responses, demonstrating that appropriate folding of the CP core is crucial for Rysto -mediated recognition. Rysto recognises the CPs of at least 10 crop-damaging viruses that share a similar core region. It confers immunity to plum pox virus and turnip mosaic virus in both Solanaceae and Brassicaceae systems, demonstrating potential utility in engineering virus resistance in various crops. Our findings shed new light on how R proteins detect different viruses by sensing conserved structural patterns.
Collapse
Affiliation(s)
- Marta Grech‐Baran
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesPawińskiego 5aWarsaw02‐106Poland
| | - Kamil Witek
- The Sainsbury LaboratoryUniversity of East AngliaNorwich Research ParkNorwichNR4 7UHUK
- The 2Blades FoundationEvanstonIL60201USA
| | - Jarosław T. Poznański
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesPawińskiego 5aWarsaw02‐106Poland
| | - Anna Grupa‐Urbańska
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesPawińskiego 5aWarsaw02‐106Poland
- Plant Breeding and Acclimatization Institute‐National Research InstitutePlatanowa 19Młochów05‐831Poland
| | - Tadeusz Malinowski
- The National Institute of Horticultural ResearchKonstytucji 3. Maja 1/3Skierniewice96‐100Poland
| | - Małgorzata Lichocka
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesPawińskiego 5aWarsaw02‐106Poland
| | - Jonathan D. G. Jones
- The Sainsbury LaboratoryUniversity of East AngliaNorwich Research ParkNorwichNR4 7UHUK
| | - Jacek Hennig
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesPawińskiego 5aWarsaw02‐106Poland
| |
Collapse
|
16
|
Low Pathogenicity H7N3 Avian Influenza Viruses Have Higher Within-Host Genetic Diversity Than a Closely Related High Pathogenicity H7N3 Virus in Infected Turkeys and Chickens. Viruses 2022; 14:v14030554. [PMID: 35336961 PMCID: PMC8951284 DOI: 10.3390/v14030554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/11/2022] Open
Abstract
Within-host viral diversity offers a view into the early stages of viral evolution occurring after a virus infects a host. In recent years, advances in deep sequencing have allowed for routine identification of low-frequency variants, which are important sources of viral genetic diversity and can potentially emerge as a major virus population under certain conditions. We examined within-host viral diversity in turkeys and chickens experimentally infected with closely related H7N3 avian influenza viruses (AIVs), specifically one high pathogenicity AIV (HPAIV) and two low pathogenicity AIV (LPAIVs) with different neuraminidase protein stalk lengths. Consistent with the high mutation rates of AIVs, an abundance of intra-host single nucleotide variants (iSNVs) at low frequencies of 2–10% was observed in all samples collected. Furthermore, a small number of common iSNVs were observed between turkeys and chickens, and between directly inoculated and contact-exposed birds. Notably, the LPAIVs have significantly higher iSNV diversities and frequencies of nonsynonymous changes than the HPAIV in both turkeys and chickens. These findings highlight the dynamics of AIV populations within hosts and the potential impact of genetic changes, including mutations in the hemagglutinin gene that confers the high pathogenicity pathotype, on AIV virus populations and evolution.
Collapse
|
17
|
Alcaide C, Aranda MA. Determinants of Persistent Patterns of Pepino Mosaic Virus Mixed Infections. Front Microbiol 2021; 12:694492. [PMID: 34295323 PMCID: PMC8290496 DOI: 10.3389/fmicb.2021.694492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2021] [Accepted: 05/31/2021] [Indexed: 11/26/2022] Open
Abstract
Pepino mosaic virus (PepMV) has become a pandemic virus in tomato crops, causing important economic losses worldwide. In Spain, isolates of the EU and CH2 strains co-circulate, with PepMV-EU predominantly found in mixed infections. Simultaneous in planta mixed infections result in an asymmetric antagonism against PepMV-CH2, but the outcome of over-infections has never been tested. PepMV-EU and PepMV-CH2 time-lagged inoculations were performed, and viral accumulation was measured 10 days after challenge inoculation. PepMV-EU had a protective effect over PepMV-CH2; in contrast, the accumulation of PepMV-EU increased in plants pre-inoculated with PepMV-CH2 as compared to single infections. We also studied the effect of the type of infection on viral transmission. Independently of the nature of the infection (single or mixed), we observed a strong positive correlation between virus accumulation in the source plant and transmission, excluding mixed infection effects different than modulating viral accumulation. Finally, in order to determine the genetic variability of PepMV strains in single and mixed infections, a 430 nucleotide region was RT-PCR amplified from samples from a serial passages experiment and deep-sequenced. No significant differences were found in the number of nucleotide substitutions between single and mixed infections for PepMV-EU; in contrast, significant differences were found for PepMV-CH2, which was more variable in single than in mixed infections. Comparing PepMV-EU with PepMV-CH2, a higher nucleotide diversity was found for PepMV-CH2. Collectively, our data strongly suggest that PepMV mixed infections can impact the virus epidemiology by modulating in planta virus strain accumulation and diversification.
Collapse
Affiliation(s)
- Cristina Alcaide
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Murcia, Spain
| | - Miguel A Aranda
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Murcia, Spain
| |
Collapse
|
18
|
Aimone CD, Lavington E, Hoyer JS, Deppong DO, Mickelson-Young L, Jacobson A, Kennedy GG, Carbone I, Hanley-Bowdoin L, Duffy S. Population diversity of cassava mosaic begomoviruses increases over the course of serial vegetative propagation. J Gen Virol 2021; 102:001622. [PMID: 34310272 PMCID: PMC8491896 DOI: 10.1099/jgv.0.001622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2021] [Accepted: 06/05/2021] [Indexed: 01/06/2023] Open
Abstract
Cassava mosaic disease (CMD) represents a serious threat to cassava, a major root crop for more than 300 million Africans. CMD is caused by single-stranded DNA begomoviruses that evolve rapidly, making it challenging to develop durable disease resistance. In addition to the evolutionary forces of mutation, recombination and reassortment, factors such as climate, agriculture practices and the presence of DNA satellites may impact viral diversity. To gain insight into the factors that alter and shape viral diversity in planta, we used high-throughput sequencing to characterize the accumulation of nucleotide diversity after inoculation of infectious clones corresponding to African cassava mosaic virus (ACMV) and East African cassava mosaic Cameroon virus (EACMCV) in the susceptible cassava landrace Kibandameno. We found that vegetative propagation had a significant effect on viral nucleotide diversity, while temperature and a satellite DNA did not have measurable impacts in our study. EACMCV diversity increased linearly with the number of vegetative propagation passages, while ACMV diversity increased for a time and then decreased in later passages. We observed a substitution bias toward C→T and G→A for mutations in the viral genomes consistent with field isolates. Non-coding regions excluding the promoter regions of genes showed the highest levels of nucleotide diversity for each genome component. Changes in the 5' intergenic region of DNA-A resembled the sequence of the cognate DNA-B sequence. The majority of nucleotide changes in coding regions were non-synonymous, most with predicted deleterious effects on protein structure, indicative of relaxed selection pressure over six vegetative passages. Overall, these results underscore the importance of knowing how cropping practices affect viral evolution and disease progression.
Collapse
Affiliation(s)
- Catherine D. Aimone
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Erik Lavington
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - J. Steen Hoyer
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - David O. Deppong
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Leigh Mickelson-Young
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Alana Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - George G. Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh NC 27695, USA
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Siobain Duffy
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
19
|
Kutnjak D, Tamisier L, Adams I, Boonham N, Candresse T, Chiumenti M, De Jonghe K, Kreuze JF, Lefebvre M, Silva G, Malapi-Wight M, Margaria P, Mavrič Pleško I, McGreig S, Miozzi L, Remenant B, Reynard JS, Rollin J, Rott M, Schumpp O, Massart S, Haegeman A. A Primer on the Analysis of High-Throughput Sequencing Data for Detection of Plant Viruses. Microorganisms 2021; 9:841. [PMID: 33920047 PMCID: PMC8071028 DOI: 10.3390/microorganisms9040841] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/14/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/12/2022] Open
Abstract
High-throughput sequencing (HTS) technologies have become indispensable tools assisting plant virus diagnostics and research thanks to their ability to detect any plant virus in a sample without prior knowledge. As HTS technologies are heavily relying on bioinformatics analysis of the huge amount of generated sequences, it is of utmost importance that researchers can rely on efficient and reliable bioinformatic tools and can understand the principles, advantages, and disadvantages of the tools used. Here, we present a critical overview of the steps involved in HTS as employed for plant virus detection and virome characterization. We start from sample preparation and nucleic acid extraction as appropriate to the chosen HTS strategy, which is followed by basic data analysis requirements, an extensive overview of the in-depth data processing options, and taxonomic classification of viral sequences detected. By presenting the bioinformatic tools and a detailed overview of the consecutive steps that can be used to implement a well-structured HTS data analysis in an easy and accessible way, this paper is targeted at both beginners and expert scientists engaging in HTS plant virome projects.
Collapse
Affiliation(s)
- Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Lucie Tamisier
- Plant Pathology Laboratory, Université de Liège, Gembloux Agro-Bio Tech, TERRA, Passage des Déportés, 2, 5030 Gembloux, Belgium; (L.T.); (J.R.); (S.M.)
| | - Ian Adams
- Fera Science Limited, York YO41 1LZ, UK; (I.A.); (S.M.)
| | - Neil Boonham
- Institute for Agri-Food Research and Innovation, Newcastle University, King’s Rd, Newcastle Upon Tyne NE1 7RU, UK;
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, INRA, University of Bordeaux, 33140 Villenave d’Ornon, France; (T.C.); (M.L.)
| | - Michela Chiumenti
- Institute for Sustainable Plant Protection, National Research Council, Via Amendola, 122/D, 70126 Bari, Italy;
| | - Kris De Jonghe
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Burg. Van Gansberghelaan 96, 9820 Merelbeke, Belgium; (K.D.J.); (A.H.)
| | - Jan F. Kreuze
- International Potato Center (CIP), Avenida la Molina 1895, La Molina, Lima 15023, Peru;
| | - Marie Lefebvre
- UMR 1332 Biologie du Fruit et Pathologie, INRA, University of Bordeaux, 33140 Villenave d’Ornon, France; (T.C.); (M.L.)
| | - Gonçalo Silva
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK;
| | - Martha Malapi-Wight
- Biotechnology Risk Analysis Programs, Biotechnology Regulatory Services, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Riverdale, MD 20737, USA;
| | - Paolo Margaria
- Leibniz Institute-DSMZ, Inhoffenstrasse 7b, 38124 Braunschweig, Germany;
| | - Irena Mavrič Pleško
- Agricultural Institute of Slovenia, Hacquetova Ulica 17, 1000 Ljubljana, Slovenia;
| | - Sam McGreig
- Fera Science Limited, York YO41 1LZ, UK; (I.A.); (S.M.)
| | - Laura Miozzi
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Strada delle Cacce 73, 10135 Torino, Italy;
| | - Benoit Remenant
- ANSES Plant Health Laboratory, 7 Rue Jean Dixméras, CEDEX 01, 49044 Angers, France;
| | | | - Johan Rollin
- Plant Pathology Laboratory, Université de Liège, Gembloux Agro-Bio Tech, TERRA, Passage des Déportés, 2, 5030 Gembloux, Belgium; (L.T.); (J.R.); (S.M.)
- DNAVision, 6041 Charleroi, Belgium
| | - Mike Rott
- Sidney Laboratory, Canadian Food Inspection Agency, 8801 East Saanich Rd, North Saanich, BC V8L 1H3, Canada;
| | - Olivier Schumpp
- Agroscope, Route de Duillier 50, 1260 Nyon, Switzerland; (J.-S.R.); (O.S.)
| | - Sébastien Massart
- Plant Pathology Laboratory, Université de Liège, Gembloux Agro-Bio Tech, TERRA, Passage des Déportés, 2, 5030 Gembloux, Belgium; (L.T.); (J.R.); (S.M.)
| | - Annelies Haegeman
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Burg. Van Gansberghelaan 96, 9820 Merelbeke, Belgium; (K.D.J.); (A.H.)
| |
Collapse
|
20
|
Molecular Characterization of Potato Virus Y (PVY) Using High-Throughput Sequencing: Constraints on Full Genome Reconstructions Imposed by Mixed Infection Involving Recombinant PVY Strains. PLANTS 2021; 10:plants10040753. [PMID: 33921504 PMCID: PMC8069754 DOI: 10.3390/plants10040753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 04/10/2021] [Indexed: 12/28/2022]
Abstract
In recent years, high throughput sequencing (HTS) has brought new possibilities to the study of the diversity and complexity of plant viromes. Mixed infection of a single plant with several viruses is frequently observed in such studies. We analyzed the virome of 10 tomato and sweet pepper samples from Slovakia, all showing the presence of potato virus Y (PVY) infection. Most datasets allow the determination of the nearly complete sequence of a single-variant PVY genome, belonging to one of the PVY recombinant strains (N-Wi, NTNa, or NTNb). However, in three to-mato samples (T1, T40, and T62) the presence of N-type and O-type sequences spanning the same genome region was documented, indicative of mixed infections involving different PVY strains variants, hampering the automated assembly of PVY genomes present in the sample. The N- and O-type in silico data were further confirmed by specific RT-PCR assays targeting UTR-P1 and NIa genomic parts. Although full genomes could not be de novo assembled directly in this situation, their deep coverage by relatively long paired reads allowed their manual re-assembly using very stringent mapping parameters. These results highlight the complexity of PVY infection of some host plants and the challenges that can be met when trying to precisely identify the PVY isolates involved in mixed infection.
Collapse
|
21
|
Hanafi M, Tahzima R, Ben Kaab S, Tamisier L, Roux N, Massart S. Identification of Divergent Isolates of Banana Mild Mosaic Virus and Development of a New Diagnostic Primer to Improve Detection. Pathogens 2020; 9:pathogens9121045. [PMID: 33322809 PMCID: PMC7764570 DOI: 10.3390/pathogens9121045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/05/2023] Open
Abstract
Banana mild mosaic virus (BanMMV) (Betaflexiviridae, Quinvirinae, unassigned species) is a filamentous virus belonging to the Betaflexiviridae family. It infects Musa spp. with a very wide geographic distribution. The genome variability of plant viruses, including the members of the Betaflexiviridae family, makes their molecular detection by specific primers particularly challenging. During routine indexing of the Musa germplasm accessions, a discrepancy was observed between electron microscopy and immunocapture (IC) reverse transcription (RT) polymerase chain reaction (PCR) test results for one asymptomatic accession. Filamentous viral particles were observed while molecular tests failed to amplify any fragment. The accession underwent high-throughput sequencing and two complete genomes of BanMMV with 75.3% of identity were assembled. Based on these sequences and on the 54 coat protein sequences available from GenBank, a new forward primer, named BanMMV CP9, compatible with Poty1, an oligodT reverse primer already used in diagnostics, was designed. A retrospective analysis of 110 different germplasm accessions from diverse origins was conducted, comparing BanMMCP2 and BanMMV CP9 primers. Of these 110 accessions, 16 tested positive with both BanMMCP2 and BanMMV CP9, 3 were positive with only BanMMCP2 and 2 tested positive with only BanMMV CP9. Otherwise, 89 were negative with the two primers and free of flexuous virions. Sanger sequencing was performed from purified PCR products in order to confirm the amplification of the BanMMV sequence for the five accessions with contrasting results. It is highly recommended to use the two primers successively to improve the inclusiveness of the protocol.
Collapse
Affiliation(s)
- Marwa Hanafi
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, 2, Passage des Déportés, 5030 Gembloux, Belgium; (R.T.); (S.B.K.); (L.T.); (S.M.)
- Correspondence:
| | - Rachid Tahzima
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, 2, Passage des Déportés, 5030 Gembloux, Belgium; (R.T.); (S.B.K.); (L.T.); (S.M.)
| | - Sofiene Ben Kaab
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, 2, Passage des Déportés, 5030 Gembloux, Belgium; (R.T.); (S.B.K.); (L.T.); (S.M.)
| | - Lucie Tamisier
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, 2, Passage des Déportés, 5030 Gembloux, Belgium; (R.T.); (S.B.K.); (L.T.); (S.M.)
| | - Nicolas Roux
- Consultative Group on International Agricultural Research, 34090 Montpellier, France;
| | - Sébastien Massart
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, 2, Passage des Déportés, 5030 Gembloux, Belgium; (R.T.); (S.B.K.); (L.T.); (S.M.)
| |
Collapse
|