1
|
Jiang Z, Merits A, Qin Y, Xing G, Zhang L, Chen J, Wang N, Varjak M, Zhai X, Li D, Song W, Su S. Attenuated Getah virus confers protection against multiple arthritogenic alphaviruses. PLoS Pathog 2024; 20:e1012700. [PMID: 39556619 PMCID: PMC11630583 DOI: 10.1371/journal.ppat.1012700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/10/2024] [Accepted: 10/27/2024] [Indexed: 11/20/2024] Open
Abstract
Alphaviruses are important arthropod-transmitted pathogens of humans and livestock. Getah virus (GETV) is an arthritogenic alphavirus that causes disease in horses and piglets; it also poses a potential threat to humans. A live attenuated vaccine candidate named GETV-3ΔS2-CM1, harbouring a deletion in nonstructural protein 3 and substitutions in the capsid protein, is genetically stable and exhibits robust immunogenicity. It was shown to confer passive protection to piglets born to immunized sows. In mice, a single dose of GETV-3ΔS2-CM1 protected against infection with different strains of GETV, Semliki Forest virus, Ross River virus, o'nyong'nyong virus, chikungunya virus, and Barmah Forest virus. Chimaeras based on the GETV-3ΔS2-CM1 backbone maintained both the attenuated phenotype and high immunogenicity. The safety, efficacy, and ability to induce protection against multiple alphaviruses highlights the potential of GETV-3ΔS2-CM1 and chimaeras using this backbone as promising vaccine candidates. By contributing simultaneously to the wellbeing of animals and humans, our universal next generation vaccine strategy helps to achieve "One Health" goals.
Collapse
Affiliation(s)
- Zhiwen Jiang
- Sanya Institute of Nanjing Agricultural University, Academy for Advanced Interdisciplinary Studies, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Andres Merits
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Ying Qin
- Sanya Institute of Nanjing Agricultural University, Academy for Advanced Interdisciplinary Studies, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Gang Xing
- MOA Key Laboratory of Animal Virology, Zhejiang University, Hangzhou, China
| | - Letian Zhang
- Sanya Institute of Nanjing Agricultural University, Academy for Advanced Interdisciplinary Studies, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jie Chen
- Sanya Institute of Nanjing Agricultural University, Academy for Advanced Interdisciplinary Studies, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ningning Wang
- Sanya Institute of Nanjing Agricultural University, Academy for Advanced Interdisciplinary Studies, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Margus Varjak
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Xiaofeng Zhai
- Sanya Institute of Nanjing Agricultural University, Academy for Advanced Interdisciplinary Studies, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Dongyan Li
- Sanya Institute of Nanjing Agricultural University, Academy for Advanced Interdisciplinary Studies, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wanjie Song
- Sanya Institute of Nanjing Agricultural University, Academy for Advanced Interdisciplinary Studies, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shuo Su
- Sanya Institute of Nanjing Agricultural University, Academy for Advanced Interdisciplinary Studies, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Sun K, Appadoo F, Liu Y, Müller M, Macfarlane C, Harris M, Tuplin A. A novel interaction between the 5' untranslated region of the Chikungunya virus genome and Musashi RNA binding protein is essential for efficient virus genome replication. Nucleic Acids Res 2024; 52:10654-10667. [PMID: 39087525 PMCID: PMC11417370 DOI: 10.1093/nar/gkae619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Chikungunya virus (CHIKV) is a re-emerging, pathogenic alphavirus that is transmitted to humans by Aedesspp. mosquitoes-causing fever and debilitating joint pain, with frequent long-term health implications and high morbidity. The CHIKV replication cycle is poorly understood and specific antiviral therapeutics are lacking. In the current study, we identify host cell Musashi RNA binding protein-2 (MSI-2) as a proviral factor. MSI-2 depletion and small molecule inhibition assays demonstrated that MSI-2 is required for efficient CHIKV genome replication. Depletion of both MSI-2 and MSI-1 homologues was found to synergistically inhibit CHIKV replication, suggesting redundancy in their proviral function. Electromobility shift assay (EMSA) competition studies demonstrated that MSI-2 interacts specifically with an RNA binding motif within the 5' untranslated region (5'UTR) of CHIKV and reverse genetic analysis showed that mutation of the binding motif inhibited genome replication and blocked rescue of mutant virus. For the first time, this study identifies the proviral role of MSI RNA binding proteins in the replication of the CHIKV genome, providing important new insight into mechanisms controlling replication of this significant human pathogen and the potential of a novel therapeutic target.
Collapse
Affiliation(s)
- Kaiwen Sun
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Francesca Appadoo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Yuqian Liu
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Marietta Müller
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Catriona Macfarlane
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
3
|
Omler A, Mutso M, Vaher M, Freitas JR, Taylor A, David CT, Moseley GW, Liu X, Merits A, Mahalingam S. Exploring Barmah Forest virus pathogenesis: molecular tools to investigate non-structural protein 3 nuclear localization and viral genomic determinants of replication. mBio 2024; 15:e0099324. [PMID: 38953633 PMCID: PMC11323547 DOI: 10.1128/mbio.00993-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 07/04/2024] Open
Abstract
Barmah Forest virus (BFV) is a mosquito-borne virus that causes arthralgia with accompanying rash, fever, and myalgia in humans. The virus is mainly found in Australia and has caused outbreaks associated with significant health concerns. As the sole representative of the Barmah Forest complex within the genus Alphavirus, BFV is not closely related genetically to other alphaviruses. Notably, basic knowledge of BFV molecular virology has not been well studied due to a lack of critical investigative tools such as an infectious clone. Here we describe the construction of an infectious BFV cDNA clone based on Genbank sequence and demonstrate that the clone-derived virus has in vitro and in vivo properties similar to naturally occurring virus, BFV field isolate 2193 (BFV2193-FI). A substitution in nsP4, V1911D, which was identified in the Genbank reference sequence, was found to inhibit virus rescue and replication. T1325P substitution in nsP2 selected during virus passaging was shown to be an adaptive mutation, compensating for the inhibitory effect of nsP4-V1911D. The two mutations were associated with changes in viral non-structural polyprotein processing and type I interferon (IFN) induction. Interestingly, a nuclear localization signal, active in mammalian but not mosquito cells, was identified in nsP3. A point mutation abolishing nsP3 nuclear localization attenuated BFV replication. This effect was more prominent in the presence of type I interferon signaling, suggesting nsP3 nuclear localization might be associated with IFN antagonism. Furthermore, abolishing nsP3 nuclear localization reduced virus replication in mice but did not significantly affect disease.IMPORTANCEBarmah Forest virus (BFV) is Australia's second most prevalent arbovirus, with approximately 1,000 cases reported annually. The clinical symptoms of BFV infection include rash, polyarthritis, arthralgia, and myalgia. As BFV is not closely related to other pathogenic alphaviruses or well-studied model viruses, our understanding of its molecular virology and mechanisms of pathogenesis is limited. There is also a lack of molecular tools essential for corresponding studies. Here we describe the construction of an infectious clone of BFV, variants harboring point mutations, and sequences encoding marker protein. In infected mammalian cells, nsP3 of BFV was located in the nuclei. This finding extends our understanding of the diverse mechanisms used by alphavirus replicase proteins to interact with host cells. Our novel observations highlight the complex synergy through which the viral replication machinery evolves to correct mutation errors within the viral genome.
Collapse
Affiliation(s)
- Ailar Omler
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Margit Mutso
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mihkel Vaher
- The Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Joseph R. Freitas
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Global Virus Network (GVN) Centre for Excellence in Arboviruses, Griffith University, Gold Coast, Queensland, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Adam Taylor
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Global Virus Network (GVN) Centre for Excellence in Arboviruses, Griffith University, Gold Coast, Queensland, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Cassandra T. David
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Gregory W. Moseley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Xiang Liu
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Global Virus Network (GVN) Centre for Excellence in Arboviruses, Griffith University, Gold Coast, Queensland, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Andres Merits
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Suresh Mahalingam
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Global Virus Network (GVN) Centre for Excellence in Arboviruses, Griffith University, Gold Coast, Queensland, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
4
|
Hick TAH, Geertsema C, Nguyen W, Bishop CR, van Oosten L, Abbo SR, Dumenil T, van Kuppeveld FJM, Langereis MA, Rawle DJ, Tang B, Yan K, van Oers MM, Suhrbier A, Pijlman GP. Safety concern of recombination between self-amplifying mRNA vaccines and viruses is mitigated in vivo. Mol Ther 2024; 32:2519-2534. [PMID: 38894543 PMCID: PMC11405153 DOI: 10.1016/j.ymthe.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/02/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
Self-amplifying mRNA (SAM) vaccines can be rapidly deployed in the event of disease outbreaks. A legitimate safety concern is the potential for recombination between alphavirus-based SAM vaccines and circulating viruses. This theoretical risk needs to be assessed in the regulatory process for SAM vaccine approval. Herein, we undertake extensive in vitro and in vivo assessments to explore recombination between SAM vaccine and a wide selection of alphaviruses and a coronavirus. SAM vaccines were found to effectively limit alphavirus co-infection through superinfection exclusion, although some co-replication was still possible. Using sensitive cell-based assays, replication-competent alphavirus chimeras were generated in vitro as a result of rare, but reproducible, RNA recombination events. The chimeras displayed no increased fitness in cell culture. Viable alphavirus chimeras were not detected in vivo in C57BL/6J, Rag1-/- and Ifnar-/- mice, in which high levels of SAM vaccine and alphavirus co-replicated in the same tissue. Furthermore, recombination between a SAM-spike vaccine and a swine coronavirus was not observed. In conclusion we state that although the ability of SAM vaccines to recombine with alphaviruses might be viewed as an environmental safety concern, several key factors substantially mitigate against in vivo emergence of chimeric viruses from SAM vaccine recipients.
Collapse
Affiliation(s)
- Tessy A H Hick
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Corinne Geertsema
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Wilson Nguyen
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Cameron R Bishop
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Linda van Oosten
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Sandra R Abbo
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Troy Dumenil
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Frank J M van Kuppeveld
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Martijn A Langereis
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Daniel J Rawle
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; Global Virus Network Centre of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD 4072 and 4029, Australia.
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
5
|
Yıldız A, Răileanu C, Beissert T. Trans-Amplifying RNA: A Journey from Alphavirus Research to Future Vaccines. Viruses 2024; 16:503. [PMID: 38675846 PMCID: PMC11055088 DOI: 10.3390/v16040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Replicating RNA, including self-amplifying RNA (saRNA) and trans-amplifying RNA (taRNA), holds great potential for advancing the next generation of RNA-based vaccines. Unlike in vitro transcribed mRNA found in most current RNA vaccines, saRNA or taRNA can be massively replicated within cells in the presence of RNA-amplifying enzymes known as replicases. We recently demonstrated that this property could enhance immune responses with minimal injected RNA amounts. In saRNA-based vaccines, replicase and antigens are encoded on the same mRNA molecule, resulting in very long RNA sequences, which poses significant challenges in production, delivery, and stability. In taRNA-based vaccines, these challenges can be overcome by splitting the replication system into two parts: one that encodes replicase and the other that encodes a short antigen-encoding RNA called transreplicon. Here, we review the identification and use of transreplicon RNA in alphavirus research, with a focus on the development of novel taRNA technology as a state-of-the art vaccine platform. Additionally, we discuss remaining challenges essential to the clinical application and highlight the potential benefits related to the unique properties of this future vaccine platform.
Collapse
Affiliation(s)
| | | | - Tim Beissert
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (A.Y.); (C.R.)
| |
Collapse
|
6
|
Reitmayer CM, Levitt E, Basu S, Atkinson B, Fragkoudis R, Merits A, Lumley S, Larner W, Diaz AV, Rooney S, Thomas CJE, von Wyschetzki K, Rausalu K, Alphey L. Mimicking superinfection exclusion disrupts alphavirus infection and transmission in the yellow fever mosquito Aedes aegypti. Proc Natl Acad Sci U S A 2023; 120:e2303080120. [PMID: 37669371 PMCID: PMC10500260 DOI: 10.1073/pnas.2303080120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/13/2023] [Indexed: 09/07/2023] Open
Abstract
Multiple viruses, including pathogenic viruses, bacteriophages, and even plant viruses, cause a phenomenon termed superinfection exclusion whereby a currently infected cell is resistant to secondary infection by the same or a closely related virus. In alphaviruses, this process is thought to be mediated, at least in part, by the viral protease (nsP2) which is responsible for processing the nonstructural polyproteins (P123 and P1234) into individual proteins (nsP1-nsP4), forming the viral replication complex. Taking a synthetic biology approach, we mimicked this naturally occurring phenomenon by generating a superinfection exclusion-like state in Aedes aegypti mosquitoes, rendering them refractory to alphavirus infection. By artificially expressing Sindbis virus (SINV) and chikungunya virus (CHIKV) nsP2 in mosquito cells and transgenic mosquitoes, we demonstrated a reduction in both SINV and CHIKV viral replication rates in cells following viral infection as well as reduced infection prevalence, viral titers, and transmission potential in mosquitoes.
Collapse
Affiliation(s)
| | - Emily Levitt
- Arthropod Genetics, The Pirbright Institute, Pirbright, Woking GU24 0NF, United Kingdom
| | - Sanjay Basu
- Arthropod Genetics, The Pirbright Institute, Pirbright, Woking GU24 0NF, United Kingdom
| | - Barry Atkinson
- Arthropod Genetics, The Pirbright Institute, Pirbright, Woking GU24 0NF, United Kingdom
| | - Rennos Fragkoudis
- Arthropod Genetics, The Pirbright Institute, Pirbright, Woking GU24 0NF, United Kingdom
| | - Andres Merits
- Applied Virology, Institute of Technology, University of Tartu, Tartu50411, Estonia
| | - Sarah Lumley
- Arthropod Genetics, The Pirbright Institute, Pirbright, Woking GU24 0NF, United Kingdom
| | - Will Larner
- Arthropod Genetics, The Pirbright Institute, Pirbright, Woking GU24 0NF, United Kingdom
| | - Adriana V. Diaz
- Arthropod Genetics, The Pirbright Institute, Pirbright, Woking GU24 0NF, United Kingdom
| | - Sara Rooney
- Arthropod Genetics, The Pirbright Institute, Pirbright, Woking GU24 0NF, United Kingdom
| | - Callum J. E. Thomas
- Arthropod Genetics, The Pirbright Institute, Pirbright, Woking GU24 0NF, United Kingdom
| | | | - Kai Rausalu
- Applied Virology, Institute of Technology, University of Tartu, Tartu50411, Estonia
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Pirbright, Woking GU24 0NF, United Kingdom
| |
Collapse
|
7
|
Shi YJ, Li JQ, Zhang HQ, Deng CL, Zhu QX, Zhang B, Li XD. A high throughput antiviral screening platform for alphaviruses based on Semliki Forest virus expressing eGFP reporter gene. Virol Sin 2023; 38:585-594. [PMID: 37390870 PMCID: PMC10436050 DOI: 10.1016/j.virs.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
Alphaviruses, which contain a variety of mosquito-borne pathogens, are important pathogens of emerging/re-emerging infectious diseases and potential biological weapons. Currently, no specific antiviral drugs are available for the treatment of alphaviruses infection. For most highly pathogenic alphaviruses are classified as risk group-3 agents, the requirement of biosafety level 3 (BSL-3) facilities limits the live virus-based antiviral study. To facilitate the antiviral development of alphaviruses, we developed a high throughput screening (HTS) platform based on a recombinant Semliki Forest virus (SFV) which can be manipulated in BSL-2 laboratory. Using the reverse genetics approach, the recombinant SFV and SFV reporter virus expressing eGFP (SFV-eGFP) were successfully rescued. The SFV-eGFP reporter virus exhibited robust eGFP expression and remained relatively stable after four passages in BHK-21 cells. Using a broad-spectrum alphavirus inhibitor ribavirin, we demonstrated that the SFV-eGFP can be used as an effective tool for antiviral study. The SFV-eGFP reporter virus-based HTS assay in a 96-well format was then established and optimized with a robust Z' score. A section of reference compounds that inhibit highly pathogenic alphaviruses were used to validate that the SFV-eGFP reporter virus-based HTS assay enables rapid screening of potent broad-spectrum inhibitors of alphaviruses. This assay provides a safe and convenient platform for antiviral study of alphaviruses.
Collapse
Affiliation(s)
- Yu-Jia Shi
- Hunan Normal University, School of Medicine, Changsha, 410081, China
| | - Jia-Qi Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong-Qing Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng-Lin Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qin-Xuan Zhu
- Hunan Normal University, School of Medicine, Changsha, 410081, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiao-Dan Li
- Hunan Normal University, School of Medicine, Changsha, 410081, China.
| |
Collapse
|
8
|
Lundstrom K. Trans-amplifying RNA: Translational application in gene therapy. Mol Ther 2023; 31:1507-1508. [PMID: 37023758 PMCID: PMC10076252 DOI: 10.1016/j.ymthe.2023.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
|
9
|
Perkovic M, Gawletta S, Hempel T, Brill S, Nett E, Sahin U, Beissert T. A trans-amplifying RNA simplified to essential elements is highly replicative and robustly immunogenic in mice. Mol Ther 2023; 31:1636-1646. [PMID: 36694464 PMCID: PMC10277886 DOI: 10.1016/j.ymthe.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/14/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Trans-amplifying RNA (taRNA) is a split-vector derivative of self-amplifying RNA (saRNA) and a promising vaccine platform. taRNA combines a non-replicating mRNA encoding an alphaviral replicase and a transreplicon (TR) RNA coding for the antigen. Upon translation, the replicase amplifies the antigen-coding TR, thereby requiring minimal amounts of TR for immunization. TR amplification by the replicase follows a complex mechanism orchestrated by genomic and subgenomic promoters (SGPs) and generates genomic and subgenomic amplicons whereby only the latter are translated into therapeutic proteins. This complexity merits simplification to improve the platform. Here, we eliminated the SGP and redesigned the 5' untranslated region to shorten the TR (STR), thereby enabling translation of the remaining genomic amplicon. We then applied a directed evolution approach to select for faster replicating STRs. The resulting evolved STR (eSTR) had acquired A-rich 5' extensions, which improved taRNA expression thanks to accelerated replication. Consequently, we reduced the minimal required TR amount by more than 10-fold without losing taRNA expression in vitro. Accordingly, eSTR-immunized mice developed greater antibody titers to taRNA-encoded influenza HA than TR-immunized mice. In summary, this work points the way for further optimization of taRNA by combining rational design and directed evolution.
Collapse
Affiliation(s)
- Mario Perkovic
- TRON - Translational Oncology, Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Stefanie Gawletta
- TRON - Translational Oncology, Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Tina Hempel
- TRON - Translational Oncology, Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Silke Brill
- TRON - Translational Oncology, Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Evelin Nett
- TRON - Translational Oncology, Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Ugur Sahin
- TRON - Translational Oncology, Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany; BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany.
| | - Tim Beissert
- TRON - Translational Oncology, Johannes Gutenberg University, Freiligrathstrasse 12, 55131 Mainz, Germany.
| |
Collapse
|
10
|
Bardossy ES, Volpe S, Alvarez DE, Filomatori CV. A conserved Y-shaped RNA structure in the 3'UTR of chikungunya virus genome as a host-specialized element that modulates viral replication and evolution. PLoS Pathog 2023; 19:e1011352. [PMID: 37126493 PMCID: PMC10174580 DOI: 10.1371/journal.ppat.1011352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 05/11/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
RNA viral genomes compact information into functional RNA structures. Here, using chikungunya virus as a model, we investigated the structural requirements of conserved RNA elements in the 3' untranslated region (3'UTR) for viral replication in mosquito and mammalian cells. Using structural predictions and co-variation analysis, we identified a highly stable and conserved Y-shaped structure (SLY) at the end of the 3'UTR that is duplicated in the Asian lineage. Functional studies with mutant viruses showed that the SLY has host-specific functions during viral replication and evolution. The SLY positively modulates viral replication in mosquito cells but has the opposite effect in mammalian cells. Additional structural/functional analyses showed that maintaining the Y-shaped fold and specific nucleotides in the loop are critical for full SLY functionality and optimal viral replication in mosquito cells. Experimental adaptation of viruses with duplicated SLYs to mammalian cells resulted in the generation of heterogeneous viral populations comprising variants with diverse 3'UTRs, contrasting with the homogeneous populations from viruses without SLY copies. Altogether, our findings constitute the first evidence of an RNA secondary structure in the 3'UTR of chikungunya virus genome that plays host-dependent functions.
Collapse
Affiliation(s)
- Eugenia Soledad Bardossy
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnología, Universidad de San Martín, Buenos Aires, Argentina
| | - Sebastiano Volpe
- Escuela de Bio y Nanotecnología, Universidad de San Martín, Buenos Aires, Argentina
| | - Diego Ezequiel Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnología, Universidad de San Martín, Buenos Aires, Argentina
| | - Claudia Verónica Filomatori
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnología, Universidad de San Martín, Buenos Aires, Argentina
| |
Collapse
|
11
|
Cottis S, Blisnick AA, Failloux AB, Vernick KD. Determinants of Chikungunya and O'nyong-Nyong Virus Specificity for Infection of Aedes and Anopheles Mosquito Vectors. Viruses 2023; 15:589. [PMID: 36992298 PMCID: PMC10051923 DOI: 10.3390/v15030589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Mosquito-borne diseases caused by viruses and parasites are responsible for more than 700 million infections each year. Anopheles and Aedes are the two major vectors for, respectively, malaria and arboviruses. Anopheles mosquitoes are the primary vector of just one known arbovirus, the alphavirus o'nyong-nyong virus (ONNV), which is closely related to the chikungunya virus (CHIKV), vectored by Aedes mosquitoes. However, Anopheles harbor a complex natural virome of RNA viruses, and a number of pathogenic arboviruses have been isolated from Anopheles mosquitoes in nature. CHIKV and ONNV are in the same antigenic group, the Semliki Forest virus complex, are difficult to distinguish via immunodiagnostic assay, and symptomatically cause essentially the same human disease. The major difference between the arboviruses appears to be their differential use of mosquito vectors. The mechanisms governing this vector specificity are poorly understood. Here, we summarize intrinsic and extrinsic factors that could be associated with vector specificity by these viruses. We highlight the complexity and multifactorial aspect of vectorial specificity of the two alphaviruses, and evaluate the level of risk of vector shift by ONNV or CHIKV.
Collapse
Affiliation(s)
- Solène Cottis
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris Cité, CNRS UMR2000, F-75015 Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Université UPMC Paris VI, 75252 Paris, France
| | - Adrien A. Blisnick
- Arboviruses and Insect Vectors Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Anna-Bella Failloux
- Arboviruses and Insect Vectors Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Kenneth D. Vernick
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris Cité, CNRS UMR2000, F-75015 Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Université UPMC Paris VI, 75252 Paris, France
| |
Collapse
|
12
|
Activity, Template Preference, and Compatibility of Components of RNA Replicase of Eastern Equine Encephalitis Virus. J Virol 2023; 97:e0136822. [PMID: 36533950 PMCID: PMC9888243 DOI: 10.1128/jvi.01368-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Eastern equine encephalitis virus (EEEV) usually cycles between Culiseta melanura mosquitoes and birds; however, it can also infect humans. EEEV has a positive-sense RNA genome that, in infected cells, serves as an mRNA for the P1234 polyprotein. P1234 undergoes a series of precise cleavage events producing four nonstructural proteins (nsP1-4) representing subunits of the RNA replicase. Here, we report the construction and properties of a trans-replicase for EEEV. The template RNA of EEEV was shown to be replicated by replicases of diverse alphaviruses. The EEEV replicase, on the other hand, demonstrated limited ability in replicating template RNAs originating from alphaviruses of the Semliki Forest virus complex. The replicase of EEEV was also successfully reconstructed from P123 and nsP4 components. The ability of EEEV P123 to form functional RNA replicases with heterologous nsP4s was more efficient using EEEV template RNA than heterologous alphavirus template RNA. This finding indicates that unlike with previously studied Semliki Forest complex alphaviruses, P123 and/or its processing products have a leading role in EEEV template RNA recognition. Infection of HEK293T cells harboring the EEEV template RNA with EEEV or Western equine encephalitis virus prominently activated expression of a reporter encoded in the template RNA; the effect was much smaller for infection with other alphaviruses and not detectable upon flavivirus infection. At the same time, EEEV infection resulted only in a limited activation of the template RNA of chikungunya virus. Thus, cells harboring reporter-carrying template RNAs can be used as sensitive and selective biosensors for different alphaviruses. IMPORTANCE Infection of EEEV in humans can cause serious neurologic disease with an approximately 30% fatality rate. Although human infections are rare, a record-breaking number was documented in 2019. The replication of EEEV has a unique requirement for host factors but is poorly studied, partly because the virus requires biosafety level 3 facilities which can limit the scope of experiments; at the same time, these studies are crucial for developing antiviral approaches. The EEEV trans-replicase developed here contributes significantly to research on EEEV, providing a safe and versatile tool for studying the virus RNA replication. Using this system, the compatibility of EEEV replicase components with counterparts from other alphaviruses was analyzed. The obtained data can be used to develop unique biosensors that provide alternative methods for detection, identification, quantitation, and neutralization of viable alphaviruses that are compatible with high throughput, semiautomated approaches.
Collapse
|
13
|
Wang S, Merits A. G3BP/Rin-Binding Motifs Inserted into Flexible Regions of nsP2 Support RNA Replication of Chikungunya Virus. J Virol 2022; 96:e0127822. [PMID: 36226983 PMCID: PMC9645214 DOI: 10.1128/jvi.01278-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus. In infected cells, its positive-sense RNA genome is translated into polyproteins that are subsequently processed into four nonstructural proteins (nsP1 to 4), the virus-encoded subunits of the RNA replicase. However, for RNA replication, interactions between nsPs and host proteins are also needed. These interactions are mostly mediated through the intrinsically disordered C-terminal hypervariable domain (HVD) in nsP3. Duplicate FGDF motifs in the HVD are required for interaction with mammalian RasGAP SH3-binding proteins (G3BPs) and their mosquito homolog Rin; these interactions are crucial for CHIKV RNA replication. In this study, we inactivated G3BP/Rin-binding motifs in the HVD and inserted peptides containing either native or inactivated G3BP/Rin-binding motifs into flexible regions of nsP1, nsP2, or nsP4. Insertion of native motifs into nsP1 or nsP2 but not into the C terminus of nsP4 activated CHIKV RNA replication in human cells in a G3BP-dependent manner. In mosquito cells, activation also resulted from the insertion of inactive motifs after residue 8 or 466 in nsP2; however, the effect was significantly larger when the inserted sequence contained native motifs. Nonetheless, CHIKV mutants harboring mutations in the HVD and containing insertions of native motifs in nsP2 were not viable in mosquito cells. In contrast, mutant genomes containing native motifs after residue 466 or 618 in nsP2 replicated in BHK-21 cells, with the latter mutant forming infectious progeny. Thus, the binding of G3BPs to nsP2 can support CHIKV RNA replication and restore the infectivity of viruses lacking G3BP-binding motifs in the HVD of nsP3. IMPORTANCE CHIKV is a reemerging alphavirus that has spread throughout more than 60 countries and is the causative agent of chikungunya fever. No approved drugs or vaccines are available for the treatment or prevention of CHIKV infection. CHIKV replication depends on the ability of its replicase proteins to interact with host cell factors, and a better understanding of host cell factor roles in viral infection will increase our understanding of CHIKV RNA replication and provide new strategies for viral infection attenuation. Here, we demonstrate that the motifs required for the binding of host G3BP/Rin proteins remain functional when transferred from their natural location in nsP3 to different replicase proteins and may enable mutant viruses to complete a full replication cycle. To our knowledge, this is the first demonstration of interaction motifs for crucial host factors being successfully transferred from one replicase protein to another subunit of alphavirus replicase.
Collapse
Affiliation(s)
- Sainan Wang
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
14
|
In Depth Viral Diversity Analysis in Atypical Neurological and Neonatal Chikungunya Infections in Rio de Janeiro, Brazil. Viruses 2022; 14:v14092006. [PMID: 36146812 PMCID: PMC9506387 DOI: 10.3390/v14092006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne virus (arbovirus) transmitted by Aedes mosquitoes. The human infection usually manifests as a febrile and incapacitating arthritogenic illness, self-limiting and non-lethal. However, since 2013, CHIKV spreading through the tropics and to the Americas was accompanied by an increasing number of cases of atypical disease presentation, namely severe neuropathies and neonatal infection due to intrapartum vertical transmission. The pathophysiological mechanisms underlying these conditions have not been fully elucidated. However, arbovirus intrahost genetic diversity is thought to be linked to viral pathogenesis. To determine whether particular viral variants could be somehow associated, we analyzed the intrahost genetic diversity of CHIKV in three infected patients with neurological manifestations and three mothers infected during the intrapartum period, as well as their babies following vertical transmission. No statistically supported differences were observed for the genetic variability (nucleotide substitutions/gene length) along the genome between the groups. However, the newborn and cerebrospinal fluid samples (corresponding to virus passed through the placenta and/or the blood–brain barrier (BBB)) presented a different composition of their intrahost mutant ensembles compared to maternal or patient serum samples, even when concurrent. This finding could be consistent with the unidirectional virus transmission through these barriers, and the effect of selective bottlenecks during the transmission event. In addition, a higher proportion of defective variants (insertions/deletions and stop codons) was detected in the CSF and maternal samples and those were mainly distributed within the viral non-structural genes. Since defective viral genomes in RNA viruses are known to contribute to the outcome of acute viral infections and influence disease severity, their role in these atypical cases should be further investigated. Finally, with the in silico approach adopted, we detected no relevant non-conservative mutational pattern that could provide any hint of the pathophysiological mechanisms underlying these atypical cases. The present analysis represents a unique contribution to our understanding of the transmission events in these cases and generates hypotheses regarding underlying mechanisms, that can be explored further.
Collapse
|
15
|
Tng PYL, Carabajal Paladino LZ, Anderson MAE, Adelman ZN, Fragkoudis R, Noad R, Alphey L. Intron-derived small RNAs for silencing viral RNAs in mosquito cells. PLoS Negl Trop Dis 2022; 16:e0010548. [PMID: 35737714 PMCID: PMC9258879 DOI: 10.1371/journal.pntd.0010548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/06/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Aedes aegypti and Ae. albopictus are the main vectors of mosquito-borne viruses of medical and veterinary significance. Many of these viruses have RNA genomes. Exogenously provided, e.g. transgene encoded, small RNAs could be used to inhibit virus replication, breaking the transmission cycle. We tested, in Ae. aegypti and Ae. albopictus cell lines, reporter-based strategies for assessing the ability of two types of small RNAs to inhibit a chikungunya virus (CHIKV) derived target. Both types of small RNAs use a Drosophila melanogaster pre-miRNA-1 based hairpin for their expression, either with perfect base-pairing in the stem region (shRNA-like) or containing two mismatches (miRNA-like). The pre-miRNA-1 stem loop structure was encoded within an intron; this allows co-expression of one or more proteins, e.g. a fluorescent protein marker tracking the temporal and spatial expression of the small RNAs in vivo. Three reporter-based systems were used to assess the relative silencing efficiency of ten shRNA-like siRNAs and corresponding miRNA-like designs. Two systems used a luciferase reporter RNA with CHIKV RNA inserted either in the coding sequence or within the 3’ UTR. A third reporter used a CHIKV derived split replication system. All three reporters demonstrated that while silencing could be achieved with both miRNA-like and shRNA-like designs, the latter were substantially more effective. Dcr-2 was required for the shRNA-like siRNAs as demonstrated by loss of inhibition of the reporters in Dcr-2 deficient cell lines. These positive results in cell culture are encouraging for the potential use of this pre-miRNA-1-based system in transgenic mosquitoes. Mosquitoes are important globally, spreading viral diseases worldwide. Chikungunya virus causes epidemics of disease in people. Here we have investigated using two types of small RNAs and pathways inherent in Aedes aegypti mosquitoes to target a piece of the chikungunya virus’s genome, potentially preventing viral replication. We express these small RNAs using a pre-miRNA-1 based system, inserted into the intron within a commonly used promoter. We have used reporter systems in cell lines which can give preliminary indications of how these systems might work in mosquitoes. Our results indicate that short-hairpin-like designs are more effective than micro-RNA-like designs at knocking down expression of their targets. This knock-down requires Dcr-2 indicating that the short-hairpin-like RNAs are likely using the endo-siRNA pathway to degrade mRNA which contains their complementary RNA.
Collapse
Affiliation(s)
- Priscilla Y. L. Tng
- Arthropod Genetics Group, The Pirbright Institute, Pirbright, United Kingdom
- Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, United Kingdom
| | | | | | - Zach N. Adelman
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Rennos Fragkoudis
- Arbovirus Pathogenesis Group, The Pirbright Institute, Pirbright, United Kingdom
| | - Rob Noad
- Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, United Kingdom
| | - Luke Alphey
- Arthropod Genetics Group, The Pirbright Institute, Pirbright, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Cherkashchenko L, Rausalu K, Basu S, Alphey L, Merits A. Expression of Alphavirus Nonstructural Protein 2 (nsP2) in Mosquito Cells Inhibits Viral RNA Replication in Both a Protease Activity-Dependent and -Independent Manner. Viruses 2022; 14:v14061327. [PMID: 35746799 PMCID: PMC9228716 DOI: 10.3390/v14061327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 01/02/2023] Open
Abstract
Alphaviruses are positive-strand RNA viruses, mostly being mosquito-transmitted. Cells infected by an alphavirus become resistant to superinfection due to a block that occurs at the level of RNA replication. Alphavirus replication proteins, called nsP1-4, are produced from nonstructural polyprotein precursors, processed by the protease activity of nsP2. Trans-replicase systems and replicon vectors were used to study effects of nsP2 of chikungunya virus and Sindbis virus on alphavirus RNA replication in mosquito cells. Co-expressed wild-type nsP2 reduced RNA replicase activity of homologous virus; this effect was reduced but typically not abolished by mutation in the protease active site of nsP2. Mutations in the replicase polyprotein that blocked its cleavage by nsP2 reduced the negative effect of nsP2 co-expression, confirming that nsP2-mediated inhibition of RNA replicase activity is largely due to nsP2-mediated processing of the nonstructural polyprotein. Co-expression of nsP2 also suppressed the activity of replicases of heterologous alphaviruses. Thus, the presence of nsP2 inhibits formation and activity of alphavirus RNA replicase in protease activity-dependent and -independent manners. This knowledge improves our understanding about mechanisms of superinfection exclusion for alphaviruses and may aid the development of anti-alphavirus approaches.
Collapse
Affiliation(s)
- Liubov Cherkashchenko
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (L.C.); (K.R.)
| | - Kai Rausalu
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (L.C.); (K.R.)
| | - Sanjay Basu
- The Pirbright Institute, Ash Road, Pirbright GU24 ONF, UK; (S.B.); (L.A.)
| | - Luke Alphey
- The Pirbright Institute, Ash Road, Pirbright GU24 ONF, UK; (S.B.); (L.A.)
| | - Andres Merits
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (L.C.); (K.R.)
- Correspondence:
| |
Collapse
|
17
|
Tan YB, Lello LS, Liu X, Law YS, Kang C, Lescar J, Zheng J, Merits A, Luo D. Crystal structures of alphavirus nonstructural protein 4 (nsP4) reveal an intrinsically dynamic RNA-dependent RNA polymerase fold. Nucleic Acids Res 2022; 50:1000-1016. [PMID: 35037043 PMCID: PMC8789068 DOI: 10.1093/nar/gkab1302] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 11/12/2022] Open
Abstract
Alphaviruses such as Ross River virus (RRV), chikungunya virus (CHIKV), Sindbis virus (SINV), and Venezuelan equine encephalitis virus (VEEV) are mosquito-borne pathogens that can cause arthritis or encephalitis diseases. Nonstructural protein 4 (nsP4) of alphaviruses possesses RNA-dependent RNA polymerase (RdRp) activity essential for viral RNA replication. No 3D structure has been available for nsP4 of any alphaviruses despite its importance for understanding alphaviral RNA replication and for the design of antiviral drugs. Here, we report crystal structures of the RdRp domain of nsP4 from both RRV and SINV determined at resolutions of 2.6 Å and 1.9 Å. The structure of the alphavirus RdRp domain appears most closely related to RdRps from pestiviruses, noroviruses, and picornaviruses. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) and nuclear magnetic resonance (NMR) methods showed that in solution, nsP4 is highly dynamic with an intrinsically disordered N-terminal domain. Both full-length nsP4 and the RdRp domain were capable to catalyze RNA polymerization. Structure-guided mutagenesis using a trans-replicase system identified nsP4 regions critical for viral RNA replication.
Collapse
Affiliation(s)
- Yaw Bia Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921
| | - Laura Sandra Lello
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Xin Liu
- Shanghai Institute of Materia Medica, China Academy of Sciences, 555 Zu Chong Zhi Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, China
| | - Yee-Song Law
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Rd, #05-01/06 Chromos, Singapore138670
| | - Julien Lescar
- NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | - Jie Zheng
- Shanghai Institute of Materia Medica, China Academy of Sciences, 555 Zu Chong Zhi Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, China
| | - Andres Merits
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| |
Collapse
|
18
|
Abstract
Alphaviruses are positive-strand RNA viruses, typically transmitted by mosquitoes between vertebrate hosts. They encode four essential replication proteins, the non-structural proteins nsP1-4, which possess the enzymatic activities of RNA capping, RNA helicase, site-specific protease, ADP-ribosyl removal and RNA polymerase. Alphaviruses have been key models in the study of membrane-associated RNA replication, which is a conserved feature among the positive-strand RNA viruses of animals and plants. We review new structural and functional information on the nsPs and their interaction with host proteins and membranes, as well as with viral RNA sequences. The dodecameric ring structure of nsP1 is likely to be one of the evolutionary innovations that facilitated the success of the progenitors of current positive-strand RNA viruses.
Collapse
Affiliation(s)
- Tero Ahola
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Gerald McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
19
|
Abstract
Alphaviruses have positive-strand RNA genomes containing two open reading frames (ORFs). The first ORF encodes the nonstructural (ns) polyproteins P123 and P1234 that act as precursors for the subunits of the viral RNA replicase (nsP1 to nsP4). Processing of P1234 leads to the formation of a negative-strand replicase consisting of nsP4 (RNA polymerase) and P123 components. Subsequent processing of P123 results in a positive-strand replicase. The second ORF encoding the structural proteins is expressed via the synthesis of a subgenomic RNA. Alphavirus replicase is capable of using template RNAs that contain essential cis-active sequences. Here, we demonstrate that the replicases of nine alphaviruses, expressed in the form of separate P123 and nsP4 components, are active. Their activity depends on the abundance of nsP4. The match of nsP4 to its template strongly influences efficient subgenomic RNA synthesis. nsP4 of Barmah Forest virus (BFV) formed a functional replicase only with matching P123, while nsP4s of other alphaviruses were compatible also with several heterologous P123s. The P123 components of Venezuelan equine encephalitis virus and Sindbis virus (SINV) required matching nsP4s, while P123 of other viruses could form active replicases with different nsP4s. Chimeras of Semliki Forest virus, harboring the nsP4 of chikungunya virus, Ross River virus, BFV, or SINV were viable. In contrast, chimeras of SINV, harboring an nsP4 from different alphaviruses, exhibited a temperature-sensitive phenotype. These findings highlight the possibility for formation of new alphaviruses via recombination events and provide a novel approach for the development of attenuated chimeric viruses for vaccination strategies. IMPORTANCE A key element of every virus with an RNA genome is the RNA replicase. Understanding the principles of RNA replicase formation and functioning is therefore crucial for understanding and responding to the emergence of new viruses. Reconstruction of the replicases of nine alphaviruses from nsP4 and P123 polyproteins revealed that the nsP4 of the majority of alphaviruses, including the mosquito-specific Eilat virus, could form a functional replicase with P123 originating from a different virus, and the corresponding chimeric viruses were replication-competent. nsP4 also had an evident role in determining the template RNA preference and the efficiency of RNA synthesis. The revealed broad picture of the compatibility of the replicase components of alphaviruses is important for understanding the formation and functioning of the alphavirus RNA replicase and highlights the possibilities for recombination between different alphavirus species.
Collapse
|
20
|
Blakney AK, Ip S, Geall AJ. An Update on Self-Amplifying mRNA Vaccine Development. Vaccines (Basel) 2021; 9:97. [PMID: 33525396 PMCID: PMC7911542 DOI: 10.3390/vaccines9020097] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022] Open
Abstract
This review will explore the four major pillars required for design and development of an saRNA vaccine: Antigen design, vector design, non-viral delivery systems, and manufacturing (both saRNA and lipid nanoparticles (LNP)). We report on the major innovations, preclinical and clinical data reported in the last five years and will discuss future prospects.
Collapse
Affiliation(s)
- Anna K. Blakney
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Shell Ip
- Precision NanoSystems Inc., Vancouver, BC V6P 6T7, Canada; (S.I.); (A.J.G.)
| | - Andrew J. Geall
- Precision NanoSystems Inc., Vancouver, BC V6P 6T7, Canada; (S.I.); (A.J.G.)
| |
Collapse
|