1
|
Yu X, Zhang H, Zhou T, Pan K, Raza SHA, Shen X, Lei H. A non-classical view of antibody properties: Allosteric effect between variable and constant regions. Biotechnol Adv 2025; 78:108482. [PMID: 39579911 DOI: 10.1016/j.biotechadv.2024.108482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/10/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
Historically, antibodies have been divided into two functionally independent domains, the variable (V) region for antigen binding and the constant (C) region for mediating effector functions. However, this classical view of antibody function has been severely challenged by a large and growing number of studies, which reveal long-range conformational interactions and allosteric links between the V and C regions. This review comprehensively summarizes the existing studies on antibody allostery, including allosteric conformational changes induced by covalent modifications or noncovalent ligand binding. In addition, we discuss how intramolecular allosteric signals are transmitted from the V to C regions and vice versa. This review argues that there is sufficient evidence to revisit the structure-function relationship of antibodies. These advances in antibody allostery will provide a blueprint for regulating antibody functions in a simple and highly predictable manner. More focus on antibody allostery will definitely benefit antibody engineering and vaccine design in the field of biotechnology.
Collapse
Affiliation(s)
- Xiaoting Yu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Huiling Zhang
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China
| | - Tao Zhou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Kangliang Pan
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Guo D, Ng JCF, Dunn-Walters DK, Fraternali F. VCAb: a web-tool for structure-guided exploration of antibodies. BIOINFORMATICS ADVANCES 2024; 4:vbae137. [PMID: 39399372 PMCID: PMC11471263 DOI: 10.1093/bioadv/vbae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/21/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Motivation Effective responses against immune challenges require antibodies of different isotypes performing specific effector functions. Structural information on these isotypes is essential to engineer antibodies with desired physico-chemical features of their antigen-binding properties, and optimal developability as potential therapeutics. In silico mutational scanning profiles on antibody structures would further pinpoint candidate mutations for enhancing antibody stability and function. Current antibody structure databases lack consistent annotations of isotypes and structural coverage of 3D antibody structures, as well as computed deep mutation profiles. Results The V and C region bearing antibody (VCAb) web-tool is established to clarify these annotations and provides an accessible resource to facilitate antibody engineering and design. VCAb currently provides data on 7,166 experimentally determined antibody structures including both V and C regions from different species. Additionally, VCAb provides annotations of species and isotypes with numbering schemes applied. These information can be interactively queried or downloaded in batch. Availability and implementation VCAb is implemented as a R shiny application to enable interactive data interrogation. The online application is freely accessible https://fraternalilab.cs.ucl.ac.uk/VCAb/. The source code to generate the database and the online application is available open-source at https://github.com/Fraternalilab/VCAb.
Collapse
Affiliation(s)
- Dongjun Guo
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London SE1 1UL, United Kingdom
| | - Joseph Chi-Fung Ng
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | - Deborah K Dunn-Walters
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Franca Fraternali
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
- Department of Biological Sciences, Birkbeck, University of London, London WC1E 7HX, United Kingdom
| |
Collapse
|
3
|
Ni Z, Song F, Zhou H, Xu Y, Wang Z, Chen D. Mechanistic Insights into How the Single Point Mutation Change the Autoantibody Repertoire. Protein J 2024; 43:683-696. [PMID: 39068631 DOI: 10.1007/s10930-024-10225-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
A recent study showed that just one point mutation F33 to Y in the complementarity-determining region 1 of heavy chain (H-CDR1) could lead to the auto-antibody losing its DNA binding ability. However, the potential molecular mechanisms have not been well elucidated. In this study, we investigated how the antibody lost the DNA binding ability caused by mutation F33 to Y in the H-CDR1. We found that the electrostatic force was not the primary driving force for the interaction between anti-DNA antibodies and the antigen single strand DNA (ssDNA), and that the H-CDR2 largely contributed to the binding of antigen ssDNA, even larger than H-CDR1. The H-F33Y mutation could increase the hydrogen-bond interaction but impair the pi-pi stacking interaction between the antibody and ssDNA. We further found that F33H, W98H and Y95L in the wiletype antibody could form the stable pi-pi stacking interaction with the nucleotide bases of ssDNA. However, the Y33 in mutant could not form the parallel sandwich pi-pi stacking interaction with the ssDNA. To further confirm the importance of pi-pi stacking, the wildtype antibody and the mutants (F33YH, F33AH, W98AH and Y95AL) were experimentally expressed in CHO cells and purified, and the results from ELISA clearly showed that all the mutants lost the ssDNA binding ability. Taken together, our findings may not only deepen the understanding of the underlying interaction mechanism between autoantibody and antigen, but also broad implications in the field of antibody engineer.
Collapse
Affiliation(s)
- Zhong Ni
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Fangyuan Song
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Huimin Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Ying Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Zhiguo Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Dongfeng Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
4
|
Hokello J, Tyagi P, Dimri S, Sharma AL, Tyagi M. Comparison of the Biological Basis for Non-HIV Transmission to HIV-Exposed Seronegative Individuals, Disease Non-Progression in HIV Long-Term Non-Progressors and Elite Controllers. Viruses 2023; 15:1362. [PMID: 37376660 DOI: 10.3390/v15061362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
HIV-exposed seronegative individuals (HESIs) are a small fraction of persons who are multiply exposed to human immunodeficiency virus (HIV), but do not exhibit serological or clinical evidence of HIV infection. In other words, they are groups of people maintaining an uninfected status for a long time, even after being exposed to HIV several times. The long-term non-progressors (LTNPs), on the other hand, are a group of HIV-infected individuals (approx. 5%) who remain clinically and immunologically stable for an extended number of years without combination antiretroviral therapy (cART). Meanwhile, elite controllers are comprise a much lower number (0.5%) of HIV-infected persons who spontaneously and durably control viremia to below levels of detection for at least 12 months, even when using the most sensitive assays, such as polymerase chain reaction (PCR) in the absence of cART. Despite the fact that there is no universal agreement regarding the mechanisms by which these groups of individuals are able to control HIV infection and/or disease progression, there is a general consensus that the mechanisms of protection are multifaceted and include genetic, immunological as well as viral factors. In this review, we analyze and compare the biological factors responsible for the control of HIV in these unique groups of individuals.
Collapse
Affiliation(s)
- Joseph Hokello
- Department of Biology, Faculty of Science and Education, Busitema University, Tororo P.O. Box 236, Uganda
| | - Priya Tyagi
- Cherry Hill East High School, 1750 Kresson Rd, Cherry Hill, NJ 08003, USA
| | - Shelly Dimri
- George C. Marshall High School, Fairfax County Public Schools, 7731 Leesburg Pike, Falls Church, VA 22043, USA
| | | | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| |
Collapse
|
5
|
Cottignies-Calamarte A, Tudor D, Bomsel M. Antibody Fc-chimerism and effector functions: When IgG takes advantage of IgA. Front Immunol 2023; 14:1037033. [PMID: 36817447 PMCID: PMC9933243 DOI: 10.3389/fimmu.2023.1037033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Recent advances in the development of therapeutic antibodies (Abs) have greatly improved the treatment of otherwise drug-resistant cancers and autoimmune diseases. Antibody activities are mediated by both their Fab and the Fc. However, therapeutic Abs base their protective mechanisms on Fc-mediated effector functions resulting in the activation of innate immune cells by FcRs. Therefore, Fc-bioengineering has been widely used to maximise the efficacy and convenience of therapeutic antibodies. Today, IgG remains the only commercially available therapeutic Abs, at the expense of other isotypes. Indeed, production, sampling, analysis and related in vivo studies are easier to perform with IgG than with IgA due to well-developed tools. However, interest in IgA is growing, despite a shorter serum half-life and a more difficult sampling and purification methods than IgG. Indeed, the paradigm that the effector functions of IgG surpass those of IgA has been experimentally challenged. Firstly, IgA has been shown to bind to its Fc receptor (FcR) on effector cells of innate immunity with greater efficiency than IgG, resulting in more robust IgA-mediated effector functions in vitro and better survival of treated animals. In addition, the two isotypes have been shown to act synergistically. From these results, new therapeutic formats of Abs are currently emerging, in particular chimeric Abs containing two tandemly expressed Fc, one from IgG (Fcγ) and one from IgA (Fcα). By binding both FcγR and FcαR on effector cells, these new chimeras showed improved effector functions in vitro that were translated in vivo. Furthermore, these chimeras retain an IgG-like half-life in the blood, which could improve Ab-based therapies, including in AIDS. This review provides the rationale, based on the biology of IgA and IgG, for the development of Fcγ and Fcα chimeras as therapeutic Abs, offering promising opportunities for HIV-1 infected patients. We will first describe the main features of the IgA- and IgG-specific Fc-mediated signalling pathways and their respective functional differences. We will then summarise the very promising results on Fcγ and Fcα containing chimeras in cancer treatment. Finally, we will discuss the impact of Fcα-Fcγ chimerism in prevention/treatment strategies against infectious diseases such as HIV-1.
Collapse
Affiliation(s)
- Andréa Cottignies-Calamarte
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France.,Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Daniela Tudor
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France.,Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France.,Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
6
|
Scheepers C, Richardson SI, Moyo-Gwete T, Moore PL. Antibody class-switching as a strategy to improve HIV-1 neutralization. Trends Mol Med 2022; 28:979-988. [PMID: 36117072 PMCID: PMC9617786 DOI: 10.1016/j.molmed.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 12/01/2022]
Abstract
Broadly neutralizing antibodies (bNAbs), when administered through passive immunization, are protective against HIV-1 infection. Current HIV-1 vaccine strategies are aimed at guiding the immune system to make bNAbs by mimicking their development during infection. Somatic hypermutation of the variable region is known to be crucial for the development of bNAbs. More recently, however, studies have shown how class-switch recombination (CSR) resulting in the generation of different antibody isotypes may serve as an additional mechanism through which antibodies can gain neutralization breadth and potency. In this review, we discuss the importance of different antibody isotypes for HIV-1 neutralization breadth and potency and how this information can be leveraged to improve passive and active immunization against HIV-1.
Collapse
Affiliation(s)
- Cathrine Scheepers
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa; SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Simone I Richardson
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa; SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Thandeka Moyo-Gwete
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa; SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L Moore
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa; SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Centre for the AIDS Programme of Research in South Africa (CAPRISA), KwaZulu-Natal, South Africa, Discipline of Virology, University of KwaZulu-Natal, South Africa.
| |
Collapse
|
7
|
Ruiz MJ, Siracusano G, Cottignies-Calamarte A, Tudor D, Real F, Zhu A, Pastori C, Capron C, Rosenberg AR, Temperton N, Cantoni D, Liao H, Ternette N, Moine P, Godement M, Geri G, Chiche JD, Annane D, Cramer Bordé E, Lopalco L, Bomsel M. Persistent but dysfunctional mucosal SARS-CoV-2-specific IgA and low lung IL-1β associate with COVID-19 fatal outcome: A cross-sectional analysis. Front Immunol 2022; 13:842468. [PMID: 36248831 PMCID: PMC9560774 DOI: 10.3389/fimmu.2022.842468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
The role of the mucosal pulmonary antibody response in coronavirus disease 2019 (COVID-19) outcome remains unclear. Here, we found that in bronchoalveolar lavage (BAL) samples from 48 patients with severe COVID-19-infected with the ancestral Wuhan virus, mucosal IgG and IgA specific for S1, receptor-binding domain (RBD), S2, and nucleocapsid protein (NP) emerged in BAL containing viruses early in infection and persist after virus elimination, with more IgA than IgG for all antigens tested. Furthermore, spike-IgA and spike-IgG immune complexes were detected in BAL, especially when the lung virus has been cleared. BAL IgG and IgA recognized the four main RBD variants. BAL neutralizing titers were higher early in COVID-19 when virus replicates in the lung than later in infection after viral clearance. Patients with fatal COVID-19, in contrast to survivors, developed higher levels of mucosal spike-specific IgA than IgG but lost neutralizing activities over time and had reduced IL-1β in the lung. Altogether, mucosal spike and NP-specific IgG and S1-specific IgA persisting after lung severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) clearance and low pulmonary IL-1β correlate with COVID-19 fatal outcome. Thus, mucosal SARS-CoV-2-specific antibodies may have adverse functions in addition to protective neutralization.
Collapse
Affiliation(s)
- Maria Julia Ruiz
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Paris-Descartes University, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | - Gabriel Siracusano
- Immunobiology of HIV Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Andréa Cottignies-Calamarte
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Paris-Descartes University, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | - Daniela Tudor
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Paris-Descartes University, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | - Fernando Real
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Paris-Descartes University, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | - Aiwei Zhu
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Paris-Descartes University, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | - Claudia Pastori
- Immunobiology of HIV Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Claude Capron
- AP-HP, Hôpital Ambroise Paré, Service d'Hématologie, Boulogne-Billancourt, France
| | - Arielle R. Rosenberg
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Paris-Descartes University, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
- AP-HP, Hôpital Cochin, Service de Virologie, Paris, France
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham, United Kingdom
| | - Diego Cantoni
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham, United Kingdom
| | - Hanqing Liao
- Centre for Cellular and Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicola Ternette
- Centre for Cellular and Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Pierre Moine
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis), RHU RECORDS (Rapid rEcognition of CORticosteroiD resistant or sensitive Sepsis), Department of Intensive Care, Hôpital Raymond Poincaré (APHP), Laboratory of Infection and Inflammation – U1173, School of Medicine Simone Veil, University Versailles Saint Quentin – University Paris Saclay, INSERM, Garches, France
| | - Mathieu Godement
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis), RHU RECORDS (Rapid rEcognition of CORticosteroiD resistant or sensitive Sepsis), Department of Intensive Care, Hôpital Raymond Poincaré (APHP), Laboratory of Infection and Inflammation – U1173, School of Medicine Simone Veil, University Versailles Saint Quentin – University Paris Saclay, INSERM, Garches, France
| | - Guillaume Geri
- AP-HP, Hôpital Ambroise Paré, Service de Réanimation, Boulogne-Billancourt, France
- Université de Versailles-St Quentin en Yvelines, Versailles, France
| | | | - Djillali Annane
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis), RHU RECORDS (Rapid rEcognition of CORticosteroiD resistant or sensitive Sepsis), Department of Intensive Care, Hôpital Raymond Poincaré (APHP), Laboratory of Infection and Inflammation – U1173, School of Medicine Simone Veil, University Versailles Saint Quentin – University Paris Saclay, INSERM, Garches, France
| | | | - Lucia Lopalco
- Immunobiology of HIV Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Morgane Bomsel
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Paris-Descartes University, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
- *Correspondence: Morgane Bomsel,
| |
Collapse
|
8
|
Noailly B, Yaugel-Novoa M, Werquin J, Jospin F, Drocourt D, Bourlet T, Rochereau N, Paul S. Antiviral Activities of HIV-1-Specific Human Broadly Neutralizing Antibodies Are Isotype-Dependent. Vaccines (Basel) 2022; 10:vaccines10060903. [PMID: 35746511 PMCID: PMC9227833 DOI: 10.3390/vaccines10060903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Broadly neutralizing antibodies (bNAbs) offer promising opportunities for preventing HIV-1 infection. The protection mechanisms of bNAbs involve the Fc domain, as well as their Fab counterpart. Here, different bNAb isotypes including IgG1, IgA1, IgA2, and IgA122 (IgA2 with the hinge of IgA1) were generated and then produced in CHO cells. Their ability to neutralize pseudovirus and primary HIV-1 isolates were measured, as well as their potential ADCC-like activity using a newly developed assay. In our work, gp41-specific IgA seems to be more efficient than IgG1 in inducing ADCC-like activity, but not in its virus neutralization effect. We show that either gp120-specific IgA or IgG1 isotypes are both efficient in neutralizing different viral strains. In contrast, gp120-specific IgG1 was a better ADCC-like inducer than IgA isotypes. These results provide new insights into the neutralization and ADCC-like activity of different bNAbs that might be taken into consideration when searching for new treatments or antibody-based vaccines.
Collapse
Affiliation(s)
- Blandine Noailly
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint-Etienne, France; (B.N.); (M.Y.-N.); (J.W.); (F.J.); (T.B.); (N.R.)
| | - Melyssa Yaugel-Novoa
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint-Etienne, France; (B.N.); (M.Y.-N.); (J.W.); (F.J.); (T.B.); (N.R.)
| | - Justine Werquin
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint-Etienne, France; (B.N.); (M.Y.-N.); (J.W.); (F.J.); (T.B.); (N.R.)
| | - Fabienne Jospin
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint-Etienne, France; (B.N.); (M.Y.-N.); (J.W.); (F.J.); (T.B.); (N.R.)
| | | | - Thomas Bourlet
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint-Etienne, France; (B.N.); (M.Y.-N.); (J.W.); (F.J.); (T.B.); (N.R.)
| | - Nicolas Rochereau
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint-Etienne, France; (B.N.); (M.Y.-N.); (J.W.); (F.J.); (T.B.); (N.R.)
| | - Stéphane Paul
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint-Etienne, France; (B.N.); (M.Y.-N.); (J.W.); (F.J.); (T.B.); (N.R.)
- Correspondence:
| |
Collapse
|
9
|
Monge C, Verrier B. Sublingual antigen delivery: a solution for needle-free HIV vaccination. Expert Rev Vaccines 2021; 20:1047-1050. [PMID: 34225546 DOI: 10.1080/14760584.2021.1951249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Claire Monge
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR5305 CNRS/UCBL, Lyon, France
| | - Bernard Verrier
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR5305 CNRS/UCBL, Lyon, France
| |
Collapse
|
10
|
HIV-Exposed Seronegative Sex Workers Express Low T-Cell Activation and an Intact Ectocervical Tissue Microenvironment. Vaccines (Basel) 2021; 9:vaccines9030217. [PMID: 33806390 PMCID: PMC7998094 DOI: 10.3390/vaccines9030217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Immunological correlates of natural resistance to HIV have been identified in HIV-exposed seronegative (HESN) individuals and include a low-inflammatory genital mucosal status. The cervicovaginal epithelium has not been studied for such correlates despite constituting an important barrier against sexual HIV transmission. To fill this gap in knowledge, we collected samples of blood, cervical mononuclear cells, cervicovaginal lavage, and ectocervical tissue from Kenyan HESN sex workers (n = 29) and controls (n = 33). The samples were analyzed by flow cytometry, protein profiling, 16S rRNA gene sequencing, in situ image analysis, and tissue-based RNA sequencing. A significantly higher relative proportion of regulatory T cells in blood (B7+CD25hiFoxP3+CD127loCD4+ and B7+Helios+FoxP3+CD4+), and a significantly lower proportion of activated cervical T cells (CCR5+CD69+CD4+ and CCR5+CD69+CD8+), were found in the HESN group compared with the controls. In contrast, there were no statistically significant differences between the study groups in cervicovaginal protein and microbiome compositions, ectocervical epithelial thickness, E-cadherin expression, HIV receptor expression, and tissue RNA transcriptional profiles. The identification of an intact ectocervical microenvironment in HESN individuals add new data to current knowledge about natural resistance to sexual transmission of HIV.
Collapse
|