1
|
Kamal M, Knox J, Horne RI, Tiwari OS, Burns AR, Han D, Levy D, Laor Bar-Yosef D, Gazit E, Vendruscolo M, Roy PJ. A rapid in vivo pipeline to identify small molecule inhibitors of amyloid aggregation. Nat Commun 2024; 15:8311. [PMID: 39333123 PMCID: PMC11436953 DOI: 10.1038/s41467-024-52480-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
Amyloids are associated with over 50 human diseases and have inspired significant effort to identify small molecule remedies. Here, we present an in vivo platform that efficiently yields small molecule inhibitors of amyloid formation. We previously identified small molecules that kill the nematode C. elegans by forming membrane-piercing crystals in the pharynx cuticle, which is rich in amyloid-like material. We show here that many of these molecules are known amyloid-binders whose crystal-formation in the pharynx can be blocked by amyloid-binding dyes. We asked whether this phenomenon could be exploited to identify molecules that interfere with the ability of amyloids to seed higher-order structures. We therefore screened 2560 compounds and found 85 crystal suppressors, 47% of which inhibit amyloid formation. This hit rate far exceeds other screening methodologies. Hence, in vivo screens for suppressors of crystal formation in C. elegans can efficiently reveal small molecules with amyloid-inhibiting potential.
Collapse
Affiliation(s)
- Muntasir Kamal
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, M5T 0S8, Canada
| | - Jessica Knox
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Robert I Horne
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Om Shanker Tiwari
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Andrew R Burns
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Duhyun Han
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Davide Levy
- Jan Koum Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Dana Laor Bar-Yosef
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Peter J Roy
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
2
|
Perrier A, Guiglielmoni N, Naquin D, Gorrichon K, Thermes C, Lameiras S, Dammermann A, Schiffer PH, Brunstein M, Canman JC, Dumont J. Maternal inheritance of functional centrioles in two parthenogenetic nematodes. Nat Commun 2024; 15:6042. [PMID: 39025889 PMCID: PMC11258339 DOI: 10.1038/s41467-024-50427-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
Centrioles are the core constituent of centrosomes, microtubule-organizing centers involved in directing mitotic spindle assembly and chromosome segregation in animal cells. In sexually reproducing species, centrioles degenerate during oogenesis and female meiosis is usually acentrosomal. Centrioles are retained during male meiosis and, in most species, are reintroduced with the sperm during fertilization, restoring centriole numbers in embryos. In contrast, the presence, origin, and function of centrioles in parthenogenetic species is unknown. We found that centrioles are maternally inherited in two species of asexual parthenogenetic nematodes and identified two different strategies for maternal inheritance evolved in the two species. In Rhabditophanes diutinus, centrioles organize the poles of the meiotic spindle and are inherited by both the polar body and embryo. In Disploscapter pachys, the two pairs of centrioles remain close together and are inherited by the embryo only. Our results suggest that maternally-inherited centrioles organize the embryonic spindle poles and act as a symmetry-breaking cue to induce embryo polarization. Thus, in these parthenogenetic nematodes, centrioles are maternally-inherited and functionally replace their sperm-inherited counterparts in sexually reproducing species.
Collapse
Affiliation(s)
- Aurélien Perrier
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Nadège Guiglielmoni
- Worm∼lab, Institute for Zoology, University of Cologne, Cologne, NRW, Germany
| | - Delphine Naquin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Kevin Gorrichon
- Centre de Référence, d'Innovation, d'eXpertise et de transfert (CRefIX), US 039 CEA/INRIA/INSERM, Evry, France
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, Direction de la Recherche Fondamentale, CEA, Evry, France
| | - Claude Thermes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Sonia Lameiras
- Institut Curie, PSL University, ICGex Next-Generation Sequencing Platform, 75005, Paris, France
| | - Alexander Dammermann
- Max Perutz Labs, Vienna Biocenter Campus (VBC), 1030, Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, 1030, Vienna, Austria
| | - Philipp H Schiffer
- Worm∼lab, Institute for Zoology, University of Cologne, Cologne, NRW, Germany
| | - Maia Brunstein
- Institut Pasteur, Université Paris Cité, INSERM, Institut de l'Audition, F-75012, Paris, France
| | - Julie C Canman
- Columbia University Irving Medical Center; Department of Pathology and Cell Biology, New York, NY, 10032, USA
| | - Julien Dumont
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France.
| |
Collapse
|
3
|
Dulovic A, Koch I, Hipp K, Streit A. Strongyloides spp. eliminate male-determining sperm post-meiotically. Mol Biochem Parasitol 2022; 251:111509. [PMID: 35985494 DOI: 10.1016/j.molbiopara.2022.111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Abstract
If normal male meiosis occurs, it would be expected that 50 % of sperm lack an X chromosome (nullo X) and hence upon fertilisation, result in male progeny. However, for sexual reproduction within the free-living stages of Strongyloides spp. male offspring are absent. We had shown earlier by quantitative whole genome sequencing that within Strongyloides spp., nullo-X sperm are either absent (S. papillosus) or underrepresented (S. ratti) among mature sperm. To investigate how and when this elimination of male-determining sperm occurs, we characterised spermatogenesis and the dynamic localisation of important molecular players such as tubulin, actin and major sperm protein by DIC microscopy, immunohistochemistry, and fluorescent in situ hybridization (FISH) in S. ratti, S. papillosus and Parastrongyloides trichosuri. We found that meiotic divisions in these parasites proceeded as expected for organisms with XO males, resulting in four equally sized spermatocytes, two with and two without an X chromosome. However, mature sperm were found to almost always contain an X chromosome. We also observed structures that contained protein constituents of sperm, such as actin and major sperm protein (MSP) but no DNA. These structures resemble C. elegans residual bodies in appearance and may assume their function. We hypothesize that spermatocytes without an X-chromosome undergo some form of programmed cell death and transform into these residual body-like structures. As in C. elegans, MSP is found in fibrous body-membranous organelles (FB-MOs). Knocking down MSP by RNAi showed that MSP is essential for fertility in S. ratti, as it is in C. elegans.
Collapse
Affiliation(s)
- Alex Dulovic
- Department of Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Iris Koch
- Electron Microscopy Facility, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Adrian Streit
- Department of Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany.
| |
Collapse
|
4
|
Dulovic A, Norman M, Harbecke D, Streit A. Chemotactic and temperature-dependent responses of the Strongyloidoidea superfamily of nematodes. Parasitology 2022; 149:116-123. [PMID: 35184785 PMCID: PMC11010508 DOI: 10.1017/s003118202100161x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 01/08/2023]
Abstract
Host-seeking behaviour and how a parasite identifies the correct host to infect remains a poorly understood area of parasitology. What is currently known is that host sensation and seeking behaviour is formed from a complex mixture of chemo-, thermo- and mechanosensory behaviours, of which chemosensation is the best studied. Previous studies of olfaction in parasitic nematodes suggested that this behaviour appears to be more closely related to target host and infection mode than phylogeny. However, there has not yet been a study comparing the chemotactic and temperature-dependent behaviours of very closely related parasitic and non-parasitic nematodes. To this end, we examined the temperature-dependent and chemotactic responses of the Strongyloidoidea superfamily of nematodes. We found differences in temperature response between the different species and within infective larvae. Chemotactic responses were highly divergent, with different attraction profiles between all species studied. When examining direct stimulation with fur, we found that it was insufficient to cause an attractive response. Overall, our results support the notion that olfactory sensation is more closely related to lifestyle and host range than phylogeny, and that multiple cues are required to initiate host-seeking behaviour.
Collapse
Affiliation(s)
- Alex Dulovic
- Max Planck Institute for Developmental Biology, Tübingen, Baden Württemberg, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen, Baden Württemberg, Germany
| | - Mat Norman
- Max Planck Institute for Developmental Biology, Tübingen, Baden Württemberg, Germany
- UBC Faculty of Medicine, Vancouver, British Columbia, Canada
| | - Dorothee Harbecke
- Max Planck Institute for Developmental Biology, Tübingen, Baden Württemberg, Germany
| | - Adrian Streit
- Max Planck Institute for Developmental Biology, Tübingen, Baden Württemberg, Germany
| |
Collapse
|