1
|
Wang YY, Wang XL, Li ZC, Zhang C, Xu X, Cui BJ, Tian MZ, Zhou CJ, Xu N, Wu Y, Yang XL, Chen DD, Lu LF, Li S. Grass carp reovirus VP4 manipulates TOLLIP to degrade STING for inhibition of IFN production. J Virol 2025:e0158324. [PMID: 39807855 DOI: 10.1128/jvi.01583-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Although fish possess an effective interferon (IFN) system to defend against viral infection, grass carp reovirus (GCRV) still causes epidemic hemorrhagic disease and tremendous economic loss in grass carp. Therefore, it is necessary to investigate the immune escape strategies employed by GCRV. In this study, we show that the structural protein VP4 of GCRV (encoded by the S6 segment) significantly restricts IFN expression by degrading stimulator of IFN genes (STING) through the autophagy-lysosome-dependent pathway. First, overexpression of VP4 inhibited the expression of IFN induced by GCRV and polyinosinic-polycytidylic acid (poly I:C) at both the promoter and mRNA levels. Second, VP4 was found to associate with STING, and the N-terminal transmembrane domain is essential for this interaction. Additionally, VP4 dramatically blocked STING-induced IFN expression and weakened its antiviral capacity. Further mechanistic studies revealed that VP4 degrades STING via the autophagy-lysosome pathway in a dose-dependent manner. Interestingly, toll-interacting protein (TOLLIP), a selective autophagy receptor, was found to interact with VP4 and reduce VP4-mediated STING degradation after tollip knockdown. Finally, overexpression of VP4 facilitated GCRV proliferation, while its depletion had the opposite effect. These findings indicate that GCRV VP4 recruits TOLLIP to degrade STING and achieve immune escape. This enhances our comprehension of aquatic virus pathogenesis. IMPORTANCE Upon virus invasion, fish cells employ a multitude of strategies to defend against infection. Consequently, viruses have evolved a plethora of tactics to evade host antiviral mechanisms. To date, fewer studies have been conducted on the immune evasion mechanism of grass carp reovirus (GCRV). In this study, we demonstrate that VP4 of GCRV-873 inhibits interferon expression by interacting with stimulator of IFN gene and degrading it in an autophagy-lysosome-dependent manner through the manipulation of the selective autophagy receptor toll-interacting protein. The findings of this study contribute to our understanding of the novel evasion mechanisms of GCRV and widen our knowledge of the virus-host interactions in lower vertebrates.
Collapse
Affiliation(s)
- Yang-Yang Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, Beijing, China
| | - Xue-Li Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, Tianjin, China
| | - Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, Beijing, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, Beijing, China
| | - Xiao Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning, China
| | - Bao-Jie Cui
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning, China
| | - Meng-Ze Tian
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning, China
| | - Chu-Jing Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning, China
| | - Na Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, Beijing, China
| | - Yue Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, Beijing, China
| | - Xiao-Li Yang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, Beijing, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, Beijing, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, Beijing, China
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, Beijing, China
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Wuhan, China
| |
Collapse
|
2
|
Yu G, Yuan L, Li X, Zuo M, Wang R, Chen M, Liu Y, Liu X, Xiao W. Zebrafish phd1 enhances mavs-mediated antiviral responses in a hydroxylation-independent manner. J Virol 2024; 98:e0103824. [PMID: 39162481 PMCID: PMC11406971 DOI: 10.1128/jvi.01038-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024] Open
Abstract
PHD1 is a member of the prolyl hydroxylase domain protein (PHD1-4) family, which plays a prominent role in the post-translational modification of its target proteins by hydroxylating proline residues. The best-characterized targets of PHD1 are hypoxia-inducible factor α (HIF-1α and HIF-2α), two master regulators of the hypoxia signaling pathway. In this study, we show that zebrafish phd1 positively regulates mavs-mediated antiviral innate immunity. Overexpression of phd1 enhances the cellular antiviral response. Consistently, zebrafish lacking phd1 are more susceptible to spring viremia of carp virus infection. Further assays indicate that phd1 interacts with mavs through the C-terminal transmembrane domain of mavs and promotes mavs aggregation. In addition, zebrafish phd1 attenuates K48-linked polyubiquitination of mavs, leading to stabilization of mavs. However, the enzymatic activity of phd1 is not required for phd1 to activate mavs. In conclusion, this study reveals a novel function of phd1 in the regulation of antiviral innate immunity.IMPORTANCEPHD1 is a key regulator of the hypoxia signaling pathway, but its role in antiviral innate immunity is largely unknown. In this study, we found that zebrafish phd1 enhances cellular antiviral responses in a hydroxylation-independent manner. Phd1 interacts with mavs through the C-terminal transmembrane domain of mavs and promotes mavs aggregation. In addition, phd1 attenuates K48-linked polyubiquitination of mavs, leading to stabilization of mavs. Zebrafish lacking phd1 are more susceptible to spring viremia of carp virus infection. These findings reveal a novel role for phd1 in the regulation of mavs-mediated antiviral innate immunity.
Collapse
Affiliation(s)
- Guangqing Yu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Le Yuan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Xiong Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Mingzhong Zuo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Rui Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Mengjuan Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Yuqing Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Xing Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, People's Republic of China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Wuhan Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, People's Republic of China
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
3
|
Kamil M, Kina UY, Atmaca HN, Unal S, Deveci G, Burak P, Aly ASI. Endoplasmic reticulum localized TMEM33 domain-containing protein is crucial for all life cycle stages of the malaria parasite. Mol Microbiol 2024; 121:767-780. [PMID: 38238886 DOI: 10.1111/mmi.15228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/14/2023] [Accepted: 01/06/2024] [Indexed: 04/19/2024]
Abstract
Endoplasmic reticulum (ER) plays a pivotal role in the regulation of stress responses in multiple eukaryotic cells. However, little is known about the effector mechanisms that regulate stress responses in ER of the malaria parasite. Herein, we aimed to identify the importance of a transmembrane protein 33 (TMEM33)-domain-containing protein in life cycle of the rodent malaria parasite Plasmodium berghei. TMEM33 is an ER membrane-resident protein that is involved in regulating stress responses in various eukaryotic cells. A C-terminal tagged TMEM33 was localized in the ER throughout the blood and mosquito stages of development. Targeted deletion of TMEM33 confirmed its importance for asexual blood stages and ookinete development, in addition to its essential role for sporozoite infectivity in the mammalian host. Pilot scale analysis shows that the loss of TMEM33 results in the initiation of ER stress response and induction of autophagy. Our findings conclude an important role of TMEM33 in the development of all life cycle stages of the malaria parasite, which indicates its potential as an antimalarial target.
Collapse
Affiliation(s)
- Mohd Kamil
- Aly Lab, Department of Microbiology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
- Center for Global Infectious Disease Research, Seattle Childrens Research Institute, Seattle, Washington, USA
| | - Umit Yasar Kina
- Aly Lab, Department of Microbiology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| | - Habibe Nur Atmaca
- Aly Lab, Department of Microbiology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| | - Sinem Unal
- Aly Lab, Department of Microbiology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| | - Gozde Deveci
- Aly Lab, Department of Microbiology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| | - Pinar Burak
- Aly Lab, Department of Microbiology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| | - Ahmed S I Aly
- Aly Lab, Department of Microbiology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
- Department of Biotechnology, School of Science and Engineering, Al Akhawayn University, Ifrane, Morocco
| |
Collapse
|
4
|
Yu GQ, Chen MJ, Wang YJ, Liu YQ, Zuo MZ, Zhang ZH, Li GX, Liu BZ, Li M. Zebrafish spop promotes ubiquitination and degradation of mavs to suppress antiviral response via the lysosomal pathway. Int J Biol Macromol 2024; 256:128451. [PMID: 38029910 DOI: 10.1016/j.ijbiomac.2023.128451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) signaling pathways are required to be tightly controlled to initiate host innate immune responses. Fish mitochondrial antiviral signaling (mavs) is a key determinant in the RLR pathway, and its ubiquitination is associated with mavs activation. Here, we identified the zebrafish E3 ubiquitin ligase Speckle-type BTB-POZ protein (spop) negatively regulates mavs-mediated the type I interferon (IFN) responses. Consistently, overexpression of zebrafish spop repressed the activity of IFN promoter and reduced host ifn transcription, whereas knockdown spop by small interfering RNA (siRNA) transfection had the opposite effects. Accordingly, overexpression of spop dampened the cellular antiviral responses triggered by spring viremia of carp virus (SVCV). A functional domain assay revealed that the N-terminal substrate-binding MATH domain regions of spop were necessary for IFN suppression. Further assays indicated that spop interacts with mavs through the C-terminal transmembrane (TM) domain of mavs. Moreover, zebrafish spop selectively promotes K48-linked polyubiquitination and degradation of mavs through the lysosomal pathway to suppress IFN expression. Our findings unearth a post-translational mechanism by which mavs is regulated and reveal a role for spop in inhibiting antiviral innate responses.
Collapse
Affiliation(s)
- Guang-Qing Yu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Meng-Juan Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Yi-Jie Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Yu-Qing Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Ming-Zhong Zuo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Zi-Hao Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Guo-Xi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Bian-Zhi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China.
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China.
| |
Collapse
|
5
|
Lu LF, Li ZC, Zhang C, Chen DD, Han KJ, Zhou XY, Wang XL, Li XY, Zhou L, Li S. Zebrafish TMEM47 is an effective blocker of IFN production during RNA and DNA virus infection. J Virol 2023; 97:e0143423. [PMID: 37882518 PMCID: PMC10688382 DOI: 10.1128/jvi.01434-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Mitochondrial antiviral signaling protein (MAVS) and stimulator of interferon (IFN) genes (STING) are key adaptor proteins required for innate immune responses to RNA and DNA virus infection. Here, we show that zebrafish transmembrane protein 47 (TMEM47) plays a critical role in regulating MAVS- and STING-triggered IFN production in a negative feedback manner. TMEM47 interacted with MAVS and STING for autophagic degradation, and ATG5 was essential for this process. These findings suggest the inhibitory function of TMEM47 on MAVS- and STING-mediated signaling responses during RNA and DNA virus infection.
Collapse
Affiliation(s)
- Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ke-Jia Han
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xiao-Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Li Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xi-Yin Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Li Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Xiong ST, Ying YR, Long Z, Li JH, Zhang YB, Xiao TY, Zhao X. Zebrafish MARCH7 negatively regulates IFN antiviral response by degrading TBK1. Int J Biol Macromol 2023; 240:124384. [PMID: 37054851 DOI: 10.1016/j.ijbiomac.2023.124384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
Membrane-associated RING-CH-type finger (MARCH) proteins have been reported to regulate type I IFN production during host antiviral innate immunity. The present study reported the zebrafish MARCH family member, MARCH7, as a negative regulator in virus-triggered type I IFN induction via targeting TANK-binding kinase 1 (TBK1) for degradation. As an IFN-stimulated gene (ISG), we discovered that MARCH7 was significantly induced by spring viremia of carp virus (SVCV) or poly(I:C) stimulation. Ectopic expression of MARCH7 reduced the activity of IFN promoter and dampened the cellular antiviral responses triggered by SVCV and grass carp reovirus (GCRV), which concomitantly accelerated the viral replication. Accordingly, the knockdown of MARCH7 by siRNA transfection significantly promoted the transcription of ISG genes and inhibited SVCV replication. Mechanistically, we found that MARCH7 interacted with TBK1 and degraded it via K48-linked ubiquitination. Further characterization of truncated mutants of MARCH7 and TBK1 confirmed that the C-terminal RING of MARCH7 is essential in the MARCH7-mediated degradation of TBK1 and the negative regulation of IFN antiviral response. This study reveals a molecular mechanism by which zebrafish MARCH7 negatively regulates the IFN response by targeting TBK1 for protein degradation, providing new insights into the essential role of MARCH7 in antiviral innate immunity.
Collapse
Affiliation(s)
- Shu-Ting Xiong
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Yan-Rong Ying
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China
| | - Zhe Long
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Jun-Hua Li
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Yi-Bing Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tiao-Yi Xiao
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Xiang Zhao
- College of Fisheries, Hunan Agricultural University, Changsha 410128, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
7
|
Patel P, Nandi A, Verma SK, Kaushik N, Suar M, Choi EH, Kaushik NK. Zebrafish-based platform for emerging bio-contaminants and virus inactivation research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162197. [PMID: 36781138 PMCID: PMC9922160 DOI: 10.1016/j.scitotenv.2023.162197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
Emerging bio-contaminants such as viruses have affected health and environment settings of every country. Viruses are the minuscule entities resulting in severe contagious diseases like SARS, MERS, Ebola, and avian influenza. Recent epidemic like the SARS-CoV-2, the virus has undergone mutations strengthen them and allowing to escape from the remedies. Comprehensive knowledge of viruses is essential for the development of targeted therapeutic and vaccination treatments. Animal models mimicking human biology like non-human primates, rats, mice, and rabbits offer competitive advantage to assess risk of viral infections, chemical toxins, nanoparticles, and microbes. However, their economic maintenance has always been an issue. Furthermore, the redundancy of experimental results due to aforementioned aspects is also in examine. Hence, exploration for the alternative animal models is crucial for risk assessments. The current review examines zebrafish traits and explores the possibilities to monitor emerging bio-contaminants. Additionally, a comprehensive picture of the bio contaminant and virus particle invasion and abatement mechanisms in zebrafish and human cells is presented. Moreover, a zebrafish model to investigate the emerging viruses such as coronaviridae and poxviridae has been suggested.
Collapse
Affiliation(s)
- Paritosh Patel
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, 18323 Hwaseong, Republic of Korea
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| |
Collapse
|
8
|
Zhao X, Dan C, Gong XY, Li YL, Qu ZL, Sun HY, An LL, Guo WH, Mei J, Gui JF, Zhang YB. Yellow catfish RIO kinases (RIOKs) negatively regulate fish interferon-mediated antiviral response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104656. [PMID: 36746265 DOI: 10.1016/j.dci.2023.104656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
In mammals, right open reading frame kinases (RIOKs) are initially reported to participate in cancer cell proliferation, apoptosis, migration and invasion, and recently they have been related to host immune response. Little is known about the homologs of RIOKs in fish. In the current study, we cloned three homologous genes of RIOK family in yellow catfish (Pelteobagrus fulvidraco), termed Pfriok1, Pfriok2 and Pfriok3. Pfriok1, Pfriok2 and Pfriok3 were constitutively expressed at relatively high levels in yellow catfish tissues, and their mRNA levels were not changed under viral infection. Individual overexpression of PfRIOK1, PfRIOK2 and PfRIOK3 attenuated fish interferon (IFN) response, thereby promoting viral replication in fish cells. Mechanistically, yellow catfish RIOK proteins downregulated fish IFN response through attenuating TBK1 protein levels in cytoplasm. Our findings suggest that yellow catfish RIOK1, RIOK2 and RIOK3 are involved in downregulating fish IFN antiviral response.
Collapse
Affiliation(s)
- Xiang Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Cheng Dan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Xiu-Ying Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Yi-Lin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Zi-Ling Qu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Hao-Yu Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Li-Li An
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Wen-Hao Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yi-Bing Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
9
|
Xiao J, Zhong H, Feng H. Post-translational modifications and regulations of RLR signaling molecules in cytokines-mediated response in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104631. [PMID: 36608898 DOI: 10.1016/j.dci.2023.104631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/19/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Teleosts rely on innate immunity to recognize and defense against pathogenic microorganisms. RIG-I-like receptor (RLR) family is the major pattern recognition receptor (PRR) to detect RNA viruses. After recognition of viral RNA components, these cytosolic sensors activate downstream signaling cascades to induce the expression of type I interferons (IFNs) and other cytokines firing antiviral responses. Meanwhile, numerous molecules take part in the complex regulation of RLR signals by various methods, such as post-translational modification (PTM), to produce an immune response that is appropriately balanced. In this review, we summarize our recent understanding of PTMs and other regulatory proteins in modulating RLR signaling pathway, which is helpful for systematically studying the regulatory mechanism of antiviral innate immunity of teleost fish.
Collapse
Affiliation(s)
- Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Huijuan Zhong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
10
|
Li ZC, Lu LF, Zhang C, Wang XL, Tong JF, Han KJ, Chen DD, Li XY, Zhou L, Gui JF, Li S. GCRV NS38 counteracts SVCV proliferation by intracellular antagonization during co-infection. Virol Sin 2023; 38:142-156. [PMID: 36526167 PMCID: PMC10006313 DOI: 10.1016/j.virs.2022.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Viral co-infection has been found in animals; however, the mechanisms of co-infection are unclear. The abundance and diversity of viruses in water make fish highly susceptible to co-infection. Here, we reported a co-infection in fish, which resulted in reduced host lethality and illustrated the intracellular molecular mechanism of viral co-infection. The spring viremia of carp virus (SVCV) is a highly lethal virus that infects Cyprinidae, such as zebrafish. The mortality of SVCV infection was significantly reduced when co-infected with the grass carp reovirus (GCRV). The severity of tissue damage and viral proliferation of SVCV was also reduced in co-infection with GCRV. The transcriptome bioinformatics analysis demonstrated that the effect on the host transcripts in response to SVCV infection was significantly reduced in co-infection. After excluding the extracellular interactions of these two viruses, the intracellular mechanisms were studied. We found that the GCRV NS38 remarkably decreased SVCV infection and viral proliferation. The interaction between GCRV NS38 and SVCV nucleoprotein (N) and phosphoprotein (P) proteins was identified, and NS38 downregulated both N and P proteins. Further analysis demonstrated that the N protein was degraded by NS38 indispensable of the autophagy receptor, sequestosome 1 (p62). Meanwhile, K63-linked ubiquitination of the P protein was reduced by NS38, leading to ubiquitinated degradation of the P protein. These results reveal that the intracellular viral protein interactions are a crucial mechanism of co-infection and influence the host pathology and expand our understanding in intracellular viral interactions co-infection.
Collapse
Affiliation(s)
- Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue-Li Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Jin-Feng Tong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke-Jia Han
- University of Chinese Academy of Sciences, Beijing, 100049, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi-Yin Li
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Li Zhou
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Fang Gui
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Tsai PL, Cameron CJF, Forni MF, Wasko RR, Naughton BS, Horsley V, Gerstein MB, Schlieker C. Dynamic quality control machinery that operates across compartmental borders mediates the degradation of mammalian nuclear membrane proteins. Cell Rep 2022; 41:111675. [PMID: 36417855 PMCID: PMC9827541 DOI: 10.1016/j.celrep.2022.111675] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/15/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022] Open
Abstract
Many human diseases are caused by mutations in nuclear envelope (NE) proteins. How protein homeostasis and disease etiology are interconnected at the NE is poorly understood. Specifically, the identity of local ubiquitin ligases that facilitate ubiquitin-proteasome-dependent NE protein turnover is presently unknown. Here, we employ a short-lived, Lamin B receptor disease variant as a model substrate in a genetic screen to uncover key elements of NE protein turnover. We identify the ubiquitin-conjugating enzymes (E2s) Ube2G2 and Ube2D3, the membrane-resident ubiquitin ligases (E3s) RNF5 and HRD1, and the poorly understood protein TMEM33. RNF5, but not HRD1, requires TMEM33 both for efficient biosynthesis and function. Once synthesized, RNF5 responds dynamically to increased substrate levels at the NE by departing from the endoplasmic reticulum, where HRD1 remains confined. Thus, mammalian protein quality control machinery partitions between distinct cellular compartments to address locally changing substrate loads, establishing a robust cellular quality control system.
Collapse
Affiliation(s)
- Pei-Ling Tsai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Christopher J F Cameron
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06520, USA
| | - Maria Fernanda Forni
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Renee R Wasko
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Brigitte S Naughton
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Valerie Horsley
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Mark B Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA; Department of Computer Science, Yale University, New Haven, CT 06511, USA; Department of Statistics and Data Science, Yale University, New Haven, CT 06511, USA
| | - Christian Schlieker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
12
|
Zhang Y, Gao X, Yang X, Wang Y, Wang W, Huang X, Qin Q, Huang Y. Singapore Grouper Iridovirus VP131 Drives Degradation of STING-TBK1 Pathway Proteins and Negatively Regulates Antiviral Innate Immunity. J Virol 2022; 96:e0068222. [PMID: 36190239 PMCID: PMC9599571 DOI: 10.1128/jvi.00682-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/09/2022] [Indexed: 12/29/2022] Open
Abstract
Iridoviruses are large DNA viruses which cause great economic losses to the aquaculture industry and serious threats to ecological diversity worldwide. Singapore grouper iridovirus (SGIV), a novel member of the genus Ranavirus, causes high mortality in grouper aquaculture. Previous work on genome annotation demonstrated that SGIV contained numerous uncharacterized or hypothetical open reading frames (ORFs), whose functions remained largely unknown. Here, we reported that the protein encoded by SGIV ORF131R (VP131) was localized predominantly within the endoplasmic reticulum (ER). Ectopic expression of GFP-VP131 significantly enhanced SGIV replication, while VP131 knockdown decreased viral infection in vitro, suggesting that VP131 functioned as a proviral factor during SGIV infection. Overexpression of GFP-VP131 inhibited the interferon (IFN)-1 promoter activity and mRNA level of IFN-related genes induced by poly(I:C), Epinephelus coioides cyclic GMP/AMP synthase (EccGAS)/stimulator of IFN genes (EcSTING), TANK-binding kinase 1 (EcTBK1), or melanoma differentiation-associated gene 5 (EcMDA5), whereas such activation induced by mitochondrial antiviral signaling protein (EcMAVS) was not affected. Moreover, VP131 interacted with EcSTING and degraded EcSTING through both the autophagy-lysosome pathway and ubiquitin-proteasome pathway, and targeted for the K63-linked ubiquitination. Of note, we also found that EcSTING significantly accelerated the formation of GFP-VP131 aggregates in co-transfected cells. Finally, GFP-VP131 inhibited EcSTING- or EcTBK1-induced antiviral activity upon red-spotted grouper nervous necrosis virus (RGNNV) infection. Together, our results demonstrated that the SGIV VP131 negatively regulated the IFN response by inhibiting EcSTING-EcTBK1 signaling for viral evasion. IMPORTANCE STING has been identified as a critical factor participating in the innate immune response which recruits and phosphorylates TBK1 and IFN regulatory factor 3 (IRF3) to induce IFN production and defend against viral infection. However, viruses also distort the STING-TBK1 pathway to negatively regulate the IFN response and facilitate viral replication. Here, we reported that SGIV VP131 interacted with EcSTING within the ER and degraded EcSTING, leading to the suppression of IFN production and the promotion of SGIV infection. These results for the first time demonstrated that fish iridovirus evaded the host antiviral response via abrogating the STING-TBK1 signaling pathway.
Collapse
Affiliation(s)
- Ya Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaolin Gao
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xinmei Yang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yu Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wenji Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
13
|
Zenke K, Okinaka Y. Multiple isoforms of HSP70 and HSP90 required for betanodavirus multiplication in medaka cells. Arch Virol 2022; 167:1961-1975. [PMID: 35752988 DOI: 10.1007/s00705-022-05489-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/18/2022] [Indexed: 11/28/2022]
Abstract
Heat shock proteins (HSPs) are molecular chaperones that have recently been shown to function as host factors (HFs) for virus multiplication in fish as well as in mammals, plants, and insects. HSPs are classified into families, and each family has multiple isoforms. However, no comprehensive studies have been performed to clarify the biological importance of these multiple isoforms for fish virus multiplication. Betanodaviruses are the causative agents of viral nervous necrosis in cultured marine fish and cause very high mortality. Although the viral genome and encoded proteins have been characterized extensively, information on HFs for these viruses is limited. In this study, therefore, we focused on the HSP70 and HSP90 families to examine the importance of their isoforms for betanodavirus multiplication. We found that HSP inhibitors (17-AAG, radicicol, and quercetin) suppressed viral RNA replication and production of progeny virus in infected medaka (Oryzias latipes) cells. Thermal stress or virus infection resulted in increased expression of some isoform genes and facilitated virus multiplication. Furthermore, overexpression and knockdown of some isoform genes revealed that the isoforms HSP70-1, HSP70-2, HSP70-5, HSP90-α1, HSP90-α2, and HSP90-β play positive roles in virus multiplication in medaka. Collectively, these results suggest that multiple isoforms of fish HPSs serve as HFs for betanodavirus multiplication.
Collapse
Affiliation(s)
- Kosuke Zenke
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.,Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585, Japan
| | - Yasushi Okinaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
14
|
Wang MT, Li Z, Ding M, Yao TZ, Yang S, Zhang XJ, Miao C, Du WX, Shi Q, Li S, Mei J, Wang Y, Wang ZW, Zhou L, Li XY, Gui JF. Two duplicated gsdf homeologs cooperatively regulate male differentiation by inhibiting cyp19a1a transcription in a hexaploid fish. PLoS Genet 2022; 18:e1010288. [PMID: 35767574 PMCID: PMC9275722 DOI: 10.1371/journal.pgen.1010288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/12/2022] [Accepted: 06/08/2022] [Indexed: 01/10/2023] Open
Abstract
Although evolutionary fates and expression patterns of duplicated genes have been extensively investigated, how duplicated genes co-regulate a biological process in polyploids remains largely unknown. Here, we identified two gsdf (gonadal somatic cell-derived factor) homeologous genes (gsdf-A and gsdf-B) in hexaploid gibel carp (Carassius gibelio), wherein each homeolog contained three highly conserved alleles. Interestingly, gsdf-A and gsdf-B transcription were mainly activated by dmrt1-A (dsx- and mab-3-related transcription factor 1) and dmrt1-B, respectively. Loss of either gsdf-A or gsdf-B alone resulted in partial male-to-female sex reversal and loss of both caused complete sex reversal, which could be rescued by a nonsteroidal aromatase inhibitor. Compensatory expression of gsdf-A and gsdf-B was observed in gsdf-B and gsdf-A mutants, respectively. Subsequently, we determined that in tissue culture cells, Gsdf-A and Gsdf-B both interacted with Ncoa5 (nuclear receptor coactivator 5) and blocked Ncoa5 interaction with Rora (retinoic acid-related orphan receptor-alpha) to repress Rora/Ncoa5-induced activation of cyp19a1a (cytochrome P450, family 19, subfamily A, polypeptide 1a). These findings illustrate that Gsdf-A and Gsdf-B can regulate male differentiation by inhibiting cyp19a1a transcription in hexaploid gibel carp and also reveal that Gsdf-A and Gsdf-B can interact with Ncoa5 to suppress cyp19a1a transcription in vitro. This study provides a typical case of cooperative mechanism of duplicated genes in polyploids and also sheds light on the conserved evolution of sex differentiation.
Collapse
Affiliation(s)
- Ming-Tao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Miao Ding
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tian-Zi Yao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sheng Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chun Miao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Xuan Du
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Chen DD, Lu LF, Xiong F, Wang XL, Jiang JY, Zhang C, Li ZC, Han KJ, Li S. Zebrafish CERKL Enhances Host TBK1 Stability and Simultaneously Degrades Viral Protein via Ubiquitination Modulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2196-2206. [PMID: 35418468 DOI: 10.4049/jimmunol.2101007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
In the viral infection process, host gene function is usually reported as either defending the host or assaulting the virus. In this study, we demonstrated that zebrafish ceramide kinase-like (CERKL) mediates protection against viral infection via two distinct mechanisms: stabilization of TANK-binding kinase 1 (TBK1) through impairing K48-linked ubiquitination and degradation of spring viremia of carp virus (SVCV) P protein by dampening K63-linked ubiquitination, resulting in an improvement of the host immune response and a decline in viral activity in epithelioma papulosum cyprini (EPC) cells. On SVCV infection, ifnφ1 expression was increased or blunted by CERKL overexpression or knockdown, respectively. Subsequently, we found that CERKL localized in the cytoplasm, where it interacted with TBK1 and enhanced its stability by impeding the K48-linked polyubiquitination; meanwhile, the antiviral capacity of TBK1 was significantly potentiated by CERKL. In contrast, CERKL also interacted with and degraded SVCV P protein to disrupt its function in viral proliferation. Further mechanism analysis revealed K63-linked deubiquitination is the primary means of CERKL-mediated SVCV P protein degradation. Taken together, our study reveals a novel mechanism of fish defense against viral infection: the single gene cerkl is both a shield for the host and a spear against the virus, which strengthens resistance.
Collapse
Affiliation(s)
- Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
| | - Feng Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xue-Li Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China; and
| | - Jing-Yu Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ke-Jia Han
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China; and
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China;
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
16
|
Zheng X, Xu L, Ye M, Gu T, Yao YL, Lv LB, Yu D, Yao YG. Characterizing the role of Tupaia DNA damage inducible transcript 3 (DDIT3) gene in viral infections. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104307. [PMID: 34748795 DOI: 10.1016/j.dci.2021.104307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
DNA damage inducible transcript 3 (DDIT3, also known as CHOP) belongs to the CCAAT/enhancer-binding protein (C/EBP) family and plays an essential role in endoplasmic reticulum stress. Here, we characterized the potential role of the Chinese tree shrew (Tupaia belangeri chinensis) DDIT3 (tDDIT3) in viral infections. The tDDIT3 protein is highly conserved and has a species-specific insertion of the SQSS repeat upstream of the C-terminal basic-leucine zipper (bZIP) domain. Phylogenetic analysis of DDIT3 protein sequences of tree shrew and related mammals indicated a closer genetic affinity between tree shrew and primates than between tree shrew and rodents. Three positively selected sites (PSSs: Glu83, Pro93, and Ser172) were identified in tDDIT3 based on the branch-site model. Expression analysis of tDDIT3 showed a constitutively expressed level in different tissues and a significantly increased level in tree shrew cells upon herpes simplex virus type 1 (HSV-1) and Newcastle disease virus (NDV) infections. Overexpression of tDDIT3 significantly increased the production of HSV-1 and vesicular stomatitis virus (VSV) in tree shrew primary renal cells (TSPRCs), whereas tDDIT3 knockout in tree shrew stable cell line (TSR6 cells) had an inhibitory effect on virus production. The enhanced effect on viral infection by tDDIT3 was not associated with the three PSSs. Mechanistically, tDDIT3 overexpression inhibited type I IFN signaling. tDDIT3 interacted with tMAVS through CARD and PRR domains, but not with other immune-related factors such as tMDA5, tSTING and tTBK1. Collectively, our results revealed tDDIT3 as a negative regulator for virus infection.
Collapse
Affiliation(s)
- Xiao Zheng
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Ling Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Maosen Ye
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Tianle Gu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Yu-Lin Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Long-Bao Lv
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Dandan Yu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China.
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, China; National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China.
| |
Collapse
|
17
|
Tong JF, Zhou L, Li S, Lu LF, Li ZC, Li Z, Gan RH, Mou CY, Zhang QY, Wang ZW, Zhang XJ, Wang Y, Gui JF. Two Duplicated Ptpn6 Homeologs Cooperatively and Negatively Regulate RLR-Mediated IFN Response in Hexaploid Gibel Carp. Front Immunol 2021; 12:780667. [PMID: 34899743 PMCID: PMC8662705 DOI: 10.3389/fimmu.2021.780667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/11/2021] [Indexed: 01/28/2023] Open
Abstract
Src homology region 2 domain-containing phosphatase 1 (SHP1), encoded by the protein tyrosine phosphatase nonreceptor type 6 (ptpn6) gene, belongs to the family of protein tyrosine phosphatases (PTPs) and participates in multiple signaling pathways of immune cells. However, the mechanism of SHP1 in regulating fish immunity is largely unknown. In this study, we first identified two gibel carp (Carassius gibelio) ptpn6 homeologs (Cgptpn6-A and Cgptpn6-B), each of which had three alleles with high identities. Then, relative to Cgptpn6-B, dominant expression in adult tissues and higher upregulated expression of Cgptpn6-A induced by polyinosinic-polycytidylic acid (poly I:C), poly deoxyadenylic-deoxythymidylic (dA:dT) acid and spring viremia of carp virus (SVCV) were uncovered. Finally, we demonstrated that CgSHP1-A (encoded by the Cgptpn6-A gene) and CgSHP1-B (encoded by the Cgptpn6-B gene) act as negative regulators of the RIG-I-like receptor (RLR)-mediated interferon (IFN) response via two mechanisms: the inhibition of CaTBK1-induced phosphorylation of CaMITA shared by CgSHP1-A and CgSHP1-B, and the autophagic degradation of CaMITA exclusively by CgSHP1-A. Meanwhile, the data support that CgSHP1-A and CgSHP1-B have sub-functionalized and that CgSHP1-A overwhelmingly dominates CgSHP1-B in the process of RLR-mediated IFN response. The current study not only sheds light on the regulative mechanism of SHP1 in fish immunity, but also provides a typical case of duplicated gene evolutionary fates.
Collapse
Affiliation(s)
- Jin-Feng Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Shun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Long-Feng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhuo-Cong Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Rui-Hai Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Cheng-Yan Mou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
18
|
Zhou Y, Lei Y, Lu LF, Chen DD, Zhang C, Li ZC, Zhou XY, Li S, Zhang YA. cGAS Is a Negative Regulator of RIG-I-Mediated IFN Response in Cyprinid Fish. THE JOURNAL OF IMMUNOLOGY 2021; 207:784-798. [PMID: 34290106 DOI: 10.4049/jimmunol.2100075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022]
Abstract
In mammals, cyclic GMP-AMP synthase (cGAS) recognizes cytosolic dsDNA to induce the type I IFN response. However, the functional role of cGAS in the IFN response of fish remains unclear or controversial. In this study, we report that cGAS orthologs from crucian carp Carassius auratus (CacGAS) and grass carp Ctenopharyngodon idellus (CicGAS) target the dsRNA sensor retinoic acid-inducible gene I (RIG-I) for negative regulation of the IFN response. First, poly(deoxyadenylic-deoxythymidylic) acid-, polyinosinic-polycytidylic acid-, and spring viremia of carp virus-induced IFN responses were impaired by overexpression of CacGAS and CicGAS. Then, CacGAS and CicGAS interacted with CiRIG-I and CiMAVS and inhibited CiRIG-I- and CiMAVS-mediated IFN induction. Moreover, the K63-linked ubiquitination of CiRIG-I and the interaction between CiRIG-I and CiMAVS were attenuated by CacGAS and CicGAS. Finally, CacGAS and CicGAS decreased CiRIG-I-mediated the cellular antiviral response and facilitated viral replication. Taken together, data in this study identify CacGAS and CicGAS as negative regulators in RIG-I-like receptor signaling, which extends the current knowledge regarding the role of fish cGAS in the innate antiviral response.
Collapse
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yi Lei
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China; and
| | - Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China; and
| | - Xiao-Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China; and
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China; .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|