1
|
Dugied G, Douche T, Dos Santos M, Giai Gianetto Q Q, Cassonnet C, Vuillier F, Cassonnet P, Jacob Y, van der Werf S, Komarova A, Matondo M, Karim M, Demeret C. Profiling Cullin4-E3 Ligases Interactomes and Their Rewiring in Influenza A Virus Infection. Mol Cell Proteomics 2024; 23:100856. [PMID: 39383947 DOI: 10.1016/j.mcpro.2024.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/11/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024] Open
Abstract
Understanding the integrated regulation of cellular processes during viral infection is crucial for developing host-targeted approaches. We have previously reported that an optimal in vitro infection by influenza A virus (IAV) requires three components of Cullin 4-RING E3 ubiquitin ligases (CRL4) complexes, namely the DDB1 adaptor and two substrate recognition factors, DCAF11 and DCAF12L1, which mediate non-degradative poly-ubiquitination of the PB2 subunit of the viral polymerase. However, the impact of IAV infection on the CRL4 interactome remains elusive. Here, using Affinity Purification coupled with Mass Spectrometry (AP-MS) approaches, we identified cellular proteins interacting with these CRL4 components in IAV-infected and non-infected contexts. IAV infection induces significant modulations in protein interactions, resulting in a global loss of DDB1 and DCAF11 interactions, and an increase in DCAF12L1-associated proteins. The distinct rewiring of CRL4's associations upon infection impacted cellular proteins involved in protein folding, ubiquitination, translation, splicing, and stress responses. Using a split-nanoluciferase-based assay, we identified direct partners of CRL4 components and via siRNA-mediated silencing validated their role in IAV infection, representing potential substrates or regulators of CRL4 complexes. Our findings unravel the dynamic remodeling of the proteomic landscape of CRL4's E3 ubiquitin ligases during IAV infection, likely involved in shaping a cellular environment conducive to viral replication and offer potential for the exploration of future host-targeted antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Guillaume Dugied
- Unit of Molecular Genetics of RNA Viruses, Institut Pasteur, Paris, France; Interactomics, RNA and Immunity Laboratory, Institut Pasteur, Paris, France
| | - Thibaut Douche
- Institut Pasteur, Proteomics Core Facility, MSBio UtechS, UAR CNRS 2024, Université Paris Cité, Paris, France
| | - Melanie Dos Santos
- Interactomics, RNA and Immunity Laboratory, Institut Pasteur, Paris, France
| | - Quentin Giai Gianetto Q
- Institut Pasteur, Proteomics Core Facility, MSBio UtechS, UAR CNRS 2024, Université Paris Cité, Paris, France; Institut Pasteur, Bioinformatics and Biostatistics Hub, Université Paris Cité, Paris, France
| | - Camille Cassonnet
- Unit of Molecular Genetics of RNA Viruses, Institut Pasteur, Paris, France
| | - Françoise Vuillier
- Unit of Molecular Genetics of RNA Viruses, Institut Pasteur, Paris, France
| | - Patricia Cassonnet
- Interactomics, RNA and Immunity Laboratory, Institut Pasteur, Paris, France
| | - Yves Jacob
- Interactomics, RNA and Immunity Laboratory, Institut Pasteur, Paris, France
| | | | - Anastassia Komarova
- Unit of Molecular Genetics of RNA Viruses, Institut Pasteur, Paris, France; Interactomics, RNA and Immunity Laboratory, Institut Pasteur, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Proteomics Core Facility, MSBio UtechS, UAR CNRS 2024, Université Paris Cité, Paris, France
| | - Marwah Karim
- Unit of Molecular Genetics of RNA Viruses, Institut Pasteur, Paris, France.
| | - Caroline Demeret
- Unit of Molecular Genetics of RNA Viruses, Institut Pasteur, Paris, France; Interactomics, RNA and Immunity Laboratory, Institut Pasteur, Paris, France.
| |
Collapse
|
2
|
Marques M, Ramos B, Albuquerque H, Pereira M, Ribeiro DR, Nunes A, Sarabando J, Brás D, Ferreira AR, Vitorino R, Amorim MJ, Silva AM, Soares AR, Ribeiro D. Influenza A virus propagation requires the activation of the unfolded protein response and the accumulation of insoluble protein aggregates. iScience 2024; 27:109100. [PMID: 38405606 PMCID: PMC10884513 DOI: 10.1016/j.isci.2024.109100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/11/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Influenza A virus (IAV) employs multiple strategies to manipulate cellular mechanisms and support proper virion formation and propagation. In this study, we performed a detailed analysis of the interplay between IAV and the host cells' proteostasis throughout the entire infectious cycle. We reveal that IAV infection activates the inositol requiring enzyme 1 (IRE1) branch of the unfolded protein response, and that this activation is important for an efficient infection. We further observed the accumulation of virus-induced insoluble protein aggregates, containing both viral and host proteins, associated with a dysregulation of the host cell RNA metabolism. Our data indicate that this accumulation is important for IAV propagation and favors the final steps of the infection cycle, more specifically the virion assembly. These findings reveal additional mechanisms by which IAV disrupts host proteostasis and uncovers new cellular targets that can be explored for the development of host-directed antiviral strategies.
Collapse
Affiliation(s)
- Mariana Marques
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Bruno Ramos
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Hélio Albuquerque
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Marisa Pereira
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Diana Roberta Ribeiro
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Alexandre Nunes
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Jéssica Sarabando
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Daniela Brás
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Ana Rita Ferreira
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Maria João Amorim
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, 1649-023 Lisboa, Portugal
| | - Artur M.S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Raquel Soares
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Daniela Ribeiro
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| |
Collapse
|
3
|
Vale-Costa S, Etibor TA, Brás D, Sousa AL, Ferreira M, Martins GG, Mello VH, Amorim MJ. ATG9A regulates the dissociation of recycling endosomes from microtubules to form liquid influenza A virus inclusions. PLoS Biol 2023; 21:e3002290. [PMID: 37983294 PMCID: PMC10695400 DOI: 10.1371/journal.pbio.3002290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/04/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023] Open
Abstract
It is now established that many viruses that threaten public health establish condensates via phase transitions to complete their lifecycles, and knowledge on such processes may offer new strategies for antiviral therapy. In the case of influenza A virus (IAV), liquid condensates known as viral inclusions, concentrate the 8 distinct viral ribonucleoproteins (vRNPs) that form IAV genome and are viewed as sites dedicated to the assembly of the 8-partite genomic complex. Despite not being delimited by host membranes, IAV liquid inclusions accumulate host membranes inside as a result of vRNP binding to the recycling endocytic marker Rab11a, a driver of the biogenesis of these structures. We lack molecular understanding on how Rab11a-recycling endosomes condensate specifically near the endoplasmic reticulum (ER) exit sites upon IAV infection. We show here that liquid viral inclusions interact with the ER to fuse, divide, and slide. We uncover that, contrary to previous indications, the reported reduction in recycling endocytic activity is a regulated process rather than a competition for cellular resources involving a novel role for the host factor ATG9A. In infection, ATG9A mediates the removal of Rab11a-recycling endosomes carrying vRNPs from microtubules. We observe that the recycling endocytic usage of microtubules is rescued when ATG9A is depleted, which prevents condensation of Rab11a endosomes near the ER. The failure to produce viral inclusions accumulates vRNPs in the cytosol and reduces genome assembly and the release of infectious virions. We propose that the ER supports the dynamics of liquid IAV inclusions, with ATG9A facilitating their formation. This work advances our understanding on how epidemic and pandemic influenza genomes are formed. It also reveals the plasticity of recycling endosomes to undergo condensation in response to infection, disclosing new roles for ATG9A beyond its classical involvement in autophagy.
Collapse
Affiliation(s)
- Sílvia Vale-Costa
- Cell Biology of Viral Infection Lab (CBV), Instituto Gulbenkian de Ciência (IGC)—Fundação Calouste Gulbenkian, Oeiras, Portugal
| | - Temitope Akhigbe Etibor
- Cell Biology of Viral Infection Lab (CBV), Instituto Gulbenkian de Ciência (IGC)—Fundação Calouste Gulbenkian, Oeiras, Portugal
| | - Daniela Brás
- Cell Biology of Viral Infection Lab (CBV), Instituto Gulbenkian de Ciência (IGC)—Fundação Calouste Gulbenkian, Oeiras, Portugal
| | - Ana Laura Sousa
- Electron Microscopy Facility (EMF), Instituto Gulbenkian de Ciência (IGC)—Fundação Calouste Gulbenkian, Oeiras, Portugal
| | - Mariana Ferreira
- Advanced Imaging Facility (AIF), Instituto Gulbenkian de Ciência (IGC)—Fundação Calouste Gulbenkian, Oeiras, Portugal
| | - Gabriel G. Martins
- Advanced Imaging Facility (AIF), Instituto Gulbenkian de Ciência (IGC)—Fundação Calouste Gulbenkian, Oeiras, Portugal
| | - Victor Hugo Mello
- Living Physics, Instituto Gulbenkian de Ciência (IGC)—Fundação Calouste Gulbenkian, Oeiras, Portugal
| | - Maria João Amorim
- Cell Biology of Viral Infection Lab (CBV), Instituto Gulbenkian de Ciência (IGC)—Fundação Calouste Gulbenkian, Oeiras, Portugal
- Cell Biology of Viral Infection Lab (CBV), Católica Biomedical Research Centre (CBR), Católica Medical School—Universidade Católica Portuguesa, Lisboa, Portugal
| |
Collapse
|
4
|
Xie E, Ahmad S, Smyth RP, Sieben C. Advanced fluorescence microscopy in respiratory virus cell biology. Adv Virus Res 2023; 116:123-172. [PMID: 37524480 DOI: 10.1016/bs.aivir.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Respiratory viruses are a major public health burden across all age groups around the globe, and are associated with high morbidity and mortality rates. They can be transmitted by multiple routes, including physical contact or droplets and aerosols, resulting in efficient spreading within the human population. Investigations of the cell biology of virus replication are thus of utmost importance to gain a better understanding of virus-induced pathogenicity and the development of antiviral countermeasures. Light and fluorescence microscopy techniques have revolutionized investigations of the cell biology of virus infection by allowing the study of the localization and dynamics of viral or cellular components directly in infected cells. Advanced microscopy including high- and super-resolution microscopy techniques available today can visualize biological processes at the single-virus and even single-molecule level, thus opening a unique view on virus infection. We will highlight how fluorescence microscopy has supported investigations on virus cell biology by focusing on three major respiratory viruses: respiratory syncytial virus (RSV), Influenza A virus (IAV) and SARS-CoV-2. We will review our current knowledge of virus replication and highlight how fluorescence microscopy has helped to improve our state of understanding. We will start by introducing major imaging and labeling modalities and conclude the chapter with a perspective discussion on remaining challenges and potential opportunities.
Collapse
Affiliation(s)
- Enyu Xie
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Shazeb Ahmad
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany; Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Christian Sieben
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
5
|
Ng BWL, Scheeff S, Xeque Amada J. Making it hard to replicate. eLife 2023; 12:88044. [PMID: 37114773 PMCID: PMC10147374 DOI: 10.7554/elife.88044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Understanding how to harden liquid condensates produced by influenza A virus could accelerate the development of novel antiviral drugs.
Collapse
|
6
|
Madsen JJ, Rossman JS. Cholesterol and M2 Rendezvous in Budding and Scission of Influenza A Virus. Subcell Biochem 2023; 106:441-459. [PMID: 38159237 DOI: 10.1007/978-3-031-40086-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The cholesterol of the host cell plasma membrane and viral M2 protein plays a crucial role in multiple stages of infection and replication of the influenza A virus. Cholesterol is required for the formation of heterogeneous membrane microdomains (or rafts) in the budozone of the host cell that serves as assembly sites for the viral components. The raft microstructures act as scaffolds for several proteins. Cholesterol may further contribute to the mechanical forces necessary for membrane scission in the last stage of budding and help to maintain the stability of the virus envelope. The M2 protein has been shown to cause membrane scission in model systems by promoting the formation of curved lipid bilayer structures that, in turn, can lead to membrane vesicles budding off or scission intermediates. Membrane remodeling by M2 is intimately linked with cholesterol as it affects local lipid composition, fluidity, and stability of the membrane. Thus, both cholesterol and M2 protein contribute to the efficient and proper release of newly formed influenza viruses from the virus-infected cells.
Collapse
Affiliation(s)
- Jesper J Madsen
- Global and Planetary Health, Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, USA.
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Jeremy S Rossman
- School of Biosciences, University of Kent, Canterbury, Kent, UK
- Research-Aid Networks, Chicago, IL, USA
| |
Collapse
|
7
|
Chiu YF, Huang YW, Chen CY, Chen YC, Gong YN, Kuo RL, Huang CG, Shih SR. Visualizing Influenza A Virus vRNA Replication. Front Microbiol 2022; 13:812711. [PMID: 35733972 PMCID: PMC9207383 DOI: 10.3389/fmicb.2022.812711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus (IAV) has caused recurrent epidemics and severe pandemics. In this study, we adapted an MS2-MCP live-cell imaging system to visualize IAV replication. A reporter plasmid, pHH-PB2-vMSL, was constructed by replacing a part of the PB2-coding sequence in pHH-PB2 with a sequence encoding 24 copies of a stem-loop structure from bacteriophage MS2 (MSL). Binding of MS2 coat protein (MCP) fused to green fluorescent protein (GFP) to MSL enabled the detection of vRNA as fluorescent punctate signals in live-cell imaging. The introduction of pHH-PB2-vMSL into A549 cells transduced to express an MCP-GFP fusion protein lacking the nuclear localization signal (MCP-GFPdN), subsequently allowed tracking of the distribution and replication of PB2-vMSL vRNA after IAV PR8 infection. Spatial and temporal measurements revealed exponential increases in vRNA punctate signal intensity, which was only observed after membrane blebbing in apoptotic cells. Similar signal intensity increases in apoptotic cells were also observed after MDCK cells, transduced to express MCP-GFPdN, were infected with IAV carrying PB2-vMSL vRNA. Notably, PB2-vMSL vRNA replication was observed to occur only in apoptotic cells, at a consistent time after apoptosis initiation. There was a lack of observable PB2-vMSL vRNA replication in non-apoptotic cells, and vRNA replication was suppressed in the presence of apoptosis inhibitors. These findings point to an important role for apoptosis in IAV vRNA replication. The utility of the MS2-imaging system for visualizing time-sensitive processes such as viral replication in live host cells is also demonstrated in this study.
Collapse
Affiliation(s)
- Ya-Fang Chiu
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan.,Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan.,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Wen Huang
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Yuan Chen
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chia Chen
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Nong Gong
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan.,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Rei-Lin Kuo
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Guei Huang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
8
|
Prokhorova D, Zhukova (Eschenko) N, Lemza A, Sergeeva M, Amirkhanov R, Stepanov G. Application of the CRISPR/Cas9 System to Study Regulation Pathways of the Cellular Immune Response to Influenza Virus. Viruses 2022; 14:v14020437. [PMID: 35216030 PMCID: PMC8879999 DOI: 10.3390/v14020437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza A virus (IAV) causes a respiratory infection that affects millions of people of different age groups and can lead to acute respiratory distress syndrome. Currently, host genes, receptors, and other cellular components critical for IAV replication are actively studied. One of the most convenient and accessible genome-editing tools to facilitate these studies is the CRISPR/Cas9 system. This tool allows for regulating the expression of both viral and host cell genes to enhance or impair viral entry and replication. This review considers the effect of the genome editing system on specific target genes in cells (human and chicken) in terms of subsequent changes in the influenza virus life cycle and the efficiency of virus particle production.
Collapse
Affiliation(s)
- Daria Prokhorova
- Laboratory of Genome Editing, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.P.); (N.Z.); (A.L.); (M.S.); (R.A.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Natalya Zhukova (Eschenko)
- Laboratory of Genome Editing, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.P.); (N.Z.); (A.L.); (M.S.); (R.A.)
| | - Anna Lemza
- Laboratory of Genome Editing, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.P.); (N.Z.); (A.L.); (M.S.); (R.A.)
| | - Mariia Sergeeva
- Laboratory of Genome Editing, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.P.); (N.Z.); (A.L.); (M.S.); (R.A.)
- Laboratory of Vector Vaccines, Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia
| | - Rinat Amirkhanov
- Laboratory of Genome Editing, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.P.); (N.Z.); (A.L.); (M.S.); (R.A.)
| | - Grigory Stepanov
- Laboratory of Genome Editing, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.P.); (N.Z.); (A.L.); (M.S.); (R.A.)
- Correspondence: ; Tel.: +7-383-3635189
| |
Collapse
|
9
|
Chapuy-Regaud S, Allioux C, Capelli N, Migueres M, Lhomme S, Izopet J. Vectorial Release of Human RNA Viruses from Epithelial Cells. Viruses 2022; 14:231. [PMID: 35215825 PMCID: PMC8875463 DOI: 10.3390/v14020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Epithelial cells are apico-basolateral polarized cells that line all tubular organs and are often targets for infectious agents. This review focuses on the release of human RNA virus particles from both sides of polarized human cells grown on transwells. Most viruses that infect the mucosa leave their host cells mainly via the apical side while basolateral release is linked to virus propagation within the host. Viruses do this by hijacking the cellular factors involved in polarization and trafficking. Thus, understanding epithelial polarization is essential for a clear understanding of virus pathophysiology.
Collapse
Affiliation(s)
- Sabine Chapuy-Regaud
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Claire Allioux
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Nicolas Capelli
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Marion Migueres
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Sébastien Lhomme
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Jacques Izopet
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| |
Collapse
|
10
|
The C-terminal domains of the PB2 subunit of the influenza A virus RNA polymerase directly interact with cellular GTPase Rab11a. J Virol 2022; 96:e0197921. [PMID: 35019720 PMCID: PMC8906434 DOI: 10.1128/jvi.01979-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus (IAV) contains a segmented RNA genome that is transcribed and replicated by the viral RNA polymerase in the cell nucleus. Replicated RNA segments are assembled with viral polymerase and oligomeric nucleoprotein into viral ribonucleoprotein (vRNP) complexes which are exported from the nucleus and transported across the cytoplasm to be packaged into progeny virions. Host GTPase Rab11a associated with recycling endosomes is believed to contribute to this process by mediating the cytoplasmic transport of vRNPs. However, how vRNPs interact with Rab11a remains poorly understood. In this study, we utilised a combination of biochemical, proteomic, and biophysical approaches to characterise the interaction between the viral polymerase and Rab11a. Using pull-down assays we show that vRNPs but not cRNPs from infected cell lysates bind to Rab11a. We also show that the viral polymerase directly interacts with Rab11a and that the C-terminal two thirds of the PB2 polymerase subunit (PB2-C) comprising the cap-binding, mid-link, 627 and nuclear localization signal (NLS) domains mediate this interaction. Small-angle X-ray scattering (SAXS) experiments confirmed that PB2-C associates with Rab11a in solution forming a compact folded complex with a 1:1 stoichiometry. Furthermore, we demonstrate that the switch I region of Rab11a, that has been shown to be important for binding Rab11 family interacting proteins (Rab11-FIPs), is also important for PB2-C binding suggesting that IAV polymerase and Rab11-FIPs compete for the same binding site. Our findings expand our understanding of the interaction between the IAV polymerase and Rab11a in the cytoplasmic transport of vRNPs. Importance The influenza virus RNA genome segments are replicated in the cell nucleus and are assembled into viral ribonucleoprotein (vRNP) complexes with viral RNA polymerase and nucleoprotein (NP). Replicated vRNPs need to be exported from the nucleus and trafficked across the cytoplasm to the cell membrane where virion assembly takes place. The host GTPase Rab11a plays a role in vRNP trafficking. In this study we show that the viral polymerase directly interacts with Rab11a mediating the interaction between vRNPs and Rab11a. We map this interaction to the C-terminal domains of the PB2 polymerase subunit and the switch I region of Rab11a. Identifying the exact site of Rab11a binding on the viral polymerase could uncover a novel target site for the development of an influenza antiviral drug.
Collapse
|
11
|
Ganti K, Han J, Manicassamy B, Lowen AC. Rab11a mediates cell-cell spread and reassortment of influenza A virus genomes via tunneling nanotubes. PLoS Pathog 2021; 17:e1009321. [PMID: 34473799 PMCID: PMC8443049 DOI: 10.1371/journal.ppat.1009321] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 09/15/2021] [Accepted: 08/22/2021] [Indexed: 11/18/2022] Open
Abstract
Influenza A virus [IAV] genomes comprise eight negative strand RNAs packaged into virions in the form of viral ribonucleoproteins [vRNPs]. Rab11a plays a crucial role in the transport of vRNPs from the nucleus to the plasma membrane via microtubules, allowing assembly and virus production. Here, we identify a novel function for Rab11a in the inter-cellular transport of IAV vRNPs using tunneling nanotubes [TNTs]as molecular highways. TNTs are F-Actin rich tubules that link the cytoplasm of nearby cells. In IAV-infected cells, Rab11a was visualized together with vRNPs in these actin-rich intercellular connections. To better examine viral spread via TNTs, we devised an infection system in which conventional, virion-mediated, spread was not possible. Namely, we generated HA-deficient reporter viruses which are unable to produce progeny virions but whose genomes can be replicated and trafficked. In this system, vRNP transfer to neighboring cells was observed and this transfer was found to be dependent on both actin and Rab11a. Generation of infectious virus via TNT transfer was confirmed using donor cells infected with HA-deficient virus and recipient cells stably expressing HA protein. Mixing donor cells infected with genetically distinct IAVs furthermore revealed the potential for Rab11a and TNTs to serve as a conduit for genome mixing and reassortment in IAV infections. These data therefore reveal a novel role for Rab11a in the IAV life cycle, which could have significant implications for within-host spread, genome reassortment and immune evasion.
Collapse
Affiliation(s)
- Ketaki Ganti
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Julianna Han
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Balaji Manicassamy
- Department of Microbiology and Immunology, University of Iowa School of Medicine, Iowa City, Iowa, United States of America
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance [CEIRS]
| |
Collapse
|