1
|
Khemrattrakool P, Hongsuwong T, Phanphoowong T, Sriwichai P, Poovorawan K, Tarning J, Kobylinski KC. Potential of emodepside for vector-borne disease control. Malar J 2025; 24:9. [PMID: 39815344 PMCID: PMC11734516 DOI: 10.1186/s12936-025-05250-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Emodepside is an anthelmintic used in veterinary medicine that is currently under investigation in human clinical trials for the treatment of soil-transmitted helminths and possibly Onchocerca volvulus. Emodepside targets the calcium-activated voltage-gated potassium slowpoke 1 (SLO-1) channels of presynaptic nerves of pharynx and body wall muscle cells of nematodes leading to paralysis, reduced locomotion and egg laying, starvation, and death. Emodepside also has activity against Drosophila melanogaster SLO-1 channels. Orthologous SLO-1 genes are present in Anopheles gambiae and Aedes aegypti, suggesting that emodepside may have activity against mosquitoes. METHODS Both Anopheles dirus and Ae. aegypti were blood-fed emodepside across a range of concentrations (1-10,000 nM) and mosquito survival was monitored for 10 days. Co-feeding experiments were also performed with An. dirus blood fed ivermectin at the concentrations that kills 25% (LC25) and 50% (LC50) of mosquitoes with and without emodepside at clinical peak concentration in humans (Cmax) and five times the Cmax, and mosquito survival was monitored for 10 days. RESULTS Emodepside had weak mosquito-lethal effects in An. dirus but none observed in Ae. aegypti at the concentrations evaluated. The An. dirus emodepside LC50 was 4,623 [4,159-5,066] ng/ml which is > 100-fold greater than the peak concentrations seen in human. The ivermectin and emodepside co-feed experiment with An. dirus did not indicate any altered effect of ivermectin on mosquito survival when emodepside co-fed at human Cmax or five times that of the human Cmax. CONCLUSIONS Emodepside was not lethal to An. dirus at human-relevant concentrations and had no effect on Ae. aegypti survival. Thus, mass distribution of emodepside does not appear to be a potential tool for vector-borne disease control. Emodepside induced mortality in An. dirus does suggest that the SLO-1 channel could be a potential target for novel vector control and may warrant further investigation.
Collapse
Affiliation(s)
- Pattarapon Khemrattrakool
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Thitipong Hongsuwong
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Theerawit Phanphoowong
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Patchara Sriwichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kittiyod Poovorawan
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Kevin C Kobylinski
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
2
|
Njeshi CN, Robertson AP, Martin RJ. Emodepside: the anthelmintic's mode of action and toxicity. FRONTIERS IN PARASITOLOGY 2024; 3:1508167. [PMID: 39817180 PMCID: PMC11732007 DOI: 10.3389/fpara.2024.1508167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/18/2024] [Indexed: 01/18/2025]
Abstract
Nematode parasitic infections continue to be a major health problem for humans and animals. Drug resistance to currently available treatments only worsen the problem. Drug discovery is expensive and time-consuming, making drug repurposing an enticing option. Emodepside, a broad-spectrum anthelmintic, has shown efficacy in the treatment of nematode parasitic infections in cats and dogs. It is now being considered and trialed for the treatment of onchocerciasis, trichuriasis (whipworm), and hookworm infections in humans. Its unique mechanism of action distinguishes it from traditional anthelmintics, positioning it as a promising candidate for combating resistance to other current drugs. Here, we provide a brief review of the available information on emodepside's pharmacokinetics, safety, and tolerability. We highlight the potential benefits and risks associated with its use, examining key toxicity effects. By exploring the literature, we aim to provide insights into the risks associated with emodepside that may impact its application in veterinary and human medicine. Although emodepside demonstrates a favorable safety profile, continued monitoring of its toxicity is crucial, particularly in vulnerable populations. This mini-review serves as a concise resource for researchers and clinicians interested in anthelmintic therapy.
Collapse
Affiliation(s)
| | | | - Richard J. Martin
- Department of Biomedical Science, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
3
|
Risch F, Kazakov A, Specht S, Pfarr K, Fischer PU, Hoerauf A, Hübner MP. The long and winding road towards new treatments against lymphatic filariasis and onchocerciasis. Trends Parasitol 2024; 40:829-845. [PMID: 39122645 DOI: 10.1016/j.pt.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
Although lymphatic filariasis and onchocerciasis have been targeted for global elimination, these helminth infections are still a major public health problem across the tropics and subtropics. Despite decades of research, treatment options remain limited and drugs that completely clear the infections, and can be used on a large scale, are still unavailable. In the present review we discuss the strengths and weaknesses of currently available treatments and new ones in development. Novel candidates (corallopyronin A, DNDi-6166, emodepside, and oxfendazole) are currently moving through (pre)clinical development, while the development of two candidates (AWZ1066S and ABBV-4083/flubentylosin) was recently halted. The preclinical R&D pipeline for filarial infections continues to be limited, and recent setbacks highlight the importance of continuous drug discovery and testing.
Collapse
Affiliation(s)
- Frederic Risch
- Institute for Medical Microbiology, Immunology, and Parasitology, University Hospital Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Alexander Kazakov
- Institute for Medical Microbiology, Immunology, and Parasitology, University Hospital Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Sabine Specht
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Kenneth Pfarr
- Institute for Medical Microbiology, Immunology, and Parasitology, University Hospital Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Peter U Fischer
- Division of Infectious Diseases, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology, and Parasitology, University Hospital Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology, and Parasitology, University Hospital Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
4
|
Taylor L, Ahmada AA, Ali MS, Ali SM, Hattendorf J, Mohammed IS, Keiser J. Efficacy and safety of emodepside compared with albendazole in adolescents and adults with hookworm infection in Pemba Island, Tanzania: a double-blind, superiority, phase 2b, randomised controlled trial. Lancet 2024; 404:683-691. [PMID: 39153818 DOI: 10.1016/s0140-6736(24)01403-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Human hookworm is a cause of enormous global morbidity. Current treatments have insufficient efficacy and their extensive and indiscriminate distribution could also result in drug resistance. Therefore, we tested the efficacy and safety of emodepside, a strong anthelmintic candidate that is currently undergoing clinical development for onchocerciasis and soil-transmitted helminth infections. METHODS We conducted a double-blind, superiority, phase 2b, randomised controlled clinical trial comparing emodepside and albendazole. Participants in the emodepside group received six 5 mg tablets of emodepside (totalling 30 mg) and one placebo; participants in the albendazole group received one 400 mg tablet of albendazole and six placebos. Participants were recruited from four endemic villages and three secondary schools in Pemba Island, Tanzania. Participants aged 12-60 years were eligible for treatment if they were positive for hookworm infection, and they had 48 or more eggs per gram from four Kato-Katz thick smears and at least two slides had more than one hookworm egg present. Participants' treatment allocation was stratified by infection intensity and efficacy was measured by cure rate: participants who were hookworm positive and became hookworm negative after treatment. Adverse events were reported at 3 h, 24 h, 48 h, and 14-21 days post-treatment. The trial is registered at ClinicalTrials.gov, NCT05538767. FINDINGS From Sept 15 to Nov 8, 2022, and from Feb 15 to March 15, 2023, 1609 individuals were screened for hookworm. Of these, 293 individuals were treated: 147 with albendazole and 146 with emodepside. Emodepside demonstrated superiority, with an observed cure rate against hookworm of 96·6%, which was significantly higher compared with albendazole (cure rate 81·2%, odds ratio 0·14, 95% CI 0·04-0·35; p=0·0001). The most common adverse event in the emodepside treatment group was vision blur at 3 h after treatment (57 [39%] of 146). Other common adverse events were vision blur at 24 h after treatment (55 [38%]), and headache and dizziness at 3 h after treatment (55 [38%] for headache and 43 [30%] for dizziness). In the emodepside treatment group, 298 (93%) of the 319 adverse events were mild. The most commonly reported adverse events in the albendazole treatment group were headache and dizziness at 3 h after treatment (27 [18%] of 147 for headache and 14 [10%] for dizziness). No serious adverse events were reported. INTERPRETATION This phase 2b clinical trial confirms the high efficacy of emodepside against hookworm infections, solidifying emodepside as a promising anthelmintic candidate. However, although the observed safety events were generally mild in severity, considerations must be made to balance the strong efficacy outcomes with the increased frequency of adverse events compared with albendazole. FUNDING European Research Council.
Collapse
Affiliation(s)
- Lyndsay Taylor
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Ahmada Ali Ahmada
- Public Health Laboratory-Ivo de Carneri, Chake Chake, Pemba Island, Tanzania
| | - Msanif Said Ali
- Public Health Laboratory-Ivo de Carneri, Chake Chake, Pemba Island, Tanzania
| | - Said Mohammed Ali
- Public Health Laboratory-Ivo de Carneri, Chake Chake, Pemba Island, Tanzania
| | - Jan Hattendorf
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | | | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| |
Collapse
|
5
|
Huang Z, Zhu W, Bai Y, Bai X, Zhang H. Non-ribosomal peptide synthetase (NRPS)-encoding products and their biosynthetic logics in Fusarium. Microb Cell Fact 2024; 23:93. [PMID: 38539193 PMCID: PMC10967133 DOI: 10.1186/s12934-024-02378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/21/2024] [Indexed: 11/11/2024] Open
Abstract
Fungal non-ribosomal peptide synthetase (NRPS)-encoding products play a paramount role in new drug discovery. Fusarium, one of the most common filamentous fungi, is well-known for its biosynthetic potential of NRPS-type compounds with diverse structural motifs and various biological properties. With the continuous improvement and extensive application of bioinformatic tools (e.g., anti-SMASH, NCBI, UniProt), more and more biosynthetic gene clusters (BGCs) of secondary metabolites (SMs) have been identified in Fusarium strains. However, the biosynthetic logics of these SMs have not yet been well investigated till now. With the aim to increase our knowledge of the biosynthetic logics of NPRS-encoding products in Fusarium, this review firstly provides an overview of research advances in elucidating their biosynthetic pathways.
Collapse
Affiliation(s)
- Ziwei Huang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wangjie Zhu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yifan Bai
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xuelian Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
6
|
Kanza EM, Nyathirombo A, Larbelee JP, Opoku NO, Bakajika DK, Howard HM, Mambandu GL, Nigo MM, Wonyarossi DU, Ngave F, Kennedy KK, Kataliko K, Bolay KM, Attah SK, Olipoh G, Asare S, Mumbere M, Vaillant M, Halleux CM, Kuesel AC. Onchocerca volvulus microfilariae in the anterior chambers of the eye and ocular adverse events after a single dose of 8 mg moxidectin or 150 µg/kg ivermectin: results of a randomized double-blind Phase 3 trial in the Democratic Republic of the Congo, Ghana and Liberia. Parasit Vectors 2024; 17:137. [PMID: 38491528 PMCID: PMC10943894 DOI: 10.1186/s13071-023-06087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 12/07/2023] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND After ivermectin became available, diethylcarbamazine (DEC) use was discontinued because of severe adverse reactions, including ocular reactions, in individuals with high Onchocerca volvulus microfilaridermia (microfilariae/mg skin, SmfD). Assuming long-term ivermectin use led to < 5 SmfD with little or no eye involvement, DEC + ivermectin + albendazole treatment a few months after ivermectin was proposed. In 2018, the US FDA approved moxidectin for treatment of O. volvulus infection. The Phase 3 study evaluated SmfD, microfilariae in the anterior chamber (mfAC) and adverse events (AEs) in ivermectin-naïve individuals with ≥ 10 SmfD after 8 mg moxidectin (n = 978) or 150 µg/kg ivermectin (n = 494) treatment. METHODS We analyzed the data from 1463 participants with both eyes evaluated using six (0, 1-5, 6-10, 11-20, 21-40, > 40) mfAC and three pre-treatment (< 20, 20 to < 50, ≥ 50) and post-treatment (0, > 0-5, > 5) SmfD categories. A linear mixed model evaluated factors and covariates impacting mfAC levels. Ocular AEs were summarized by type and start post-treatment. Logistic models evaluated factors and covariates impacting the risk for ocular AEs. RESULTS Moxidectin and ivermectin had the same effect on mfAC levels. These increased from pre-treatment to Day 4 and Month 1 in 20% and 16% of participants, respectively. Six and 12 months post-treatment, mfAC were detected in ≈5% and ≈3% of participants, respectively. Ocular Mazzotti reactions occurred in 12.4% of moxidectin- and 10.2% of ivermectin-treated participants without difference in type or severity. The risk for ≥ 1 ocular Mazzotti reaction increased for women (OR 1.537, 95% CI 1.096-2.157) and with mfAC levels pre- and 4 days post-treatment (OR 0: > 10 mfAC 2.704, 95% CI 1.27-5.749 and 1.619, 95% CI 0.80-3.280, respectively). CONCLUSIONS The impact of SmfD and mfAC levels before and early after treatment on ocular AEs needs to be better understood before making decisions on the risk-benefit of strategies including DEC. Such decisions should take into account interindividual variability in SmfD, mfAC levels and treatment response and risks to even a small percentage of individuals.
Collapse
Affiliation(s)
- Eric M Kanza
- Centre de Recherche Clinique de Butembo, Université Catholique du Graben, Site Horizon, Butembo, Nord Kivu, Democratic Republic of the Congo
- Programme National de Lutte Contre Les Maladies Tropicales Négligées À Chimio-Thérapie Préventive (PNLMTN-CTP), Kinshasa, Democratic Republic of the Congo
| | - Amos Nyathirombo
- Centre de Recherche en Maladies Tropicale de L'Ituri, Hôpital Générale de Référence de Rethy, Ituri, Democratic Republic of the Congo
- Department of Ophthalmology, Faculty of Medicine, Gulu University, Gulu, Uganda
| | - Jemmah P Larbelee
- Clinical Research Center, Liberia Institute for Biomedical Research, Bolahun, Liberia
- Ministry of Health, Monrovia, Liberia
| | - Nicholas O Opoku
- Onchocerciasis Chemotherapy Research Center, Hohoe, Ghana
- Department of Epidemiology and Biostatistics School of Public Health, University of Health and Allied Sciences, Hohoe, Ghana
| | - Didier K Bakajika
- Centre de Recherche en Maladies Tropicale de L'Ituri, Hôpital Générale de Référence de Rethy, Ituri, Democratic Republic of the Congo
- ESPEN, African Regional Office of the World Health Organization (WHO/AFRO/ESPEN), Brazzaville, Republic of Congo
| | - Hayford M Howard
- Clinical Research Center, Liberia Institute for Biomedical Research, Bolahun, Liberia
- Ganta United Methodist Hospital, Ganta City, Nimba County, Liberia
| | - Germain L Mambandu
- Centre de Recherche en Maladies Tropicale de L'Ituri, Hôpital Générale de Référence de Rethy, Ituri, Democratic Republic of the Congo
- Inspection Provinciale de La Santé de La Tshopo, Division Provinciale de La Santé de La Tshopo, Kisangani, Province de La Tshopo, Democratic Republic of the Congo
| | - Maurice M Nigo
- Centre de Recherche en Maladies Tropicale de L'Ituri, Hôpital Générale de Référence de Rethy, Ituri, Democratic Republic of the Congo
- Institut Supérieur Des Techniques Médicales de Nyankunde, Bunia, Ituri, Democratic Republic of the Congo
| | - Deogratias Ucima Wonyarossi
- Centre de Recherche en Maladies Tropicale de L'Ituri, Hôpital Générale de Référence de Rethy, Ituri, Democratic Republic of the Congo
| | - Françoise Ngave
- Centre de Recherche en Maladies Tropicale de L'Ituri, Hôpital Générale de Référence de Rethy, Ituri, Democratic Republic of the Congo
| | - Kambale Kasonia Kennedy
- Centre de Recherche Clinique de Butembo, Université Catholique du Graben, Site Horizon, Butembo, Nord Kivu, Democratic Republic of the Congo
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Kambale Kataliko
- Centre de Recherche en Maladies Tropicale de L'Ituri, Hôpital Générale de Référence de Rethy, Ituri, Democratic Republic of the Congo
- Centre de Santé CECA 20 de Mabakanga, Beni, Nord Kivu, Democratic Republic of the Congo
| | - Kpehe M Bolay
- Clinical Research Center, Liberia Institute for Biomedical Research, Bolahun, Liberia
- National Public Health Institute of Liberia, Public Health & Medical Research, Monrovia, Liberia
| | - Simon K Attah
- Onchocerciasis Chemotherapy Research Center, Hohoe, Ghana
- Department of Microbiology, University of Ghana Medical School, Accra, Ghana
- Baldwin University College, Accra, Ghana
| | - George Olipoh
- Onchocerciasis Chemotherapy Research Center, Hohoe, Ghana
- National Assay Centre, Precious Minerals Marketing Company Ltd., Diamond House, Accra, Ghana
| | - Sampson Asare
- Onchocerciasis Chemotherapy Research Center, Hohoe, Ghana
- Bell Laboratories Inc, Window, WI, USA
| | - Mupenzi Mumbere
- Centre de Recherche Clinique de Butembo, Université Catholique du Graben, Site Horizon, Butembo, Nord Kivu, Democratic Republic of the Congo
- Medicines Development for Global Health (MDGH), Melbourne, Australia
| | - Michel Vaillant
- Competence Center for Methodology and Statistics, Luxembourg Institute of Health, Strassen, Grand Duchy of Luxembourg
| | - Christine M Halleux
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (WHO/TDR), World Health Organization, Geneva, Switzerland
| | - Annette C Kuesel
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (WHO/TDR), World Health Organization, Geneva, Switzerland.
| |
Collapse
|
7
|
Hon KL, Leung AKC. An update on the current and emerging pharmacotherapy for the treatment of human ascariasis. Expert Opin Pharmacother 2024. [PMID: 38372051 DOI: 10.1080/14656566.2024.2319686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Globally, Ascaris lumbricoides is the commonest helminthic infection that affects people in underdeveloped countries and returning immigrants in industrialized nations. This article aims to provide latest updates on the epidemiology, clinical manifestations, and pharmacotherapy of ascariasis. AREAS COVERED A PubMed search was conducted using Clinical Queries and the key terms 'human ascariasis' OR 'Ascaris lumbricoides.' Ascaris lumbricoides is highly endemic in tropical and subtropic regions and among returning immigrants in industrialized nations. Predisposing factors include poor sanitation and poverty. The prevalence is greatest in young children. Most infected patients are asymptomatic. Patients with A. lumbricoides infection should be treated with anti-helminthic drugs to prevent complications from migration of the worm. Mebendazole and albendazole are indicated for children and nonpregnant women. Pregnant individuals should be treated with pyrantel pamoate. EXPERT OPINION Cure rates with anthelmintic treatment are high. No emerging pharmacotherapy can replace these existing drugs of good efficacy, safety profile and low cost for public health. It is opinioned that advances in the management of ascariasis include diagnostic accuracy at affordable costs, Emodepside is highly effective in single doses against ascarids in mammals and in human trials. The drug could be registered for human use in multiple neglected tropical diseases.
Collapse
Affiliation(s)
- Kam Lun Hon
- Department of Paediatrics, The Chinese University of Hong Kong, and Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, China
| | - Alexander K C Leung
- Department of Pediatrics, The University of Calgary and the Alberta Children's Hospital, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Salim AA, Butler MS, Blaskovich MAT, Henderson IR, Capon RJ. Natural products as anthelmintics: safeguarding animal health. Nat Prod Rep 2023; 40:1754-1808. [PMID: 37555325 DOI: 10.1039/d3np00019b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Covering literature to December 2022This review provides a comprehensive account of all natural products (500 compounds, including 17 semi-synthetic derivatives) described in the primary literature up to December 2022, reported to be capable of inhibiting the egg hatching, motility, larval development and/or the survival of helminths (i.e., nematodes, flukes and tapeworms). These parasitic worms infect and compromise the health and welfare, productivity and lives of commercial livestock (i.e., sheep, cattle, horses, pigs, poultry and fish), companion animals (i.e., dogs and cats) and other high value, endangered and/or exotic animals. Attention is given to chemical structures, as well as source organisms and anthelmintic properties, including the nature of bioassay target species, in vivo animal hosts, and measures of potency.
Collapse
Affiliation(s)
- Angela A Salim
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Mark S Butler
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Mark A T Blaskovich
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Ian R Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| | - Robert J Capon
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia, 4072.
| |
Collapse
|
9
|
Williams PDE, Kashyap SS, Robertson AP, Martin RJ. Diethylcarbamazine elicits Ca 2+ signals through TRP-2 channels that are potentiated by emodepside in Brugia malayi muscles. Antimicrob Agents Chemother 2023; 67:e0041923. [PMID: 37728916 PMCID: PMC10583680 DOI: 10.1128/aac.00419-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/03/2023] [Indexed: 09/22/2023] Open
Abstract
Filarial nematode infections are a major health concern in several countries. Lymphatic filariasis is caused by Wuchereria bancrofti and Brugia spp. affecting over 120 million people. Heavy infections can lead to elephantiasis, which has serious effects on individuals' lives. Although current anthelmintics are effective at killing microfilariae in the bloodstream, they have little to no effect against adult parasites found in the lymphatic system. The anthelmintic diethylcarbamazine is one of the central pillars of lymphatic filariasis control. Recent studies have reported that diethylcarbamazine can open transient receptor potential (TRP) channels in the muscles of adult female Brugia malayi, leading to contraction and paralysis. Diethylcarbamazine has synergistic effects in combination with emodepside on Brugia, inhibiting motility: emodepside is an anthelmintic that has effects on filarial nematodes and is under trial for the treatment of river blindness. Here, we have studied the effects of diethylcarbamazine on single Brugia muscle cells by measuring the change in Ca2+ fluorescence in the muscle using Ca2+-imaging techniques. Diethylcarbamazine interacts with the transient receptor potential channel, C classification (TRPC) ortholog receptor TRP-2 to promote Ca2+ entry into the Brugia muscle cells, which can activate Slopoke (SLO-1) Ca2+-activated K+ channels, the putative target of emodepside. A combination of diethylcarbamazine and emodepside leads to a bigger Ca2+ signal than when either compound is applied alone. Our study shows that diethylcarbamazine targets TRP channels to promote Ca2+ entry that is increased by emodepside activation of SLO-1 K+ channels.
Collapse
Affiliation(s)
| | | | - Alan P. Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Richard J. Martin
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
10
|
Ferreira MU, Crainey JL, Gobbi FG. The search for better treatment strategies for mansonellosis: an expert perspective. Expert Opin Pharmacother 2023; 24:1685-1692. [PMID: 37477269 DOI: 10.1080/14656566.2023.2240235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
INTRODUCTION Four species of the Mansonella genus infect millions of people across sub-Saharan Africa and Central and South America. Most infections are asymptomatic, but mansonellosis can be associated with nonspecific clinical manifestations such as fever, headache, arthralgia, and ocular lesions (M. ozzardi); pruritus, arthralgia, abdominal pain, angioedema, skin rash, and fatigue (M. perstans and perhaps Mansonella sp. 'DEUX'); and pruritic dermatitis and chronic lymphadenitis (M. perstans). AREAS COVERED We searched the PubMed and SciELO databases for publications on mansonelliasis in English, Spanish, Portuguese, or French that appeared until 1 May 2023. Literature data show that anthelmintics - single-dose ivermectin for M. ozzardi, repeated doses of mebendazole alone or in combination with diethylcarbamazine (DEC) for M. perstans, and DEC alone for M. streptocerca - are effective against microfilariae. Antibiotics that target Wolbachia endosymbionts, such as doxycycline, are likely to kill adult worms of most, if not all, Mansonella species, but the currently recommended 6-week regimen is relatively impractical. New anthelmintics and shorter antibiotic regimens (e.g. with rifampin) have shown promise in experimental filarial infections and may proceed to clinical trials. EXPERT OPINION We recommend that human infections with Mansonella species be treated, regardless of any apparent clinical manifestations. We argue that mansonellosis, despite being widely considered a benign infection, may represent a direct or indirect cause of significant morbidity that remains poorly characterized at present.
Collapse
Affiliation(s)
- Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, Portugal
| | - James Lee Crainey
- Laboratory of Ecology and Transmissible Diseases in the Amazon, Leônidas and Maria Deane Institute, Fiocruz, Manaus, Brazil
| | - Federico G Gobbi
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
11
|
Mrimi EC, Welsche S, Ali SM, Hattendorf J, Keiser J. Emodepside for Trichuris trichiura and Hookworm Infection. N Engl J Med 2023; 388:1863-1875. [PMID: 37195942 DOI: 10.1056/nejmoa2212825] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
BACKGROUND Current treatments for soil-transmitted helminth infections in humans have low efficacy against Trichuris trichiura. Emodepside - a drug in veterinary use and under development for the treatment of onchocerciasis in humans - is a leading therapeutic candidate for soil-transmitted helminth infection. METHODS We conducted two phase 2a, dose-ranging, randomized, controlled trials to evaluate the efficacy and safety of emodepside against T. trichiura and hookworm infections. We randomly assigned, in equal numbers, adults 18 to 45 years of age in whom T. trichiura or hookworm eggs had been detected in stool samples to receive emodepside, at a single oral dose of 5, 10, 15, 20, 25, or 30 mg; albendazole, at a single oral dose of 400 mg; or placebo. The primary outcome was the percentage of participants who were cured of T. trichiura or hookworm infection (the cure rate) with emodepside 14 to 21 days after treatment, determined with the use of the Kato-Katz thick-smear technique. Safety was assessed 3, 24, and 48 hours after the receipt of treatment or placebo. RESULTS A total of 266 persons were enrolled in the T. trichiura trial and 176 in the hookworm trial. The predicted cure rate against T. trichiura in the 5-mg emodepside group (85% [95% confidence interval {CI}, 69 to 93]; 25 of 30 participants) was higher than the predicted cure rate in the placebo group (10% [95% CI, 3 to 26]; 3 of 31 participants) and the observed cure rate in the albendazole group (17% [95% CI, 6 to 35]; 5 of 30 participants). A dose-dependent relationship was shown in participants with hookworm: the observed cure rate was 32% (95% CI, 13 to 57; 6 of 19 participants) in the 5-mg emodepside group and 95% (95% CI, 74 to 99.9; 18 of 19 participants) in the 30-mg emodepside group; the observed cure rates were 14% (95% CI, 3 to 36; 3 of 21 participants) in the placebo group and 70% (95% CI, 46 to 88; 14 of 20 participants) in the albendazole group. In the emodepside groups, headache, blurred vision, and dizziness were the most commonly reported adverse events 3 and 24 hours after treatment; the incidence of events generally increased in a dose-dependent fashion. Most adverse events were mild in severity and were self-limited; there were few moderate and no serious adverse events. CONCLUSIONS Emodepside showed activity against T. trichiura and hookworm infections. (Funded by the European Research Council; ClinicalTrials.gov number, NCT05017194.).
Collapse
Affiliation(s)
- Emmanuel C Mrimi
- From the Swiss Tropical and Public Health Institute, Allschwil, and the University of Basel, Basel - both in Switzerland (E.C.M., S.W., J.H., J.K.); and Ifakara Health Institute, Ifakara (E.C.M.), and Public Health Laboratory Ivo de Carneri, Chake Chake, Pemba (S.M.A.) - both in Tanzania
| | - Sophie Welsche
- From the Swiss Tropical and Public Health Institute, Allschwil, and the University of Basel, Basel - both in Switzerland (E.C.M., S.W., J.H., J.K.); and Ifakara Health Institute, Ifakara (E.C.M.), and Public Health Laboratory Ivo de Carneri, Chake Chake, Pemba (S.M.A.) - both in Tanzania
| | - Said M Ali
- From the Swiss Tropical and Public Health Institute, Allschwil, and the University of Basel, Basel - both in Switzerland (E.C.M., S.W., J.H., J.K.); and Ifakara Health Institute, Ifakara (E.C.M.), and Public Health Laboratory Ivo de Carneri, Chake Chake, Pemba (S.M.A.) - both in Tanzania
| | - Jan Hattendorf
- From the Swiss Tropical and Public Health Institute, Allschwil, and the University of Basel, Basel - both in Switzerland (E.C.M., S.W., J.H., J.K.); and Ifakara Health Institute, Ifakara (E.C.M.), and Public Health Laboratory Ivo de Carneri, Chake Chake, Pemba (S.M.A.) - both in Tanzania
| | - Jennifer Keiser
- From the Swiss Tropical and Public Health Institute, Allschwil, and the University of Basel, Basel - both in Switzerland (E.C.M., S.W., J.H., J.K.); and Ifakara Health Institute, Ifakara (E.C.M.), and Public Health Laboratory Ivo de Carneri, Chake Chake, Pemba (S.M.A.) - both in Tanzania
| |
Collapse
|
12
|
Williams PDE, Kashyap SS, Robertson AP, Martin RJ. Diethylcarbamazine elicits Ca 2+ signals through TRP-2 channels that are potentiated by emodepside in Brugia malayi muscles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536248. [PMID: 37090573 PMCID: PMC10120635 DOI: 10.1101/2023.04.10.536248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Filarial nematode infections are a major health concern in several countries. Lymphatic filariasis is caused by Wucheria bancrofti and Brugia spp. affecting over 120 million people. Heavy infections can lead to elephantiasis having serious effects on individuals’ lives. Although current anthelmintics are effective at killing the microfilariae in the bloodstream, they have little to no effect against adult parasites found in the lymphatic system. The anthelmintic diethylcarbamazine is one of the central pillars of lymphatic filariasis control. Recent studies have reported that diethylcarbamazine can open Transient Receptor Potential (TRP) channels on the muscles of adult female Brugia malayi leading to contraction and paralysis. Diethylcarbamazine has synergistic effects in combination with emodepside on Brugia inhibiting motility: emodepside is an anthelmintic that has effects on filarial nematodes and is under trials for treatment of river blindness. Here we have studied the effects of diethylcarbamazine on single Brugia muscle cells by measuring the change in Ca 2+ fluorescence in the muscle using Ca 2+ -imaging techniques. Diethylcarbamazine interacts with the TRPC orthologue receptor TRP-2 to promote Ca 2+ entry into the Brugia muscle cells which can activate SLO-1 Ca 2+ activated K + channels, the putative target of emodepside. A combination of diethylcarbamazine and emodepside leads to a bigger Ca 2+ signal than when either compound is applied alone. Our study shows that diethylcarbamazine targets TRP channels to promote Ca 2+ entry that is increased by emodepside activation of SLO-1 channels.
Collapse
|
13
|
Karunakaran I, Ritter M, Pfarr K, Klarmann-Schulz U, Debrah AY, Debrah LB, Katawa G, Wanji S, Specht S, Adjobimey T, Hübner MP, Hoerauf A. Filariasis research - from basic research to drug development and novel diagnostics, over a decade of research at the Institute for Medical Microbiology, Immunology and Parasitology, Bonn, Germany. FRONTIERS IN TROPICAL DISEASES 2023; 4:1126173. [PMID: 38655130 PMCID: PMC7615856 DOI: 10.3389/fitd.2023.1126173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Filariae are vector borne parasitic nematodes, endemic in tropical and subtropical regions causing avoidable infections ranging from asymptomatic to stigmatizing and disfiguring disease. The filarial species that are the major focus of our institution's research are Onchocerca volvulus causing onchocerciasis (river blindness), Wuchereria bancrofti and Brugia spp. causing lymphatic filariasis (elephantiasis), Loa loa causing loiasis (African eye worm), and Mansonella spp causing mansonellosis. This paper aims to showcase the contribution of our institution and our collaborating partners to filarial research and covers decades of long research spanning basic research using the Litomosoides sigmodontis animal model to development of drugs and novel diagnostics. Research with the L. sigmodontis model has been extensively useful in elucidating protective immune responses against filariae as well as in identifying the mechanisms of filarial immunomodulation during metabolic, autoimmune and infectious diseases. The institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany has also been actively involved in translational research in contributing to the identification of new drug targets and pre-clinical drug research with successful and ongoing partnership with sub-Saharan Africa, mainly Ghana (the Kumasi Centre for Collaborative Research (KCCR)), Cameroon (University of Buea (UB)) and Togo (Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA)), Asia and industry partners. Further, in the direction of developing novel diagnostics that are sensitive, time, and labour saving, we have developed sensitive qPCRs as well as LAMP assays and are currently working on artificial intelligence based histology analysis for onchocerciasis. The article also highlights our ongoing research and the need for novel animal models and new drug targets.
Collapse
Affiliation(s)
- Indulekha Karunakaran
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Kenneth Pfarr
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Ute Klarmann-Schulz
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Alexander Yaw Debrah
- Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Center for Collaborative Research (KCCR), Kumasi, Ghana
| | - Linda Batsa Debrah
- Kumasi Center for Collaborative Research (KCCR), Kumasi, Ghana
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Gnatoulma Katawa
- Unité de Recherche en Immunologie et Immunomodulation (UR2IM)/Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA), Ecole Supérieure des Techniques Biologiques et Alimentaires, Université de Lomé, Lomé, Togo
| | - Samuel Wanji
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Sabine Specht
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Tomabu Adjobimey
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
14
|
Pfarr KM, Krome AK, Al-Obaidi I, Batchelor H, Vaillant M, Hoerauf A, Opoku NO, Kuesel AC. The pipeline for drugs for control and elimination of neglected tropical diseases: 1. Anti-infective drugs for regulatory registration. Parasit Vectors 2023; 16:82. [PMID: 36859332 PMCID: PMC9979492 DOI: 10.1186/s13071-022-05581-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/05/2022] [Indexed: 03/03/2023] Open
Abstract
The World Health Organization 'Ending the neglect to attain the Sustainable Development Goals: A road map for neglected tropical diseases 2021-2030' outlines the targets for control and elimination of neglected tropical diseases (NTDs). New drugs are needed to achieve some of them. We are providing an overview of the pipeline for new anti-infective drugs for regulatory registration and steps to effective use for NTD control and elimination. Considering drugs approved for an NTD by at least one stringent regulatory authority: fexinidazole, included in WHO guidelines for Trypanosoma brucei gambiense African trypanosomiasis, is in development for Chagas disease. Moxidectin, registered in 2018 for treatment of individuals ≥ 12 years old with onchocerciasis, is undergoing studies to extend the indication to 4-11-year-old children and obtain additional data to inform WHO and endemic countries' decisions on moxidectin inclusion in guidelines and policies. Moxidectin is also being evaluated for other NTDs. Considering drugs in at least Phase 2 clinical development, a submission is being prepared for registration of acoziborole as an oral treatment for first and second stage T.b. gambiense African trypanosomiasis. Bedaquiline, registered for tuberculosis, is being evaluated for multibacillary leprosy. Phase 2 studies of emodepside and flubentylosin in O. volvulus-infected individuals are ongoing; studies for Trichuris trichuria and hookworm are planned. A trial of fosravuconazole in Madurella mycetomatis-infected patients is ongoing. JNJ-64281802 is undergoing Phase 2 trials for reducing dengue viral load. Studies are ongoing or planned to evaluate oxantel pamoate for onchocerciasis and soil-transmitted helminths, including Trichuris, and oxfendazole for onchocerciasis, Fasciola hepatica, Taenia solium cysticercosis, Echinococcus granulosus and soil-transmitted helminths, including Trichuris. Additional steps from first registration to effective use for NTD control and elimination include country registrations, possibly additional studies to inform WHO guidelines and country policies, and implementation research to address barriers to effective use of new drugs. Relative to the number of people suffering from NTDs, the pipeline is small. Close collaboration and exchange of experience among all stakeholders developing drugs for NTDs may increase the probability that the current pipeline will translate into new drugs effectively implemented in affected countries.
Collapse
Affiliation(s)
- Kenneth M. Pfarr
- grid.15090.3d0000 0000 8786 803XInstitute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany ,grid.452463.2German Center for Infection Research, Partner Site Bonn-Cologne, Bonn, Germany
| | - Anna K. Krome
- grid.10388.320000 0001 2240 3300Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Bonn, Germany
| | - Issraa Al-Obaidi
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Hannah Batchelor
- grid.11984.350000000121138138Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Michel Vaillant
- grid.451012.30000 0004 0621 531XCompetence Center for Methodology and Statistics, Luxembourg Institute of Health, Strassen, Grand Duchy of Luxembourg
| | - Achim Hoerauf
- grid.15090.3d0000 0000 8786 803XInstitute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany ,grid.452463.2German Center for Infection Research, Partner Site Bonn-Cologne, Bonn, Germany
| | - Nicholas O. Opoku
- grid.449729.50000 0004 7707 5975Department of Epidemiology and Biostatistics School of Public Health, University of Health and Allied Sciences, Hohoe, Ghana
| | - Annette C. Kuesel
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (WHO/TDR), World Health Organization, Geneva, Switzerland
| |
Collapse
|
15
|
Multivariate chemogenomic screening prioritizes new macrofilaricidal leads. Commun Biol 2023; 6:44. [PMID: 36639423 PMCID: PMC9839782 DOI: 10.1038/s42003-023-04435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Development of direct acting macrofilaricides for the treatment of human filariases is hampered by limitations in screening throughput imposed by the parasite life cycle. In vitro adult screens typically assess single phenotypes without prior enrichment for chemicals with antifilarial potential. We developed a multivariate screen that identified dozens of compounds with submicromolar macrofilaricidal activity, achieving a hit rate of >50% by leveraging abundantly accessible microfilariae. Adult assays were multiplexed to thoroughly characterize compound activity across relevant parasite fitness traits, including neuromuscular control, fecundity, metabolism, and viability. Seventeen compounds from a diverse chemogenomic library elicited strong effects on at least one adult trait, with differential potency against microfilariae and adults. Our screen identified five compounds with high potency against adults but low potency or slow-acting microfilaricidal effects, at least one of which acts through a novel mechanism. We show that the use of microfilariae in a primary screen outperforms model nematode developmental assays and virtual screening of protein structures inferred with deep learning. These data provide new leads for drug development, and the high-content and multiplex assays set a new foundation for antifilarial discovery.
Collapse
|
16
|
Specht S, Keiser J. Helminth infections: Enabling the World Health Organization Road Map. Int J Parasitol 2022:S0020-7519(22)00180-1. [PMID: 36549443 DOI: 10.1016/j.ijpara.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/19/2022] [Accepted: 10/25/2022] [Indexed: 12/24/2022]
Abstract
Helminthiases are considered among the most persistent public health problems. Control and/or elimination remains a global health challenge and the World Health Organization Road Map highlights critical gaps and actions required to reach the 2030 targets, among them the need for new and more effective treatment options. Stronger collaborations across different fields are required to reach these goals. The helminth elimination platform is one example of how knowledge of two different disease areas can be aligned to fuse expertise and break disease silos.
Collapse
Affiliation(s)
- Sabine Specht
- Drugs for Neglected Diseases Initiative, 15 Camille-Vidart, 1202 Geneva, Switzerland.
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, P.O. Box, 4002, Basel, Switzerland; University of Basel, P.O. Box, 4003, Basel, Switzerland
| |
Collapse
|
17
|
Ehrens A, Schiefer A, Krome AK, Becker T, Rox K, Neufeld H, Aden T, Wagner KG, Müller R, Grosse M, Stadler M, König GM, Kehraus S, Alt S, Hesterkamp T, Hübner MP, Pfarr K, Hoerauf A. Pharmacology and early ADMET data of corallopyronin A, a natural product with macrofilaricidal anti-wolbachial activity in filarial nematodes. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.983107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Corallopyronin A (CorA), a natural product antibiotic of Corallococcus coralloides, inhibits the bacterial DNA-dependent RNA polymerase. It is active against the essential Wolbachia endobacteria of filarial nematodes, preventing development, causing sterility and killing adult worms. CorA is being developed to treat the neglected tropical diseases onchocerciasis and lymphatic filariasis caused by Wolbachia-containing filariae. For this, we have completed standard Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) studies. In Caco-2 assays, CorA had good adsorption values, predicting good transport from the intestines, but may be subject to active efflux. In fed-state simulated human intestinal fluid (pH 5.0), CorA half-life was >139 minutes, equivalent to the stability in buffer (pH 7.4). CorA plasma-stability was >240 minutes, with plasma protein binding >98% in human, mouse, rat, dog, mini-pig and monkey plasma. Clearance in human and dog liver microsomes was low (35.2 and 42 µl/min/mg, respectively). CorA was mainly metabolized via phase I reactions, i.e., oxidation, and to a minimal extent via phase II reactions. In contrast to rifampicin, CorA does not induce CYP3A4 resulting in a lower drug-drug-interaction potential. Apart from inhibition of CYP2C9, no impact of CorA on enzymes of the CYP450 system was detected. Off-target profiling resulted in three hits (inhibition/activation) for the A3 and PPARγ receptors and COX1 enzyme; thus, potential drug-drug interactions could occur with antidiabetic medications, COX2 inhibitors, angiotensin AT1 receptor antagonists, vitamin K-antagonists, and antidepressants. In vivo pharmacokinetic studies in Mongolian gerbils and rats demonstrated excellent intraperitoneal and oral bioavailability (100%) with fast absorption and high distribution in plasma. No significant hERG inhibition was detected and no phototoxicity was seen. CorA did not induce gene mutations in bacteria (Ames test) nor chromosomal damage in human lymphocytes (micronucleus test). Thus, CorA possesses an acceptable in vitro early ADMET profile; supported by previous in vivo experiments in mice, rats and Mongolian gerbils in which all animals tolerated CorA daily administration for 7-28 days. The non-GLP package will guide selection and planning of regulatory-conform GLP models prior to a first-into-human study.
Collapse
|
18
|
Tagboto S, Orish V. Drug development for onchocerciasis-the past, the present and the future. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.953061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Onchocerciasis affects predominantly rural communities in Africa, and with small foci in South America and the Yemen. The disease is a major cause of blindness and other significant morbidity and mortality. Control programs have achieved a major impact on the incidence and prevalence of onchocerciasis by interrupting transmission with vector control programs, and treatment with mass drug administration using the microfilaricide ivermectin. Over the last few decades, several microfilaricides have been developed. This initially included diethylcarbamazine, which had significant side effects and is no longer used as such. Ivermectin which is a safe and highly effective microfilaricide and moxidectin which is a longer acting microfilaricide are presently recognized therapies. Suramin was the first effective macrofilaricide but was prohibitively toxic. Certain antibiotics including doxycycline can help eliminate adult worms by targeting its endosymbiont bacteria, Wolbachia pipientis. However, the dosing regimens may make this difficult to use as part of a mass disease control program in endemic areas. It is now widely recognized that treatments that are able to kill or permanently sterilize adult filarial worms should help achieve the elimination of this disease. We summarize in detail the historic drug development in onchocerciasis, including prospective future candidate drugs.
Collapse
|
19
|
Bakajika D, Kanza EM, Opoku NO, Howard HM, Mambandu GL, Nyathirombo A, Nigo MM, Kennedy KK, Masembe SL, Mumbere M, Kataliko K, Bolay KM, Attah SK, Olipoh G, Asare S, Vaillant M, Halleux CM, Kuesel AC. Effect of a single dose of 8 mg moxidectin or 150 μg/kg ivermectin on O. volvulus skin microfilariae in a randomized trial: Differences between areas in the Democratic Republic of the Congo, Liberia and Ghana and impact of intensity of infection. PLoS Negl Trop Dis 2022; 16:e0010079. [PMID: 35476631 PMCID: PMC9084535 DOI: 10.1371/journal.pntd.0010079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/09/2022] [Accepted: 03/13/2022] [Indexed: 11/21/2022] Open
Abstract
Background Our study in CDTI-naïve areas in Nord Kivu and Ituri (Democratic Republic of the Congo, DRC), Lofa County (Liberia) and Nkwanta district (Ghana) showed that a single 8 mg moxidectin dose reduced skin microfilariae density (microfilariae/mg skin, SmfD) better and for longer than a single 150μg/kg ivermectin dose. We now analysed efficacy by study area and pre-treatment SmfD (intensity of infection, IoI). Methodology/Principal findings Four and three IoI categories were defined for across-study and by-study area analyses, respectively. We used a general linear model to analyse SmfD 1, 6, 12 and 18 months post-treatment, a logistic model to determine the odds of undetectable SmfD from month 1 to month 6 (UD1-6), month 12 (UD1-12) and month 18 (UD1-18), and descriptive statistics to quantitate inter-interindividual response differences. Twelve months post-treatment, treatment differences (difference in adjusted geometric mean SmfD after moxidectin and ivermectin in percentage of the adjusted geometric mean SmfD after ivermectin treatment) were 92.9%, 90.1%, 86.8% and 84.5% in Nord Kivu, Ituri, Lofa and Nkwanta, and 74.1%, 84.2%, 90.0% and 95.4% for participants with SmfD 10–20, ≥20-<50, ≥50-<80, ≥80, respectively. Ivermectin’s efficacy was lower in Ituri and Nkwanta than Nord Kivu and Lofa (p≤0.002) and moxidectin’s efficacy lower in Nkwanta than Nord Kivu, Ituri and Lofa (p<0.006). Odds ratios for UD1-6, UD1-12 or UD1-18 after moxidectin versus ivermectin treatment exceeded 7.0. Suboptimal response (SmfD 12 months post-treatment >40% of pre-treatment SmfD) occurred in 0%, 0.3%, 1.6% and 3.9% of moxidectin and 12.1%, 23.7%, 10.8% and 28.0% of ivermectin treated participants in Nord Kivu, Ituri, Lofa and Nkwanta, respectively. Conclusions/Significance The benefit of moxidectin vs ivermectin treatment increased with pre-treatment IoI. The possibility that parasite populations in different areas have different drug susceptibility without prior ivermectin selection pressure needs to be considered and further investigated. Clinical Trial Registration Registered on 14 November 2008 in Clinicaltrials.gov (ID: NCT00790998). Onchocerciasis or river blindness is a parasitic disease primarily in sub-Saharan Africa and Yemen. It can cause debilitating morbidity including severe itching, skin changes, visual impairment and even blindness. Many years of control efforts, today primarily based on mass administration of ivermectin (MDA) in endemic communities, have reduced morbidity and the percentage of infected individuals so that elimination of parasite transmission is now planned. WHO estimated that in 2020 more than 239 million people required MDA. Ivermectin may not be sufficiently efficacious to achieve elimination everywhere. Our study in areas in Liberia, Ghana and the Democratic Republic of the Congo where MDA had not been implemented yet showed that one treatment with 8 mg moxidectin reduced parasite levels in the skin better and for longer than one treatment with 150 μg/kg ivermectin, the dose used during MDA. Here we show that people with higher numbers of parasites in the skin benefited more from moxidectin treatment than those with lower numbers and that the efficacy of ivermectin and moxidectin differed between study areas. Provided WHO and countries include moxidectin in guidelines and policies, this information could help decisions on when and where to use moxidectin.
Collapse
Affiliation(s)
- Didier Bakajika
- Centre de Recherche en Maladies Tropicale de l’Ituri, Hôpital Générale de Référence de Rethy, Ituri, Democratic Republic of the Congo Democratic Republic of the Congo (DRC)
| | - Eric M. Kanza
- Centre de Recherche Clinique de Butembo, Université Catholique du Graben, Site Horizon, Butembo, Nord Kivu, Democratic Republic of the Congo (DRC)
| | | | - Hayford M. Howard
- Clinical Research Center, Liberia Institute for Biomedical Research, Bolahun, Liberia
| | - Germain L. Mambandu
- Centre de Recherche en Maladies Tropicale de l’Ituri, Hôpital Générale de Référence de Rethy, Ituri, Democratic Republic of the Congo Democratic Republic of the Congo (DRC)
| | - Amos Nyathirombo
- Centre de Recherche en Maladies Tropicale de l’Ituri, Hôpital Générale de Référence de Rethy, Ituri, Democratic Republic of the Congo Democratic Republic of the Congo (DRC)
| | - Maurice M. Nigo
- Centre de Recherche en Maladies Tropicale de l’Ituri, Hôpital Générale de Référence de Rethy, Ituri, Democratic Republic of the Congo Democratic Republic of the Congo (DRC)
| | - Kambale Kasonia Kennedy
- Centre de Recherche Clinique de Butembo, Université Catholique du Graben, Site Horizon, Butembo, Nord Kivu, Democratic Republic of the Congo (DRC)
| | - Safari L. Masembe
- Centre de Recherche Clinique de Butembo, Université Catholique du Graben, Site Horizon, Butembo, Nord Kivu, Democratic Republic of the Congo (DRC)
| | - Mupenzi Mumbere
- Centre de Recherche Clinique de Butembo, Université Catholique du Graben, Site Horizon, Butembo, Nord Kivu, Democratic Republic of the Congo (DRC)
| | - Kambale Kataliko
- Centre de Recherche Clinique de Butembo, Université Catholique du Graben, Site Horizon, Butembo, Nord Kivu, Democratic Republic of the Congo (DRC)
| | - Kpehe M. Bolay
- Clinical Research Center, Liberia Institute for Biomedical Research, Bolahun, Liberia
| | - Simon K. Attah
- Onchocerciasis Chemotherapy Research Center, Hohoe, Ghana
| | - George Olipoh
- Onchocerciasis Chemotherapy Research Center, Hohoe, Ghana
| | - Sampson Asare
- Onchocerciasis Chemotherapy Research Center, Hohoe, Ghana
| | - Michel Vaillant
- Competence Center for Methodology and Statistics, Luxembourg Institute of Health, Strassen, Grand Duchy of Luxembourg
| | - Christine M. Halleux
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (WHO/TDR), World Health Organization, Geneva, Switzerland
| | - Annette C. Kuesel
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (WHO/TDR), World Health Organization, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
20
|
Airs PM, Vaccaro K, Gallo KJ, Dinguirard N, Heimark ZW, Wheeler NJ, He J, Weiss KR, Schroeder NE, Huisken J, Zamanian M. Spatial transcriptomics reveals antiparasitic targets associated with essential behaviors in the human parasite Brugia malayi. PLoS Pathog 2022; 18:e1010399. [PMID: 35390105 PMCID: PMC9017939 DOI: 10.1371/journal.ppat.1010399] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/19/2022] [Accepted: 02/25/2022] [Indexed: 01/24/2023] Open
Abstract
Lymphatic filariasis (LF) is a chronic debilitating neglected tropical disease (NTD) caused by mosquito-transmitted nematodes that afflicts over 60 million people. Control of LF relies on routine mass drug administration with antiparasitics that clear circulating larval parasites but are ineffective against adults. The development of effective adulticides is hampered by a poor understanding of the processes and tissues driving parasite survival in the host. The adult filariae head region contains essential tissues that control parasite feeding, sensory, secretory, and reproductive behaviors, which express promising molecular substrates for the development of antifilarial drugs, vaccines, and diagnostics. We have adapted spatial transcriptomic approaches to map gene expression patterns across these prioritized but historically intractable head tissues. Spatial and tissue-resolved data reveal distinct biases in the origins of known drug targets and secreted antigens. These data were used to identify potential new drug and vaccine targets, including putative hidden antigens expressed in the alimentary canal, and to spatially associate receptor subunits belonging to druggable families. Spatial transcriptomic approaches provide a powerful resource to aid gene function inference and seed antiparasitic discovery pipelines across helminths of relevance to human and animal health.
Collapse
Affiliation(s)
- Paul M. Airs
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kathy Vaccaro
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kendra J. Gallo
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nathalie Dinguirard
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zachary W. Heimark
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jiaye He
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - Kurt R. Weiss
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - Nathan E. Schroeder
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jan Huisken
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
21
|
Schlabe S, Korir P, Lämmer C, Landmann F, Dubben B, Koschel M, Albers A, Debrah LB, Debrah AY, Hübner MP, Pfarr K, Klarmann-Schulz U, Hoerauf A. A qPCR to quantify Wolbachia from few Onchocerca volvulus microfilariae as a surrogate for adult worm histology in clinical trials of antiwolbachial drugs. Parasitol Res 2022; 121:1199-1206. [PMID: 35006317 PMCID: PMC8986682 DOI: 10.1007/s00436-021-07411-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022]
Abstract
The filarial nematode Onchocerca volvulus causes onchocerciasis (river blindness), a neglected tropical disease affecting 21 million people, mostly in Sub-Saharan Africa. Targeting the endosymbiont Wolbachia with antibiotics leads to permanent sterilization and killing of adult worms. The gold standard to assess Wolbachia depletion is the histological examination of adult worms in nodules beginning at 6 months post-treatment. However, nodules can only be used once, limiting the time points to monitor Wolbachia depletion. A diagnostic to longitudinally monitor Wolbachia depletion from microfilariae (MF) at more frequent intervals < 6 months post-treatment would accelerate clinical trials of antiwolbachials. We developed a TaqMan qPCR amplifying the single-copy gene wOvftsZ to quantify Wolbachia from as few as one MF that had migrated from skin biopsies and compared quantification using circular and linearized plasmids or synthetic dsDNA (gBlock®). qPCR for MF from the rodent nematode Litomosoides sigmodontis was used to support the reproducibility and validate the principle. The qPCR using as few as 2 MF from O. volvulus and L. sigmodontis reproducibly quantified Wolbachia. Use of a linearized plasmid standard or synthesized dsDNA resulted in numbers of Wolbachia/MF congruent with biologically plausible estimates in O. volvulus and L. sigmodontis MF. The qPCR assay yielded a median of 48.8 (range 1.5-280.5) Wolbachia/O. volvulus MF. The qPCR is a sensitive tool for quantifying Wolbachia in a few MF from skin biopsies and allows for establishing the qPCR as a surrogate parameter for monitoring Wolbachia depletion in adult worms of new antiwolbachial candidates.
Collapse
Affiliation(s)
- Stefan Schlabe
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Patricia Korir
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Christine Lämmer
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Frederic Landmann
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34293, Montpellier, France
| | - Bettina Dubben
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Marianne Koschel
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Anna Albers
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Linda Batsa Debrah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
- Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alexander Yaw Debrah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
- Faculty of Allied Health Sciences of Kwame, Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Marc P Hübner
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Kenneth Pfarr
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany.
| | - Ute Klarmann-Schulz
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
22
|
Ehrens A, Hoerauf A, Hübner MP. Current perspective of new anti-Wolbachial and direct-acting macrofilaricidal drugs as treatment strategies for human filariasis. GMS INFECTIOUS DISEASES 2022; 10:Doc02. [PMID: 35463816 PMCID: PMC9006451 DOI: 10.3205/id000079] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Filarial diseases like lymphatic filariasis and onchocerciasis belong to the Neglected Tropical Diseases and remain a public health problem in endemic countries. Lymphatic filariasis and onchocerciasis can lead to stigmatizing pathologies and present a socio-economic burden for affected people and their endemic countries. Current treatment recommendations by the WHO include mass drug administration with ivermectin for the treatment of onchocerciasis and a combination of ivermectin, albendazole and diethylcarbamazine (DEC) for the treatment of lymphatic filariasis in areas that are not co-endemic for onchocerciasis or loiasis. Limitations of these treatment strategies are due to potential severe adverse events in onchocerciasis and loiasis patients following DEC or ivermectin treatment, respectively, the lack of a macrofilaricidal efficacy of those drugs and the risk of drug resistance development. Thus, to achieve the elimination of transmission of onchocerciasis and the elimination of lymphatic filariasis as a public health problem by 2030, the WHO defined in its roadmap that new alternative treatment strategies with macrofilaricidal compounds are required. Within a collaboration of the non-profit organizations Drugs for Neglected Diseases initiative (DNDi), the Bill & Melinda Gates Foundation, and partners from academia and industry, several new promising macrofilaricidal drug candidates were identified, which will be discussed in this review.
Collapse
Affiliation(s)
- Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
23
|
Rollins RL, Qader M, Gosnell WL, Wang C, Cao S, Cowie RH. A validated high-throughput method for assaying rat lungworm ( Angiostrongylus cantonensis) motility when challenged with potentially anthelmintic natural products from Hawaiian fungi. Parasitology 2022; 149:1-28. [PMID: 35236524 PMCID: PMC9440163 DOI: 10.1017/s0031182022000191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 11/06/2022]
Abstract
Parasitic nematodes devastate human and animal health. The limited number of anthelmintics available is concerning, especially because of increasing drug resistance. Anthelmintics are commonly derived from natural products, e.g. fungi and plants. This investigation aimed to develop a high-throughput whole organism screening method based on a motility assay using the wMicroTracker system. Anthelmintic activity of extracts from Hawaiian fungi was screened against third-stage larvae of the parasitic nematode Angiostrongylus cantonensis , categorized according to the degree of motility reduction. Of the 108 crude samples and fractionated products, 48 showed some level of activity, with 13 reducing motility to 0–25% of the maximum exhibited, including two pure compounds, emethacin B and epicoccin E, neither previously known to exhibit anthelmintic properties. The process of bioassay-guided fractionation is illustrated in detail based on analysis of one of the crude extracts, which led to isolation of lamellicolic anhydride, a compound with moderate activity. This study validates the wMicroTracker system as an economical and high-throughput option for testing large suites of natural products against A. cantonensis , adds to the short list of diverse parasites for which it has been validated and highlights the value of A. cantonensis and Hawaiian fungi for discovery of new anthelmintics.
Collapse
Affiliation(s)
- Randi L. Rollins
- Pacific Biosciences Research Center, University of Hawaii, Honolulu, HI96822, USA
- School of Life Sciences, University of Hawaii at Manoa, Honolulu, HI96822, USA
| | - Mallique Qader
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI96720, USA
| | - William L. Gosnell
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI96813, USA
| | - Cong Wang
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI96720, USA
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI96720, USA
| | - Robert H. Cowie
- Pacific Biosciences Research Center, University of Hawaii, Honolulu, HI96822, USA
| |
Collapse
|
24
|
Wiszniewsky A, Layland LE, Arndts K, Wadephul LM, Tamadaho RSE, Borrero-Wolff D, Chunda VC, Kien CA, Hoerauf A, Wanji S, Ritter M. Adoptive Transfer of Immune Cells Into RAG2IL-2Rγ-Deficient Mice During Litomosoides sigmodontis Infection: A Novel Approach to Investigate Filarial-Specific Immune Responses. Front Immunol 2021; 12:777860. [PMID: 34868049 PMCID: PMC8636703 DOI: 10.3389/fimmu.2021.777860] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/25/2021] [Indexed: 12/03/2022] Open
Abstract
Despite long-term mass drug administration programmes, approximately 220 million people are still infected with filariae in endemic regions. Several research studies have characterized host immune responses but a major obstacle for research on human filariae has been the inability to obtain adult worms which in turn has hindered analysis on infection kinetics and immune signalling. Although the Litomosoides sigmodontis filarial mouse model is well-established, the complex immunological mechanisms associated with filarial control and disease progression remain unclear and translation to human infections is difficult, especially since human filarial infections in rodents are limited. To overcome these obstacles, we performed adoptive immune cell transfer experiments into RAG2IL-2Rγ-deficient C57BL/6 mice. These mice lack T, B and natural killer cells and are susceptible to infection with the human filaria Loa loa. In this study, we revealed a long-term release of L. sigmodontis offspring (microfilariae) in RAG2IL-2Rγ-deficient C57BL/6 mice, which contrasts to C57BL/6 mice which normally eliminate the parasites before patency. We further showed that CD4+ T cells isolated from acute L. sigmodontis-infected C57BL/6 donor mice or mice that already cleared the infection were able to eliminate the parasite and prevent inflammation at the site of infection. In addition, the clearance of the parasites was associated with Th17 polarization of the CD4+ T cells. Consequently, adoptive transfer of immune cell subsets into RAG2IL-2Rγ-deficient C57BL/6 mice will provide an optimal platform to decipher characteristics of distinct immune cells that are crucial for the immunity against rodent and human filarial infections and moreover, might be useful for preclinical research, especially about the efficacy of macrofilaricidal drugs.
Collapse
Affiliation(s)
- Anna Wiszniewsky
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Laura E Layland
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Kathrin Arndts
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Lisa M Wadephul
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Ruth S E Tamadaho
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Dennis Borrero-Wolff
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Valerine C Chunda
- Parasite and Vector Biology Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon.,Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Chi Anizette Kien
- Parasite and Vector Biology Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon.,Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.,German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, Bonn, Germany
| | - Samuel Wanji
- Parasite and Vector Biology Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon.,Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| |
Collapse
|
25
|
Ngwewondo A, Scandale I, Specht S. Onchocerciasis drug development: from preclinical models to humans. Parasitol Res 2021; 120:3939-3964. [PMID: 34642800 PMCID: PMC8599318 DOI: 10.1007/s00436-021-07307-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022]
Abstract
Twenty diseases are recognized as neglected tropical diseases (NTDs) by World Health Assembly resolutions, including human filarial diseases. The end of NTDs is embedded within the Sustainable Development Goals for 2030, under target 3.3. Onchocerciasis afflicts approximately 20.9 million people worldwide with > 90% of those infected residing in Africa. Control programs have made tremendous efforts in the management of onchocerciasis by mass drug administration and aerial larviciding; however, disease elimination is not yet achieved. In the new WHO roadmap, it is recognized that new drugs or drug regimens that kill or permanently sterilize adult filarial worms would significantly improve elimination timelines and accelerate the achievement of the program goal of disease elimination. Drug development is, however, handicapped by high attrition rates, and many promising molecules fail in preclinical development or in subsequent toxicological, safety and efficacy testing; thus, research and development (R&D) costs are, in aggregate, very high. Drug discovery and development for NTDs is largely driven by unmet medical needs put forward by the global health community; the area is underfunded and since no high return on investment is possible, there is no dedicated drug development pipeline for human filariasis. Repurposing existing drugs is one approach to filling the drug development pipeline for human filariasis. The high cost and slow pace of discovery and development of new drugs has led to the repurposing of “old” drugs, as this is more cost-effective and allows development timelines to be shortened. However, even if a drug is marketed for a human or veterinary indication, the safety margin and dosing regimen will need to be re-evaluated to determine the risk in humans. Drug repurposing is a promising approach to enlarging the pool of active molecules in the drug development pipeline. Another consideration when providing new treatment options is the use of combinations, which is not addressed in this review. We here summarize recent advances in the late preclinical or early clinical stage in the search for a potent macrofilaricide, including drugs against the nematode and against its endosymbiont, Wolbachia pipientis.
Collapse
Affiliation(s)
- Adela Ngwewondo
- Centre of Medical Research, Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box13033, Yaoundé, Cameroon
- Drugs for Neglected Diseases Initiative, Chemin Camille-Vidart 15, 1202, Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative, Chemin Camille-Vidart 15, 1202, Geneva, Switzerland
| | - Sabine Specht
- Drugs for Neglected Diseases Initiative, Chemin Camille-Vidart 15, 1202, Geneva, Switzerland.
| |
Collapse
|