1
|
Lin Z, Shen S, Wang K, Ji T. Biotic and abiotic stresses on honeybee health. Integr Zool 2024; 19:442-457. [PMID: 37427560 DOI: 10.1111/1749-4877.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 07/11/2023]
Abstract
Honeybees are the most critical pollinators providing key ecosystem services that underpin crop production and sustainable agriculture. Amidst a backdrop of rapid global change, this eusocial insect encounters a succession of stressors during nesting, foraging, and pollination. Ectoparasitic mites, together with vectored viruses, have been recognized as central biotic threats to honeybee health, while the spread of invasive giant hornets and small hive beetles also increasingly threatens colonies worldwide. Cocktails of agrochemicals, including acaricides used for mite treatment, and other pollutants of the environment have been widely documented to affect bee health in various ways. Additionally, expanding urbanization, climate change, and agricultural intensification often result in the destruction or fragmentation of flower-rich bee habitats. The anthropogenic pressures exerted by beekeeping management practices affect the natural selection and evolution of honeybees, and colony translocations facilitate alien species invasion and disease transmission. In this review, the multiple biotic and abiotic threats and their interactions that potentially undermine bee colony health are discussed, while taking into consideration the sensitivity, large foraging area, dense network among related nestmates, and social behaviors of honeybees.
Collapse
Affiliation(s)
- Zheguang Lin
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Siyi Shen
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kang Wang
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ting Ji
- Apicultural Research Institute, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Nguyen TT, Yoo MS, Lee JH, Truong AT, Youn SY, Lee SJ, Yoon SS, Cho YS. Identification and pathogen detection of a Neocypholaelaps species (Acari: Mesostigmata: Ameroseiidae) from beehives in the Republic of Korea. PLoS One 2024; 19:e0300025. [PMID: 38603704 PMCID: PMC11008822 DOI: 10.1371/journal.pone.0300025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/25/2023] [Accepted: 02/21/2024] [Indexed: 04/13/2024] Open
Abstract
In this study, we identified a new strain of the genus Neocypholaelaps from the beehives of Apis mellifera colonies in the Republic of Korea (ROK). The Neocypholaelap sp. KOR23 mites were collected from the hives of honeybee apiaries in Wonju, Gangwon-do, in May 2023. Morphological and molecular analyses based on 18S and 28S rRNA gene regions conclusively identified that these mites belong to the genus Neocypholaelaps, closely resembling Neocypholaelaps sp. APGD-2010 that was first isolated from the United States. The presence of 9 of 25 honeybee pathogens in these mite samples suggests that Neocypholaelaps sp. KOR23 mite may act as an intermediate vector and carrier of honeybee diseases. The identification of various honeybee pathogens within this mite highlights their significance in disease transmission among honeybee colonies. This comprehensive study provides valuable insights into the taxonomy and implications of these mites for bee health management and pathogen dissemination.
Collapse
Affiliation(s)
- Thi-Thu Nguyen
- Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
- Institute of Biotechnology, Vietnam Academy of Science & Technology, Ha Noi, Viet Nam
| | - Mi-Sun Yoo
- Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Jong-Ho Lee
- Plant Pest Control Division, Department of Plant Quarantine, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - A-Tai Truong
- Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
- Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, Viet Nam
| | - So-Youn Youn
- Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Se-Ji Lee
- Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Soon-Seek Yoon
- Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Yun Sang Cho
- Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| |
Collapse
|
3
|
Reichert MS, Bolek MG, McCullagh EA. Parasite effects on receivers in animal communication: Hidden impacts on behavior, ecology, and evolution. Proc Natl Acad Sci U S A 2023; 120:e2300186120. [PMID: 37459523 PMCID: PMC10372545 DOI: 10.1073/pnas.2300186120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 07/20/2023] Open
Abstract
Parasites exert a profound effect on biological processes. In animal communication, parasite effects on signalers are well-known drivers of the evolution of communication systems. Receiver behavior is also likely to be altered when they are parasitized or at risk of parasitism, but these effects have received much less attention. Here, we present a broad framework for understanding the consequences of parasitism on receivers for behavioral, ecological, and evolutionary processes. First, we outline the different kinds of effects parasites can have on receivers, including effects on signal processing from the many parasites that inhabit, occlude, or damage the sensory periphery and the central nervous system or that affect physiological processes that support these organs, and effects on receiver response strategies. We then demonstrate how understanding parasite effects on receivers could answer important questions about the mechanistic causes and functional consequences of variation in animal communication systems. Variation in parasitism levels is a likely source of among-individual differences in response to signals, which can affect receiver fitness and, through effects on signaler fitness, impact population levels of signal variability. The prevalence of parasitic effects on specific sensory organs may be an important selective force for the evolution of elaborate and multimodal signals. Finally, host-parasite coevolution across heterogeneous landscapes will generate geographic variation in communication systems, which could ultimately lead to evolutionary divergence. We discuss applications of experimental techniques to manipulate parasitism levels and point the way forward by calling for integrative research collaborations between parasitologists, neurobiologists, and behavioral and evolutionary ecologists.
Collapse
Affiliation(s)
- Michael S. Reichert
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK74078
| | - Matthew G. Bolek
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK74078
| | | |
Collapse
|
4
|
Ling TC, Phokasem P, Sinpoo C, Chantawannakul P, Khongphinitbunjong K, Disayathanoowat T. Tropilaelaps mercedesae Infestation Is Correlated with Injury Numbers on the Brood and the Population Size of Honey Bee Apis mellifera. Animals (Basel) 2023; 13:ani13081318. [PMID: 37106881 PMCID: PMC10135255 DOI: 10.3390/ani13081318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Tropilaelaps mercedesae, one of the most devastating parasitic mites of honey bee Apis mellifera hosts, is a major threat to honey products by causing severe damage to honey bee colonies. Here, we recorded injury numbers caused by T. mercedesae to different body parts of the larval, pupal, and crippled adult stages of honey bee A. mellifera. We evaluated the relationship between infestation rate and injury numbers per bee for both larvae and pupae. We also noted the total bee numbers per beehive and examined the relationship between the infestation rate and population size. T. mercedesae infested all developmental stages of honey bees, with the highest injury numbers in the abdomens of bee pupae and the antennas of crippled adult bees. Although larvae received more injury numbers than pupae, both infestation rate and injury numbers decreased as the larval stage progressed to the pupal stage. The infestation rate increased as the population size per beehive decreased. This study provided new perspectives to the understanding of changes in the effects of T. mercedesae infestations on different developmental stages of honey bees. It also showed useful baseline information for screening honey bee stock that might have high defensive behaviors against mite infestation.
Collapse
Affiliation(s)
- Tial C Ling
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patcharin Phokasem
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chainarong Sinpoo
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Panuwan Chantawannakul
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Terd Disayathanoowat
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Reduction of stress responses in honey bees by synthetic ligands targeting an allatostatin receptor. Sci Rep 2022; 12:16760. [PMID: 36202961 PMCID: PMC9537510 DOI: 10.1038/s41598-022-20978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2022] [Accepted: 09/21/2022] [Indexed: 11/08/2022] Open
Abstract
Honey bees are of great economic and ecological importance, but are facing multiple stressors that can jeopardize their pollination efficiency and survival. Therefore, understanding the physiological bases of their stress response may help defining treatments to improve their resilience. We took an original approach to design molecules with this objective. We took advantage of the previous identified neuropeptide allatostatin A (ASTA) and its receptor (ASTA-R) as likely mediators of the honey bee response to a biologically relevant stressor, exposure to an alarm pheromone compound. A first series of ASTA-R ligands were identified through in silico screening using a homology 3D model of the receptor and in vitro binding experiments. One of these (A8) proved also efficient in vivo, as it could counteract two behavioral effects of pheromone exposure, albeit only in the millimolar range. This putative antagonist was used as a template for the chemical synthesis of a second generation of potential ligands. Among these, two compounds showed improved efficiency in vivo (in the micromolar range) as compared to A8 despite no major improvement in their affinity for the receptor in vitro. These new ligands are thus promising candidates for alleviating stress in honey bees.
Collapse
|