1
|
Ge G, Li D, Ling Q, Xu L, Ata EB, Wang X, Li K, Hao W, Gong Q, Li J, Shi K, Leng X, Du R. IRF7-deficient MDBK cell based on CRISPR/Cas9 technology for enhancing IBRV replication. Front Microbiol 2024; 15:1483527. [PMID: 39691910 PMCID: PMC11649632 DOI: 10.3389/fmicb.2024.1483527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/05/2024] [Indexed: 12/19/2024] Open
Abstract
Infectious bovine rhinotracheitis (IBR), characterized by acute respiratory lesions in cattle, is a major infectious disease caused by bovine alphaherpesvirus-1 (BoAHV-1). Control of this disease is primarily depending on vaccination. Madin-Darby bovine kidney cells (MDBK) being the main host cells and the important production platform for IBR vaccines. However, innate immune genes inhibit viral replication. Accordingly, the aim of this study was developing of IRF7 gene deleted MDBK cells to facilitate the production of high-titer vaccines. The CRISPR/Cas9 technology was used to knock out the IRF7 gene in MDBK cells and the impact on virus replication was examined using virus growth curves, CCK-8 assays, cell scratch assays, and qPCR. The knockout of the IRF7 gene in MDBK cells led to an increased replication capacity of IBRV and a significant reduction in type I interferons expression, specifically IFN-α and IFN-β. This indicates that IRF7 -/-MDBK cell lines can effectively result in production of IBRV with high-titer, which will enhance the development of inactivated or attenuated vaccines.
Collapse
Affiliation(s)
- Guiyang Ge
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Dongli Li
- Wengniute Banner Agriculture and Animal Husbandry Bureau, Chifeng, China
| | - Qian Ling
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Lihui Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Emad Beshir Ata
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Xiaolin Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Keyan Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Wen Hao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Qinglong Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jianming Li
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Kun Shi
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Xue Leng
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Rui Du
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| |
Collapse
|
2
|
Liu H, Zhao Y, Du H, Hao P, Tian H, Wang K, Qiu Y, Dong H, Du Q, Tong D, Huang Y. IL-10 upregulates SOCS3 to inhibit type I interferon signaling to promote PoRVA replication in intestinal epithelial cells. Vet Microbiol 2024; 298:110259. [PMID: 39332165 DOI: 10.1016/j.vetmic.2024.110259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Porcine group A rotavirus (PoRVA) is one of the common enteric viruses causing severe diarrhea in piglets. Although PoRVA infection has been identified to promote IL-10 production, the role of IL-10 during viral infection remains unclear. In this study, we found that elevated IL-10 levels during PoRVA infection promote viral replication by inhibiting type I interferon production and response. IL-10 treatment upregulated the expression of SOCS3 in PoRVA-infected IPEC-J2 cells, which inhibited IFN-I production by preventing the degradation of IκB and nuclear translocation of NF-κB, thereby significantly promoting PoRVA replication. Furthermore, we determined that SOCS3 also inhibited type Ⅰ interferon signaling pathway, which led to a significantly reduced ISGs after IFN-α stimulation. In PoRVA-infected cells, overexpression of SOCS3 significantly inhibits phosphorylation and heterodimerization of STAT1, thereby promoting viral replication. Finally, we demonstrated the effect of IL-10 on PoRVA replication in vivo by murine models of PoRVA infection. PoRVA replication levels were lower in the ileum of IL-10 knockout (IL-10-/-) mice than that in PoRVA-infected wild-type mice, but PoRVA replication levels were higher in the ileum of IFNAR knockout (IFNAR-/-) mice than that in PoRVA-infected wild-type mice. Taken together, our findings provide information to understand the strategies of PoRVA to evade host innate antiviral immunity.
Collapse
Affiliation(s)
- Haixin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yongpan Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Shaanxi Animal Husbandry Experimental and Demonstration Center, China
| | - Huimin Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Pengcheng Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Haolun Tian
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Kun Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yudong Qiu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Haiying Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Yangling, China; Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China; Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Yangling, China; Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China; Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China.
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Yangling, China; Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China; Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China.
| |
Collapse
|
3
|
Qian S, Li R, He Y, Wang H, Zhang D, Sun A, Yu L, Song X, Zhao T, Chen Z, Yang Z. Immunogenicity and protective efficacy of a recombinant lactococcus lactis vaccine against HSV-1 infection. Microb Cell Fact 2024; 23:244. [PMID: 39252072 PMCID: PMC11385484 DOI: 10.1186/s12934-024-02517-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Herpes simplex virus type 1 (HSV-1) is a major cause of viral encephalitis, genital mucosal infections, and neonatal infections. Lactococcus lactis (L. lactis) has been proven to be an effective vehicle for delivering protein antigens and stimulating both mucosal and systemic immune responses. In this study, we constructed a recombinant L. lactis system expressing the protective antigen glycoprotein D (gD) of HSV-1. RESULTS To improve the stability and persistence of antigen stimulation of the local mucosa, we inserted the immunologic adjuvant interleukin (IL)-2 and the Fc fragment of IgG into the expression system, and a recombinant L. lactis named NZ3900-gD-IL-2-Fc was constructed. By utilizing this recombinant L. lactis strain to elicit an immune response and evaluate the protective effect in mice, the recombinant L. lactis vaccine induced a significant increase in specific neutralizing antibodies, IgG, IgA, interferon-γ, and IL-4 levels in the serum of mice. Furthermore, in comparison to the mice in the control group, the vaccine also enhanced the proliferation levels of lymphocytes in response to gD. Moreover, recombinant L. lactis expressing gD significantly boosted nonspecific immune reactions in mice through the activation of immune-related genes. Furthermore, following the HSV-1 challenge of the murine lung mucosa, mice inoculated with the experimental vaccine exhibited less lung damage than control mice. CONCLUSION Our study presents a novel method for constructing a recombinant vaccine using the food-grade, non-pathogenic, and non-commercial bacterium L. lactis. The findings indicate that this recombinant vaccine shows promise in preventing HSV-1 infection in mice.
Collapse
Affiliation(s)
- Shaoju Qian
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, 453003, Henan, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ruixue Li
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China
| | - Yeqing He
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Hexi Wang
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Danqiong Zhang
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Aiping Sun
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, 453003, Henan, China
| | - Lili Yu
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, 453003, Henan, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xiangfeng Song
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, 453003, Henan, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Tiesuo Zhao
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, 453003, Henan, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhiguo Chen
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, 453003, Henan, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zishan Yang
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, 453003, Henan, China.
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
4
|
Chen J, Qi D, Hu H, Wang X, Lin W. Unconventional posttranslational modification in innate immunity. Cell Mol Life Sci 2024; 81:290. [PMID: 38970666 PMCID: PMC11335215 DOI: 10.1007/s00018-024-05319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/08/2024]
Abstract
Pattern recognition receptors (PRRs) play a crucial role in innate immunity, and a complex network tightly controls their signaling cascades to maintain immune homeostasis. Within the modification network, posttranslational modifications (PTMs) are at the core of signaling cascades. Conventional PTMs, which include phosphorylation and ubiquitination, have been extensively studied. The regulatory role of unconventional PTMs, involving unanchored ubiquitination, ISGylation, SUMOylation, NEDDylation, methylation, acetylation, palmitoylation, glycosylation, and myristylation, in the modulation of innate immune signaling pathways has been increasingly investigated. This comprehensive review delves into the emerging field of unconventional PTMs and highlights their pivotal role in innate immunity.
Collapse
Affiliation(s)
- Jiaxi Chen
- The Second Affiliated Hospital and Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Dejun Qi
- The Second Affiliated Hospital and Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Haorui Hu
- The Second Affiliated Hospital and Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Xiaojian Wang
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Wenlong Lin
- The Second Affiliated Hospital and Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
5
|
Tang H, Pang X, Li S, Tang L. The Double-Edged Effects of MLN4924: Rethinking Anti-Cancer Drugs Targeting the Neddylation Pathway. Biomolecules 2024; 14:738. [PMID: 39062453 PMCID: PMC11274557 DOI: 10.3390/biom14070738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: The neddylation pathway assumes a pivotal role in the initiation and progression of cancer. MLN4924, a potent small-molecule inhibitor of the NEDD8-activating enzyme (NAE), effectively intervenes in the early stages of the neddylation pathway. By instigating diverse cellular responses, such as senescence and apoptosis in cancer cells, MLN4924 also exerts regulatory effects on non-malignant cells within the tumor microenvironment (TME) and tumor virus-infected cells, thereby impeding the onset of tumors. Consequently, MLN4924 has been widely acknowledged as a potent anti-cancer drug. (2) Recent findings: Nevertheless, recent findings have illuminated additional facets of the neddylation pathway, revealing its active involvement in various biological processes detrimental to the survival of cancer cells. This newfound understanding underscores the dual role of MLN4924 in tumor therapy, characterized by both anti-cancer and pro-cancer effects. This dichotomy is herein referred to as the "double-edged effects" of MLN4924. This paper delves into the intricate relationship between the neddylation pathway and cancer, offering a mechanistic exploration and analysis of the causes underlying the double-edged effects of MLN4924-specifically, the accumulation of pro-cancer neddylation substrates. (3) Perspectives: Here, the objective is to furnish theoretical support and novel insights that can guide the development of next-generation anti-cancer drugs targeting the neddylation pathway.
Collapse
Affiliation(s)
- Haoming Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (H.T.); (X.P.)
| | - Xin Pang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (H.T.); (X.P.)
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610500, China
- Department of Spine Surgery, People’s Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen 518109, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (H.T.); (X.P.)
| |
Collapse
|
6
|
Powell RT, Rinkenbaugh AL, Guo L, Cai S, Shao J, Zhou X, Zhang X, Jeter-Jones S, Fu C, Qi Y, Baameur Hancock F, White JB, Stephan C, Davies PJ, Moulder S, Symmans WF, Chang JT, Piwnica-Worms H. Targeting neddylation and sumoylation in chemoresistant triple negative breast cancer. NPJ Breast Cancer 2024; 10:37. [PMID: 38802426 PMCID: PMC11130334 DOI: 10.1038/s41523-024-00644-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Triple negative breast cancer (TNBC) accounts for 15-20% of breast cancer cases in the United States. Systemic neoadjuvant chemotherapy (NACT), with or without immunotherapy, is the current standard of care for patients with early-stage TNBC. However, up to 70% of TNBC patients have significant residual disease once NACT is completed, which is associated with a high risk of developing recurrence within two to three years of surgical resection. To identify targetable vulnerabilities in chemoresistant TNBC, we generated longitudinal patient-derived xenograft (PDX) models from TNBC tumors before and after patients received NACT. We then compiled transcriptomes and drug response profiles for all models. Transcriptomic analysis identified the enrichment of aberrant protein homeostasis pathways in models from post-NACT tumors relative to pre-NACT tumors. This observation correlated with increased sensitivity in vitro to inhibitors targeting the proteasome, heat shock proteins, and neddylation pathways. Pevonedistat, a drug annotated as a NEDD8-activating enzyme (NAE) inhibitor, was prioritized for validation in vivo and demonstrated efficacy as a single agent in multiple PDX models of TNBC. Pharmacotranscriptomic analysis identified a pathway-level correlation between pevonedistat activity and post-translational modification (PTM) machinery, particularly involving neddylation and sumoylation targets. Elevated levels of both NEDD8 and SUMO1 were observed in models exhibiting a favorable response to pevonedistat compared to those with a less favorable response in vivo. Moreover, a correlation emerged between the expression of neddylation-regulated pathways and tumor response to pevonedistat, indicating that targeting these PTM pathways may prove effective in combating chemoresistant TNBC.
Collapse
Affiliation(s)
- Reid T Powell
- Center for Translational Cancer Research, Institute of Bioscience and Technology Texas A&M Health Science Center, Houston, TX, USA
| | - Amanda L Rinkenbaugh
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lei Guo
- Center for Translational Cancer Research, Institute of Bioscience and Technology Texas A&M Health Science Center, Houston, TX, USA
| | - Shirong Cai
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiansu Shao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xinhui Zhou
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaomei Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sabrina Jeter-Jones
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chunxiao Fu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuan Qi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Faiza Baameur Hancock
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason B White
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clifford Stephan
- Center for Translational Cancer Research, Institute of Bioscience and Technology Texas A&M Health Science Center, Houston, TX, USA
| | - Peter J Davies
- Center for Translational Cancer Research, Institute of Bioscience and Technology Texas A&M Health Science Center, Houston, TX, USA
| | - Stacy Moulder
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Eli Lilly and Company, Indianapolis, IN, USA
| | - W Fraser Symmans
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey T Chang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
7
|
Wang L, Yang F, Ye J, Zhang L, Jiang X. Insight into the role of IRF7 in skin and connective tissue diseases. Exp Dermatol 2024; 33:e15083. [PMID: 38794808 DOI: 10.1111/exd.15083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 05/26/2024]
Abstract
Interferons (IFNs) are signalling proteins primarily involved in initiating innate immune responses against pathogens and promoting the maturation of immune cells. Interferon Regulatory Factor 7 (IRF7) plays a pivotal role in the IFNs signalling pathway. The activation process of IRF7 is incited by exogenous or abnormal nucleic acids, which is followed by the identification via pattern recognition receptors (PRRs) and the ensuing signalling cascades. Upon activation, IRF7 modulates the expression of both IFNs and inflammatory gene regulation. As a multifunctional transcription factor, IRF7 is mainly expressed in immune cells, yet its presence is also detected in keratinocytes, fibroblasts, and various dermal cell types. In these cells, IRF7 is critical for skin immunity, inflammation, and fibrosis. IRF7 dysregulation may lead to autoimmune and inflammatory skin conditions, including systemic scleroderma (SSc), systemic lupus erythematosus (SLE), Atopic dermatitis (AD) and Psoriasis. This comprehensive review aims to extensively elucidate the role of IRF7 and its signalling pathways in immune cells and keratinocytes, highlighting its significance in skin-related and connective tissue diseases.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Fengjuan Yang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Ye
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Zhang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Zhang S, Yu Q, Li Z, Zhao Y, Sun Y. Protein neddylation and its role in health and diseases. Signal Transduct Target Ther 2024; 9:85. [PMID: 38575611 PMCID: PMC10995212 DOI: 10.1038/s41392-024-01800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
NEDD8 (Neural precursor cell expressed developmentally downregulated protein 8) is an ubiquitin-like protein that is covalently attached to a lysine residue of a protein substrate through a process known as neddylation, catalyzed by the enzyme cascade, namely NEDD8 activating enzyme (E1), NEDD8 conjugating enzyme (E2), and NEDD8 ligase (E3). The substrates of neddylation are categorized into cullins and non-cullin proteins. Neddylation of cullins activates CRLs (cullin RING ligases), the largest family of E3 ligases, whereas neddylation of non-cullin substrates alters their stability and activity, as well as subcellular localization. Significantly, the neddylation pathway and/or many neddylation substrates are abnormally activated or over-expressed in various human diseases, such as metabolic disorders, liver dysfunction, neurodegenerative disorders, and cancers, among others. Thus, targeting neddylation becomes an attractive strategy for the treatment of these diseases. In this review, we first provide a general introduction on the neddylation cascade, its biochemical process and regulation, and the crystal structures of neddylation enzymes in complex with cullin substrates; then discuss how neddylation governs various key biological processes via the modification of cullins and non-cullin substrates. We further review the literature data on dysregulated neddylation in several human diseases, particularly cancer, followed by an outline of current efforts in the discovery of small molecule inhibitors of neddylation as a promising therapeutic approach. Finally, few perspectives were proposed for extensive future investigations.
Collapse
Affiliation(s)
- Shizhen Zhang
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Qing Yu
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, 310022, China
| | - Zhijian Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yongchao Zhao
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang University Cancer Center, Hangzhou, 310029, China.
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang University Cancer Center, Hangzhou, 310029, China.
- Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang, Hangzhou, 310024, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
9
|
Zhang Y, Du L, Wang C, Jiang Z, Duan Q, Li Y, Xie Z, He Z, Sun Y, Huang L, Lu L, Wen C. Neddylation is a novel therapeutic target for lupus by regulating double negative T cell homeostasis. Signal Transduct Target Ther 2024; 9:18. [PMID: 38221551 PMCID: PMC10788348 DOI: 10.1038/s41392-023-01709-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/15/2023] [Accepted: 11/15/2023] [Indexed: 01/16/2024] Open
Abstract
Systemic lupus erythematosus (SLE), a severe autoimmune disorder, is characterized by systemic inflammatory response, autoantibody accumulation and damage to organs. The dysregulation of double-negative (DN) T cells is considered as a crucial commander during SLE. Neddylation, a significant type of protein post-translational modification (PTM), has been well-proved to regulate T cell-mediated immune response. However, the function of neddylation in SLE is still unknown. Here, we reported that neddylation inactivation with MLN4924, a specific inhibitor of NEDD8-activating enzyme E1 (NAE1), or genetic abrogation of Ube2m in T cells decreased DN T cell accumulation and attenuated murine lupus development. Further investigations revealed that inactivation of neddylation blocked Bim ubiquitination degradation and maintained Bim level in DN T cells, contributing to the apoptosis of the accumulated DN T cells in lupus mice. Then double knockout (KO) lupus-prone mice (Ube2m-/-Bim-/-lpr) were generated and results showed that loss of Bim reduced Ube2m deficiency-induced apoptosis in DN T cells and reversed the alleviated lupus progression. Our findings identified that neddylation inactivation promoted Bim-mediated DN T cell apoptosis and attenuated lupus progression. Clinically, we also found that in SLE patients, the proportion of DN T cells was raised and their apoptosis was reduced. Moreover, compared to healthy groups, SLE patients exhibited decreased Bim levels and elevated Cullin1 neddylation levels. Meantime, the inhibition of neddylation induced Bim-dependent apoptosis of DN T cells isolated from SLE patients. Altogether, our findings provide the direct evidence about the function of neddylation during lupus, suggesting a promising therapeutic approach for this disease.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lijun Du
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Chenxi Wang
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhangsheng Jiang
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qingchi Duan
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yiping Li
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhijun Xie
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhixing He
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Cancer Center of Zhejiang University, Hangzhou, 310029, China
| | - Lin Huang
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.
- Chongqing International Institute for Immunology, Chongqing, 400038, China.
| | - Chengping Wen
- Key Laboratory of Chinese medicine rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
10
|
Mao H, Lin X, Sun Y. Neddylation Regulation of Immune Responses. RESEARCH (WASHINGTON, D.C.) 2023; 6:0283. [PMID: 38434245 PMCID: PMC10907026 DOI: 10.34133/research.0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/15/2023] [Indexed: 03/05/2024]
Abstract
Neddylation plays a vital role in post-translational modification, intricately shaping the regulation of diverse biological processes, including those related to cellular immune responses. In fact, neddylation exerts control over both innate and adaptive immune systems via various mechanisms. Specifically, neddylation influences the function and survival of innate immune cells, activation of pattern recognition receptors and GMP-AMP synthase-stimulator of interferon genes pathways, as well as the release of various cytokines in innate immune reactions. Moreover, neddylation also governs the function and survival of antigen-presenting cells, which are crucial for initiating adaptive immune reactions. In addition, neddylation regulates T cell activation, proliferation, differentiation, survival, and their effector functions, thereby ensuring an appropriate adaptive immune response. In this review, we summarize the most recent findings in these aspects and delve into the connection between dysregulated neddylation events and immunological disorders, especially inflammatory diseases. Lastly, we propose future directions and potential treatments for these diseases by targeting neddylation.
Collapse
Affiliation(s)
- Hongmei Mao
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine,
Zhejiang University School of Medicine, Hangzhou 310029, China
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
- Changping Laboratory, Beijing 102206, China
| | - Xin Lin
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
- Changping Laboratory, Beijing 102206, China
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine,
Zhejiang University School of Medicine, Hangzhou 310029, China
- Cancer Center of Zhejiang University, Hangzhou 310029, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang Province, China.
- Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang Province, China
- Research Center for Life Science and Human Health,
Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| |
Collapse
|
11
|
Zheng Y, Yang H, Zhang X, Gao C. Regulation of SARS-CoV-2 infection and antiviral innate immunity by ubiquitination and ubiquitin-like conjugation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194984. [PMID: 37717938 DOI: 10.1016/j.bbagrm.2023.194984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
A global pandemic COVID-19 resulting from SARS-CoV-2 has affected a significant portion of the human population. Antiviral innate immunity is critical for controlling and eliminating the viral infection. Ubiquitination is extensively involved in antiviral signaling, and recent studies suggest that ubiquitin-like proteins (Ubls) modifications also participate in innate antiviral pathways such as RLR and cGAS-STING pathways. Notably, virus infection harnesses ubiquitination and Ubls modifications to facilitate viral replication and counteract innate antiviral immunity. These observations indicate that ubiquitination and Ubls modifications are critical checkpoints for the tug-of-war between virus and host. This review discusses the current progress regarding the modulation of the SARS-CoV-2 life cycle and antiviral innate immune pathways by ubiquitination and Ubls modifications. This paper emphasizes the arising concept that ubiquitination and Ubls modifications are powerful modulators of virus and host interaction and potential drug targets for treating the infection of SARS-CoV-2.
Collapse
Affiliation(s)
- Yi Zheng
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China.
| | - Huiyu Yang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xuejing Zhang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
12
|
Wong B, Bergeron A, Maznyi G, Ng K, Jirovec A, Birdi HK, Serrano D, Spinelli M, Thomson M, Taha Z, Alwithenani A, Chen A, Lorimer I, Vanderhyden B, Arulanandam R, Diallo JS. Pevonedistat, a first-in-class NEDD8-activating enzyme inhibitor, sensitizes cancer cells to VSVΔ51 oncolytic virotherapy. Mol Ther 2023; 31:3176-3192. [PMID: 37766429 PMCID: PMC10638453 DOI: 10.1016/j.ymthe.2023.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/23/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023] Open
Abstract
The clinical efficacy of VSVΔ51 oncolytic virotherapy has been limited by tumor resistance to viral infection, so strategies to transiently repress antiviral defenses are warranted. Pevonedistat is a first-in-class NEDD8-activating enzyme (NAE) inhibitor currently being tested in clinical trials for its antitumor potential. In this study, we demonstrate that pevonedistat sensitizes human and murine cancer cells to increase oncolytic VSVΔ51 infection, increase tumor cell death, and improve therapeutic outcomes in resistant syngeneic murine cancer models. Increased VSVΔ51 infectivity was also observed in clinical human tumor samples. We further identify the mechanism of this effect to operate via blockade of the type 1 interferon (IFN-1) response through neddylation-dependent interferon-stimulated growth factor 3 (ISGF3) repression and neddylation-independent inhibition of NF-κB nuclear translocation. Together, our results identify a role for neddylation in regulating the innate immune response and demonstrate that pevonedistat can improve the therapeutic outcomes of strategies using oncolytic virotherapy.
Collapse
Affiliation(s)
- Boaz Wong
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Anabel Bergeron
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Glib Maznyi
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Kristy Ng
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Anna Jirovec
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Harsimrat K Birdi
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Daniel Serrano
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Marcus Spinelli
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Max Thomson
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Zaid Taha
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Akram Alwithenani
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Andrew Chen
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ian Lorimer
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Barbara Vanderhyden
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Rozanne Arulanandam
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
| | - Jean-Simon Diallo
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
13
|
Aquino Y, Bisiaux A, Li Z, O'Neill M, Mendoza-Revilla J, Merkling SH, Kerner G, Hasan M, Libri V, Bondet V, Smith N, de Cevins C, Ménager M, Luca F, Pique-Regi R, Barba-Spaeth G, Pietropaoli S, Schwartz O, Leroux-Roels G, Lee CK, Leung K, Wu JT, Peiris M, Bruzzone R, Abel L, Casanova JL, Valkenburg SA, Duffy D, Patin E, Rotival M, Quintana-Murci L. Dissecting human population variation in single-cell responses to SARS-CoV-2. Nature 2023; 621:120-128. [PMID: 37558883 PMCID: PMC10482701 DOI: 10.1038/s41586-023-06422-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
Humans display substantial interindividual clinical variability after SARS-CoV-2 infection1-3, the genetic and immunological basis of which has begun to be deciphered4. However, the extent and drivers of population differences in immune responses to SARS-CoV-2 remain unclear. Here we report single-cell RNA-sequencing data for peripheral blood mononuclear cells-from 222 healthy donors of diverse ancestries-that were stimulated with SARS-CoV-2 or influenza A virus. We show that SARS-CoV-2 induces weaker, but more heterogeneous, interferon-stimulated gene activity compared with influenza A virus, and a unique pro-inflammatory signature in myeloid cells. Transcriptional responses to viruses display marked population differences, primarily driven by changes in cell abundance including increased lymphoid differentiation associated with latent cytomegalovirus infection. Expression quantitative trait loci and mediation analyses reveal a broad effect of cell composition on population disparities in immune responses, with genetic variants exerting a strong effect on specific loci. Furthermore, we show that natural selection has increased population differences in immune responses, particularly for variants associated with SARS-CoV-2 response in East Asians, and document the cellular and molecular mechanisms by which Neanderthal introgression has altered immune functions, such as the response of myeloid cells to viruses. Finally, colocalization and transcriptome-wide association analyses reveal an overlap between the genetic basis of immune responses to SARS-CoV-2 and COVID-19 severity, providing insights into the factors contributing to current disparities in COVID-19 risk.
Collapse
Affiliation(s)
- Yann Aquino
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Aurélie Bisiaux
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Zhi Li
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Mary O'Neill
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Javier Mendoza-Revilla
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Sarah Hélène Merkling
- Insect-Virus Interactions Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Gaspard Kerner
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Milena Hasan
- Cytometry and Biomarkers UTechS, Institut Pasteur, Université Paris Cité, Paris, France
| | - Valentina Libri
- Cytometry and Biomarkers UTechS, Institut Pasteur, Université Paris Cité, Paris, France
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Nikaïa Smith
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Camille de Cevins
- Université Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR1163, Paris, France
| | - Mickaël Ménager
- Université Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR1163, Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR1163, Paris, France
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Giovanna Barba-Spaeth
- Structural Virology Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Stefano Pietropaoli
- Structural Virology Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | | | - Cheuk-Kwong Lee
- Hong Kong Red Cross Blood Transfusion Service, Hospital Authority, Hong Kong SAR, China
| | - Kathy Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Joseph T Wu
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Malik Peiris
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology and Infection, Hong Kong Science Park, Hong Kong SAR, China
| | - Roberto Bruzzone
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology and Infection, Hong Kong Science Park, Hong Kong SAR, China
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Sophie A Valkenburg
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Centre for Immunology and Infection, Hong Kong Science Park, Hong Kong SAR, China
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Maxime Rotival
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France.
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France.
- Chair Human Genomics and Evolution, Collège de France, Paris, France.
| |
Collapse
|
14
|
Ma W, Huang G, Wang Z, Wang L, Gao Q. IRF7: role and regulation in immunity and autoimmunity. Front Immunol 2023; 14:1236923. [PMID: 37638030 PMCID: PMC10449649 DOI: 10.3389/fimmu.2023.1236923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Interferon regulatory factor (IRF) 7 was originally identified as master transcriptional factor that produced IFN-I and regulated innate immune response, subsequent studies have revealed that IRF7 performs a multifaceted and versatile functions in multiple biological processes. In this review, we provide a comprehensive overview on the current knowledge of the role of IRF7 in immunity and autoimmunity. We focus on the latest regulatory mechanisms of IRF7 in IFN-I, including signaling pathways, transcription, translation, and post-translational levels, the dimerization and nuclear translocation, and the role of IRF7 in IFN-III and COVID-19. In addition to antiviral immunity, we also discuss the role and mechanism of IRF7 in autoimmunity, and the further research will expand our understanding of IRF7.
Collapse
Affiliation(s)
- Wei Ma
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Gang Huang
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhi Wang
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Wang
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qiangguo Gao
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
15
|
Xue Q, Zhu Z, Xue Z, Yang F, Cao W, Liu X, Liu H, Zheng H. NOG1 downregulates type I interferon production by targeting phosphorylated interferon regulatory factor 3. PLoS Pathog 2023; 19:e1011511. [PMID: 37410776 DOI: 10.1371/journal.ppat.1011511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023] Open
Abstract
The innate immune system is the first line of the host's defense, and studying the mechanisms of the negative regulation of interferon (IFN) signaling is important for maintaining the balance of innate immune responses. Here, we found that the host GTP-binding protein 4 (NOG1) is a negative regulator of innate immune responses. Overexpression of NOG1 inhibited viral RNA- and DNA-mediated signaling pathways, and NOG1 deficiency promoted the antiviral innate immune response, resulting in the ability of NOG1 to promote viral replication. Vesicular stomatitis virus (VSV) and herpes simplex virus type 1 (HSV-1) infection induced a higher level of IFN-β protein in NOG1 deficient mice. Meanwhile, NOG1-deficient mice were more resistant to VSV and HSV-1 infection. NOG1 inhibited type I IFN production by targeting IRF3. NOG1 was also found to interact with phosphorylated IFN regulatory factor 3 (IRF3) to impair its DNA binding activity, thereby downregulating the transcription of IFN-β and downstream IFN-stimulated genes (ISGs). The GTP binding domain of NOG1 is responsible for this process. In conclusion, our study reveals an underlying mechanism of how NOG1 negatively regulates IFN-β by targeting IRF3, which uncovers a novel role of NOG1 in host innate immunity.
Collapse
Affiliation(s)
- Qiao Xue
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhaoning Xue
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huisheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
16
|
Gao L, Gao Y, Han K, Wang Z, Meng F, Liu J, Zhao X, Shao Y, Shen J, Sun W, Liu Y, Xu H, Du X, Li J, Qin FXF. FBXO11 amplifies type I interferon signaling to exert antiviral effects by facilitating the assemble of TRAF3-TBK1-IRF3 complex. J Med Virol 2023; 95:e28655. [PMID: 36897010 DOI: 10.1002/jmv.28655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/11/2023]
Abstract
As the key component of host innate antiviral immunity, type I interferons (IFN-Is) exert multiple antiviral effects by inducing hundreds of IFN-stimulated genes. However, the precise mechanism involved in host sensing of IFN-I signaling priming is particularly complex and remains incompletely resolved. This research identified F-box protein 11 (FBXO11), a component of the E3-ubiquitin ligase SKP/Cullin/F-box complex, acted as an important regulator of IFN-I signaling priming and antiviral process against several RNA/DNA viruses. FBXO11 functioned as an essential enhancer of IFN-I signaling by promoting the phosphorylation of TBK1 and IRF3. Mechanistically, FBXO11 facilitated the assembly of TRAF3-TBK1-IRF3 complex by mediating the K63 ubiquitination of TRAF3 in a NEDD8-dependent manner to amplify the activation of IFN-I signaling. Consistently, the NEDD8-activating enzyme inhibitor MLN4921 could act as a blocker for FBXO11-TRAF3-IFN-I axis of signaling. More significantly, examination of clinical samples of chronic hepatitis B virus (HBV) infection and public transcriptome database of severe acute respiratory syndrome coronavirus-2-, HBV-, and hepatitis C virus-infected human samples revealed that FBXO11 expression was positively correlated with the stage of disease course. Taken together, these findings suggest that FBXO11 is an amplifier of antiviral immune responses and might serve as a potential therapeutic target for a number of different viral diseases.
Collapse
Affiliation(s)
- Long Gao
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Yufeng Gao
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kexing Han
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zining Wang
- State Key Laboratory of Oncology in South China, Department of Experimental Medicine, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fang Meng
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Jiaying Liu
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xin Zhao
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Yun Shao
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Jiapei Shen
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Weijie Sun
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanyan Liu
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Honghai Xu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaohong Du
- Institute of Clinical Medicine Research, Affiliated Suzhou Hospital, Medical School of Nanjing University, Suzhou, China
| | - Jiabin Li
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | | |
Collapse
|
17
|
Ji L, Wang Y, Zhou L, Lu J, Bao S, Shen Q, Wang X, Liu Y, Zhang W. E3 Ubiquitin Ligases: The Operators of the Ubiquitin Code That Regulates the RLR and cGAS-STING Pathways. Int J Mol Sci 2022; 23:ijms232314601. [PMID: 36498930 PMCID: PMC9740615 DOI: 10.3390/ijms232314601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
The outbreaks caused by RNA and DNA viruses, such as SARS-CoV-2 and monkeypox, pose serious threats to human health. The RLR and cGAS-STING pathways contain major cytoplasmic sensors and signaling transduction axes for host innate antiviral immunity. In physiological and virus-induced pathological states, the activation and inactivation of these signal axes are tightly controlled, especially post-translational modifications (PTMs). E3 ubiquitin ligases (E3s) are the direct manipulator of ubiquitin codons and determine the type and modification type of substrate proteins. Therefore, members of the E3s family are involved in balancing the host's innate antiviral immune responses, and their functions have been extensively studied over recent decades. In this study, we overviewed the mechanisms of different members of three E3s families that mediate the RLR and cGAS-STING axes and analyzed them as potential molecular targets for the prevention and treatment of virus-related diseases.
Collapse
|
18
|
Shao X, Chen Y, Xu A, Xiang D, Wang W, Du W, Huang Y, Zhang X, Cai M, Xia Z, Wang Y, Cao J, Zhang Y, Yang B, He Q, Ying M. Deneddylation of PML/RARα reconstructs functional PML nuclear bodies via orchestrating phase separation to eradicate APL. Cell Death Differ 2022; 29:1654-1668. [PMID: 35194189 PMCID: PMC9345999 DOI: 10.1038/s41418-022-00955-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/09/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is driven by the oncoprotein PML/RARα, which destroys the architecture of PML nuclear bodies (NBs). PML NBs are critical to tumor suppression, and their disruption mediated by PML/RARα accelerates APL pathogenesis. However, the mechanisms of PML NB disruption remain elusive. Here, we reveal that the failure of NB assembly in APL results from neddylation-induced aberrant phase separation of PML/RARα. Mechanistically, PML/RARα is neddylated in the RARα moiety, and this neddylation enhances its DNA-binding ability and further impedes the phase separation of the PML moiety, consequently disrupting PML NB construction. Accordingly, deneddylation of PML/RARα restores its phase separation process to reconstruct functional NBs and activates RARα signaling, thereby suppressing PML/RARα-driven leukemogenesis. Pharmacological inhibition of neddylation by MLN4924 eradicates APL cells both in vitro and in vivo. Our work elucidates the neddylation-destroyed phase separation mechanism for PML/RARα-driven NB disruption and highlights targeting neddylation for APL eradication.
Collapse
Affiliation(s)
- Xuejing Shao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingqian Chen
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Aixiao Xu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Danyan Xiang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Wang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenxin Du
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yunpeng Huang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xingya Zhang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Minyi Cai
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhimei Xia
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ji Cao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Yan Zhang
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiaojun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Meidan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China. .,Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| |
Collapse
|
19
|
Zhu J, Chu F, Zhang M, Sun W, Zhou F. Association Between Neddylation and Immune Response. Front Cell Dev Biol 2022; 10:890121. [PMID: 35602593 PMCID: PMC9117624 DOI: 10.3389/fcell.2022.890121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Neddylation is a ubiquitin-like post-translational protein modification. It occurs via the activation of the neural precursor cell expressed, developmentally downregulated protein 8 (NEDD8) by three enzymes: activating enzyme, conjugating enzyme, and ligase. NEDD8 was first isolated from the mouse brain in 1992 and was initially considered important for the development and differentiation of the central nervous system. Previously, the downregulation of neddylation was associated with some human diseases, such as neurodegenerative disorders and cancers. In recent years, neddylation has also been proven to be pivotal in various processes of the human immune system, including the regulation of inflammation, bacterial infection, viral infection, and T cell function. Additionally, NEDD8 was found to act on proteins that can affect viral transcription, leading to impaired infectivity. Here, we focused on the influence of neddylation on the innate and adaptive immune responses.
Collapse
|