1
|
Wang Z, Sun X, Lin Y, Fu Y, Yi Z. Stealth in non-tuberculous mycobacteria: clever challengers to the immune system. Microbiol Res 2025; 292:128039. [PMID: 39752805 DOI: 10.1016/j.micres.2024.128039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025]
Abstract
Non-tuberculous Mycobacteria (NTM) are found extensively in various environments, yet most are non-pathogenic. Only a limited number of these organisms can cause various infections, including those affecting the lungs, skin, and central nervous system, particularly when the host's autoimmune function is compromised. Among these, Non-tuberculous Mycobacteria Pulmonary Diseases (NTM-PD) are the most prevalent. Currently, there is a lack of effective treatments and preventive measures for NTM infections. This article aims to deepen the comprehension of the pathogenic mechanisms linked to NTM and to formulate new intervention strategies by synthesizing current research and detailing the different tactics used by NTM to avoid elimination by the host's immune response. These intricate mechanisms not only affect the innate immune response but also successfully oppose the adaptive immune response, establishing persistent infections within the host. This includes effects on the functions of macrophages, neutrophils, dendritic cells, and T lymphocytes, as well as modulation of cytokine production. The article particularly emphasizes the survival strategies of NTM within macrophages, such as inhibiting phagosome maturation and acidification, resisting intracellular killing mechanisms, and interfering with autophagy and cell death pathways. This review aims to deepen the understanding of NTM's immune evasion mechanisms, thereby facilitating efforts to inhibit its proliferation and spread within the host, ultimately providing new methods and strategies for NTM-related treatments.
Collapse
Affiliation(s)
- Zhenghao Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Xiurong Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Yuli Lin
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, China
| | - Yurong Fu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| | - Zhengjun Yi
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
2
|
Wei Y, Wang C, Chong L, Cui X. Recurrent NTM pulmonary disease despite avoidance of hot spring exposure in a plaque psoriasis patient treated with Secukinumab: a case report. BMC Infect Dis 2025; 25:82. [PMID: 39833739 PMCID: PMC11744850 DOI: 10.1186/s12879-025-10487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Recurrent Non-Tuberculous Mycobacterial Pulmonary Disease (NTM-PD) related to treatment with Secukinumab has not been previously documented. CASE PRESENTATION Despite adherence to treatment and avoiding hot springs, a plaque psoriasis patient experienced persistent NTM-PD relapses. CONCLUSIONS There is potential association between Secukinumab, an IL-17A inhibitor, and NTM disease, echoing anti-TNF biologics' NTM risk, indicating the urgent need for further research on pathogenic mechanisms and risk factors.
Collapse
Affiliation(s)
- Yixiao Wei
- Peking University Health Science Center, Beijing, 100191, China
| | - Chunlei Wang
- Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Lingtao Chong
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xiaojing Cui
- National Clinical Research Center of Respiratory Diseases, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, 100029, China.
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
3
|
Matsumoto Y, Fukano H, Komine T, Hoshino Y, Sugita T. Development of a silkworm infection model for evaluating the virulence of Mycobacterium intracellulare subspecies estimated using phylogenetic tree analysis based on core gene data. Drug Discov Ther 2024; 18:249-254. [PMID: 39183044 DOI: 10.5582/ddt.2024.01043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Non-tuberculous mycobacteria (NTM) cause skin infections, respiratory diseases, and disseminated infections. Mycobacterium avium and Mycobacterium intracellulare, which are slow grown Mycobacterium, are main agents of those NTM diseases. A silkworm infection model with Mycobacterium abscessus, a rapidly growing Mycobacterium species, was established to quantitatively evaluate its virulence within a short period. However, a silkworm infection model to quantitatively evaluate the virulence of M. intracellulare has not yet been developed. In this study, we determined the virulence of M. intracellulare subspecies within 4 days using a silkworm infection model. The subspecies of M. intracellulare strains used in this study were estimated by phylogenetic tree analysis using core gene data. The median lethal dose (LD50) values, which are the dose of a pathogen required to kill half of the silkworms in a group, were determined 4 days after infection. The LD50 value of M. intracellulare subsp. chimaera DSM44623 was higher than that of M. intracellulare subsp. intracellulare ATCC13950. These results suggest that the virulence of M. intracellulare subspecies can be compared using a silkworm model within 4 days.
Collapse
Affiliation(s)
- Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hanako Fukano
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takeshi Komine
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
4
|
Nandanwar N, Gibson JE, Neely MN. Transcriptome profiles of macrophages upon infection by morphotypic smooth and rough variants of Mycobacterium abscessus. Microbes Infect 2024; 26:105367. [PMID: 38782181 DOI: 10.1016/j.micinf.2024.105367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Mycobacterium abscessus (Mab) infection can be deadly in patients with chronic lung diseases like cystic fibrosis (CF). In vitro and in vivo, Mab may adopt a smooth (S) or rough (R) morphotype, the latter linked to more severe disease conditions. In vitro studies revealed differences in pathogenicity and immune response to S and R morphotypes. We propose that in vivo both morphotypes exist and may transiently switch depending on the environment, having important pathogenic and immunologic consequences. This can be modeled by morphotypic S and R variants of Mab selected based on in vitro growth conditions. Here, we report the first analysis of early transcriptional events in mouse bone marrow derived macrophages (BMDMs) upon infection with media-selected interchangeable Mab-S and Mab-R morphotypes. The early transcriptional events after infection with both morphotypes showed considerable overlap of the pro-inflammatory genes that were differentially regulated compared to the uninfected macrophages. We also observed signature genes significantly differentially regulated in macrophages during infection of media-selected morphotypic Mab-S and Mab-R variants. In conclusion, media-selected Mab-S and Mab-R behave in a similar fashion to stable S and R types with respect to pathogenesis and immune response, serving as a useful model for environmentally influenced morphotype selection.
Collapse
Affiliation(s)
- Nishant Nandanwar
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital Los Angeles, CA, 90027, USA.
| | - Joy E Gibson
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital Los Angeles, CA, 90027, USA; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - Michael N Neely
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital Los Angeles, CA, 90027, USA; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| |
Collapse
|
5
|
Jung BG, Dean K, Wadle C, Samten B, Tripathi D, Wallace RJ, Brown-Elliott BA, Tucker T, Idell S, Philley JV, Vankayalapati R. Decreased Interleukin-1 Family Cytokine Production in Patients with Nontuberculous Mycobacterial Lung Disease. Microbiol Spectr 2022; 10:e0311022. [PMID: 36255321 PMCID: PMC9769609 DOI: 10.1128/spectrum.03110-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/01/2022] [Indexed: 01/09/2023] Open
Abstract
Nontuberculous mycobacteria (NTM) cause pulmonary disease in individuals without obvious immunodeficiency. This study was initiated to gain insight into the immunological factors that predispose persons to NTM pulmonary disease (NTMPD). Blood was obtained from 15 pairs of NTMPD patients and their healthy household contacts. Peripheral blood mononuclear cells (PBMCs) were stimulated with the Mycobacterium avium complex (MAC). A total of 34 cytokines and chemokines were evaluated in plasma and PBMC culture supernatants using multiplex immunoassays, and gene expression in the PBMCs was determined using real-time PCR. PBMCs from NTMPD patients produced significantly less interleukin-1β (IL-1β), IL-18, IL-1α, and IL-10 than PBMCs from their healthy household contacts in response to MAC. Although plasma RANTES levels were high in NTMPD patients, they had no effect on IL-1β production by macrophages infected with MAC. Toll-like receptor 2 (TLR2) and TWIK2 (a two-pore domain K+ channel) were impaired in response to MAC in PBMCs of NTMPD patients. A TLR2 inhibitor decreased all four cytokines, whereas a two-pore domain K+ channel inhibitor decreased the production of IL-1β, IL-18, and IL-1α, but not IL-10, by MAC-stimulated PBMCs and monocytes. The ratio of monocytes was reduced in whole blood of NTMPD patients compared with that of healthy household contacts. A reduced monocyte ratio might contribute to the attenuated production of IL-1 family cytokines by PBMCs of NTMPD patients in response to MAC stimulations. Collectively, our findings suggest that the attenuated IL-1 response may increase susceptibility to NTM pulmonary infection through multiple factors, including impaired expression of the TLR2 and TWIK2 and reduced monocyte ratio. IMPORTANCE Upon MAC stimulation, the production of IL-1 family cytokines and IL-10 by PBMCs of NTMPD patients was attenuated compared with that of healthy household contacts. Upon MAC stimulation, the expression of TLR2 and TWIK2 (one of the two-pore domain K+ channels) was attenuated in PBMCs of NTMPD patients compared with that of healthy household contacts. The production of IL-1 family cytokines by MAC-stimulated PBMCs and MAC-infected monocytes of healthy donors was reduced by a TLR2 inhibitor and two-pore domain K+ channel inhibitor. The ratio of monocytes was reduced in whole blood of NTMPD patients compared with that of healthy household contacts. Collectively, our data suggest that defects in the expression of TLR2 and TWIK2 in human PBMCs or monocytes and reduced monocyte ratio are involved in the reduced production of IL-1 family cytokines, and it may increase susceptibility to NTM pulmonary infection.
Collapse
Affiliation(s)
- Bock-Gie Jung
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Kristin Dean
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Carly Wadle
- Department of Medicine, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Buka Samten
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Deepak Tripathi
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Richard J. Wallace
- Department of Microbiology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Barbara A. Brown-Elliott
- Department of Microbiology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Torry Tucker
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
- The Texas Lung Injury Institute, Tyler, Texas, USA
| | - Julie V. Philley
- Department of Medicine, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Ramakrishna Vankayalapati
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| |
Collapse
|