1
|
Matsumoto Y, Fukano H, Komine T, Hoshino Y, Sugita T. Development of a silkworm infection model for evaluating the virulence of Mycobacterium intracellulare subspecies estimated using phylogenetic tree analysis based on core gene data. Drug Discov Ther 2024; 18:249-254. [PMID: 39183044 DOI: 10.5582/ddt.2024.01043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Non-tuberculous mycobacteria (NTM) cause skin infections, respiratory diseases, and disseminated infections. Mycobacterium avium and Mycobacterium intracellulare, which are slow grown Mycobacterium, are main agents of those NTM diseases. A silkworm infection model with Mycobacterium abscessus, a rapidly growing Mycobacterium species, was established to quantitatively evaluate its virulence within a short period. However, a silkworm infection model to quantitatively evaluate the virulence of M. intracellulare has not yet been developed. In this study, we determined the virulence of M. intracellulare subspecies within 4 days using a silkworm infection model. The subspecies of M. intracellulare strains used in this study were estimated by phylogenetic tree analysis using core gene data. The median lethal dose (LD50) values, which are the dose of a pathogen required to kill half of the silkworms in a group, were determined 4 days after infection. The LD50 value of M. intracellulare subsp. chimaera DSM44623 was higher than that of M. intracellulare subsp. intracellulare ATCC13950. These results suggest that the virulence of M. intracellulare subspecies can be compared using a silkworm model within 4 days.
Collapse
Affiliation(s)
- Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hanako Fukano
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takeshi Komine
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
2
|
Nandanwar N, Gibson JE, Neely MN. Transcriptome profiles of macrophages upon infection by morphotypic smooth and rough variants of Mycobacterium abscessus. Microbes Infect 2024; 26:105367. [PMID: 38782181 DOI: 10.1016/j.micinf.2024.105367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Mycobacterium abscessus (Mab) infection can be deadly in patients with chronic lung diseases like cystic fibrosis (CF). In vitro and in vivo, Mab may adopt a smooth (S) or rough (R) morphotype, the latter linked to more severe disease conditions. In vitro studies revealed differences in pathogenicity and immune response to S and R morphotypes. We propose that in vivo both morphotypes exist and may transiently switch depending on the environment, having important pathogenic and immunologic consequences. This can be modeled by morphotypic S and R variants of Mab selected based on in vitro growth conditions. Here, we report the first analysis of early transcriptional events in mouse bone marrow derived macrophages (BMDMs) upon infection with media-selected interchangeable Mab-S and Mab-R morphotypes. The early transcriptional events after infection with both morphotypes showed considerable overlap of the pro-inflammatory genes that were differentially regulated compared to the uninfected macrophages. We also observed signature genes significantly differentially regulated in macrophages during infection of media-selected morphotypic Mab-S and Mab-R variants. In conclusion, media-selected Mab-S and Mab-R behave in a similar fashion to stable S and R types with respect to pathogenesis and immune response, serving as a useful model for environmentally influenced morphotype selection.
Collapse
Affiliation(s)
- Nishant Nandanwar
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital Los Angeles, CA, 90027, USA.
| | - Joy E Gibson
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital Los Angeles, CA, 90027, USA; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - Michael N Neely
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital Los Angeles, CA, 90027, USA; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| |
Collapse
|
3
|
Jung BG, Dean K, Wadle C, Samten B, Tripathi D, Wallace RJ, Brown-Elliott BA, Tucker T, Idell S, Philley JV, Vankayalapati R. Decreased Interleukin-1 Family Cytokine Production in Patients with Nontuberculous Mycobacterial Lung Disease. Microbiol Spectr 2022; 10:e0311022. [PMID: 36255321 PMCID: PMC9769609 DOI: 10.1128/spectrum.03110-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/01/2022] [Indexed: 01/09/2023] Open
Abstract
Nontuberculous mycobacteria (NTM) cause pulmonary disease in individuals without obvious immunodeficiency. This study was initiated to gain insight into the immunological factors that predispose persons to NTM pulmonary disease (NTMPD). Blood was obtained from 15 pairs of NTMPD patients and their healthy household contacts. Peripheral blood mononuclear cells (PBMCs) were stimulated with the Mycobacterium avium complex (MAC). A total of 34 cytokines and chemokines were evaluated in plasma and PBMC culture supernatants using multiplex immunoassays, and gene expression in the PBMCs was determined using real-time PCR. PBMCs from NTMPD patients produced significantly less interleukin-1β (IL-1β), IL-18, IL-1α, and IL-10 than PBMCs from their healthy household contacts in response to MAC. Although plasma RANTES levels were high in NTMPD patients, they had no effect on IL-1β production by macrophages infected with MAC. Toll-like receptor 2 (TLR2) and TWIK2 (a two-pore domain K+ channel) were impaired in response to MAC in PBMCs of NTMPD patients. A TLR2 inhibitor decreased all four cytokines, whereas a two-pore domain K+ channel inhibitor decreased the production of IL-1β, IL-18, and IL-1α, but not IL-10, by MAC-stimulated PBMCs and monocytes. The ratio of monocytes was reduced in whole blood of NTMPD patients compared with that of healthy household contacts. A reduced monocyte ratio might contribute to the attenuated production of IL-1 family cytokines by PBMCs of NTMPD patients in response to MAC stimulations. Collectively, our findings suggest that the attenuated IL-1 response may increase susceptibility to NTM pulmonary infection through multiple factors, including impaired expression of the TLR2 and TWIK2 and reduced monocyte ratio. IMPORTANCE Upon MAC stimulation, the production of IL-1 family cytokines and IL-10 by PBMCs of NTMPD patients was attenuated compared with that of healthy household contacts. Upon MAC stimulation, the expression of TLR2 and TWIK2 (one of the two-pore domain K+ channels) was attenuated in PBMCs of NTMPD patients compared with that of healthy household contacts. The production of IL-1 family cytokines by MAC-stimulated PBMCs and MAC-infected monocytes of healthy donors was reduced by a TLR2 inhibitor and two-pore domain K+ channel inhibitor. The ratio of monocytes was reduced in whole blood of NTMPD patients compared with that of healthy household contacts. Collectively, our data suggest that defects in the expression of TLR2 and TWIK2 in human PBMCs or monocytes and reduced monocyte ratio are involved in the reduced production of IL-1 family cytokines, and it may increase susceptibility to NTM pulmonary infection.
Collapse
Affiliation(s)
- Bock-Gie Jung
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Kristin Dean
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Carly Wadle
- Department of Medicine, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Buka Samten
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Deepak Tripathi
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Richard J. Wallace
- Department of Microbiology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Barbara A. Brown-Elliott
- Department of Microbiology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Torry Tucker
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
- The Texas Lung Injury Institute, Tyler, Texas, USA
| | - Julie V. Philley
- Department of Medicine, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Ramakrishna Vankayalapati
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| |
Collapse
|