1
|
Adhab M, Schoelz JE. Influence of the P6 effector protein of Cauliflower mosaic virus (CaMV) on the sustained expression and subcellular localization of the CaMV movement protein. Virology 2024; 600:110240. [PMID: 39278104 DOI: 10.1016/j.virol.2024.110240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
The P6 protein of cauliflower mosaic virus (CaMV) is a multifunctional protein that forms the electron dense, amorphous inclusion bodies that accumulate in the cytoplasm and has been shown to physically interact with all other CaMV proteins, including the CaMV movement protein (P1). In this study, we have investigated the subcellular localization of the P6 and P1 proteins in transient expression assays in Nicotiana benthamiana, as well as the influence of P6 on the expression and subcellular localization of P1. A version of P6 tagged with RFP was shown to envelop the endoplasmic reticulum (ER), whereas P1 tagged with RFP was shown to induce the fragmentation of the ER. Co-expression of P6 with P1 led to an enhancement of the spatial and temporal expression of P1, with a shift from expression through the plasma membrane and interior of the cell to punctate spots associated with the cell wall.
Collapse
Affiliation(s)
- Mustafa Adhab
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - James E Schoelz
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
2
|
Tan H, Zhou Y, Dinius E, Lozano-Durán R. The Ti-TAN plasmid toolbox for TurboID-based proximity labeling assays in Nicotiana benthamiana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:166-168. [PMID: 38294100 DOI: 10.1111/jipb.13610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024]
Abstract
The Ti-TAN TurboID plasmid toolbox enables proximity labeling applications in transient assays in Nicotiana benthamiana in a fast and cost-efficient manner, making TurboID-based proximity labeling broadly accessible to plant scientists.
Collapse
Affiliation(s)
- Huang Tan
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, D-72076, Germany
| | - Yu Zhou
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, D-72076, Germany
| | - Erik Dinius
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, D-72076, Germany
| | - Rosa Lozano-Durán
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, D-72076, Germany
| |
Collapse
|
3
|
Gomaa AE, El Mounadi K, Parperides E, Garcia-Ruiz H. Cell Fractionation and the Identification of Host Proteins Involved in Plant-Virus Interactions. Pathogens 2024; 13:53. [PMID: 38251360 PMCID: PMC10819628 DOI: 10.3390/pathogens13010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Plant viruses depend on host cellular factors for their replication and movement. There are cellular proteins that change their localization and/or expression and have a proviral role or antiviral activity and interact with or target viral proteins. Identification of those proteins and their roles during infection is crucial for understanding plant-virus interactions and to design antiviral resistance in crops. Important host proteins have been identified using approaches such as tag-dependent immunoprecipitation or yeast two hybridization that require cloning individual proteins or the entire virus. However, the number of possible interactions between host and viral proteins is immense. Therefore, an alternative method is needed for proteome-wide identification of host proteins involved in host-virus interactions. Here, we present cell fractionation coupled with mass spectrometry as an option to identify protein-protein interactions between viruses and their hosts. This approach involves separating subcellular organelles using differential and/or gradient centrifugation from virus-free and virus-infected cells (1) followed by comparative analysis of the proteomic profiles obtained for each subcellular organelle via mass spectrometry (2). After biological validation, prospect host proteins with proviral or antiviral roles can be subject to fundamental studies in the context of basic biology to shed light on both virus replication and cellular processes. They can also be targeted via gene editing to develop virus-resistant crops.
Collapse
Affiliation(s)
- Amany E. Gomaa
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA (E.P.)
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Kaoutar El Mounadi
- Department of Biology, Kutztown University of Pennsylvania, Kutztown, PA 19530, USA
| | - Eric Parperides
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA (E.P.)
| | - Hernan Garcia-Ruiz
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA (E.P.)
| |
Collapse
|
4
|
Tan H, Zhang X, Lozano-Duran R. Split-Luciferase Complementation Imaging Assay in Virus-Plant Interactions. Methods Mol Biol 2024; 2724:235-245. [PMID: 37987910 DOI: 10.1007/978-1-0716-3485-1_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Protein-protein interactions constitute the interface between a virus and the cell it infects and are crucial determinants of the outcome of the viral infection. Multiple techniques have been developed to study how viral and host proteins interact in plants; among them, the split-luciferase complementation imaging assay stands out due to its capacity to detect protein-protein interactions in vivo, in the context of the infection, if desired, in an easy, fast, quantitative, and inexpensive manner. In this chapter, we use the interaction between the V2 protein from the geminivirus tomato yellow leaf curl virus (TYLCV) and Nicotiana benthamiana Argonaute 4 (AGO4) as an example to present how to perform this simple yet powerful assay using transient Agrobacterium tumefaciens-mediated transformation of N. benthamiana leaves to test the protein-protein interactions of choice.
Collapse
Affiliation(s)
- Huang Tan
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Xi Zhang
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Rosa Lozano-Duran
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Medina-Puche L, Lozano-Durán R. Immunoprecipitation Followed by Mass Spectrometry: An Approach for Identifying Host-Viral Protein-Protein Interactions. Methods Mol Biol 2024; 2724:289-305. [PMID: 37987914 DOI: 10.1007/978-1-0716-3485-1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
As obligate intracellular parasites, viruses rely on the efficient manipulation of the cell they invade in order to multiply and spread. Protein-protein interactions between viral proteins (or their complexes) and cellular proteins are at the interface between virus and host and hence crucial for the outcome of the infection. Multiple techniques can be used to study protein-protein interactions in vivo in the context of the infected cell; among them, immunoprecipitation followed by mass spectrometry (IP-MS) has proven an efficient approach for the unbiased identification of protein complexes containing a viral protein of interest. In this chapter, we discuss how to employ IP-MS to define the interactome of plant virus proteins by using transient expression in the experimental host Nicotiana benthamiana, using the geminivirus tomato yellow leaf curl virus (TYLCV) as an example.
Collapse
Affiliation(s)
- Laura Medina-Puche
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, Germany
| | - Rosa Lozano-Durán
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
6
|
Zhao S, Gong P, Liu J, Liu H, Lozano-Durán R, Zhou X, Li F. Geminivirus C5 proteins mediate formation of virus complexes at plasmodesmata for viral intercellular movement. PLANT PHYSIOLOGY 2023; 193:322-338. [PMID: 37306279 DOI: 10.1093/plphys/kiad338] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/21/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023]
Abstract
Movement proteins (MPs) encoded by plant viruses deliver viral genomes to plasmodesmata (PD) to ensure intracellular and intercellular transport. However, how the MPs encoded by monopartite geminiviruses are targeted to PD is obscure. Here, we demonstrate that the C5 protein of tomato yellow leaf curl virus (TYLCV) anchors to PD during the viral infection following trafficking from the nucleus along microfilaments in Nicotiana benthamiana. C5 could move between cells and partially complement the traffic of a movement-deficient turnip mosaic virus (TuMV) mutant (TuMV-GFP-P3N-PIPO-m1) into adjacent cells. The TYLCV-C5 null mutant (TYLCV-mC5) attenuates viral pathogenicity and decreases viral DNA and protein accumulation, and ectopic overexpression of C5 enhances viral DNA accumulation. Interaction assays between TYLCV-C5 and the other eight viral proteins described in TYLCV reveal that C5 associates with C2 in the nucleus and with V2 in the cytoplasm and at PD. The V2 protein is mainly localized in the nucleus and cytoplasmic granules when expressed alone; in contrast, V2 forms small punctate granules at PD when co-expressed with C5 or in TYLCV-infected cells. The interaction of V2 and C5 also facilitates their nuclear export. Furthermore, C5-mediated PD localization of V2 is conserved in two other geminiviruses. Therefore, this study solves a long-sought-after functional connection between PD and the geminivirus movement and improves our understanding of geminivirus-encoded MPs and their potential cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Siwen Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pan Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Rosa Lozano-Durán
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen D-72076, Germany
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
7
|
Breves SS, Silva FA, Euclydes NC, Saia TFF, Jean-Baptiste J, Andrade Neto ER, Fontes EPB. Begomovirus-Host Interactions: Viral Proteins Orchestrating Intra and Intercellular Transport of Viral DNA While Suppressing Host Defense Mechanisms. Viruses 2023; 15:1593. [PMID: 37515277 PMCID: PMC10384534 DOI: 10.3390/v15071593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Begomoviruses, which belong to the Geminiviridae family, are intracellular parasites transmitted by whiteflies to dicotyledonous plants thatsignificantly damage agronomically relevant crops. These nucleus-replicating DNA viruses move intracellularly from the nucleus to the cytoplasm and then, like other plant viruses, cause disease by spreading systemically throughout the plant. The transport proteins of begomoviruses play a crucial role in recruiting host components for the movement of viral DNA within and between cells, while exhibiting functions that suppress the host's immune defense. Pioneering studies on species of the Begomovirus genus have identified specific viral transport proteins involved in intracellular transport, cell-to-cell movement, and systemic spread. Recent research has primarily focused on viral movement proteins and their interactions with the cellular host transport machinery, which has significantly expanded understanding on viral infection pathways. This review focuses on three components within this context: (i) the role of viral transport proteins, specifically movement proteins (MPs) and nuclear shuttle proteins (NSPs), (ii) their ability to recruit host factors for intra- and intercellular viral movement, and (iii) the suppression of antiviral immunity, with a particular emphasis on bipartite begomoviral movement proteins.
Collapse
Affiliation(s)
- Sâmera S Breves
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - Fredy A Silva
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - Nívea C Euclydes
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - Thainá F F Saia
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - James Jean-Baptiste
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - Eugenio R Andrade Neto
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - Elizabeth P B Fontes
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| |
Collapse
|
8
|
Atabekova AK, Solovieva AD, Chergintsev DA, Solovyev AG, Morozov SY. Role of Plant Virus Movement Proteins in Suppression of Host RNAi Defense. Int J Mol Sci 2023; 24:ijms24109049. [PMID: 37240394 DOI: 10.3390/ijms24109049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
One of the systems of plant defense against viral infection is RNA silencing, or RNA interference (RNAi), in which small RNAs derived from viral genomic RNAs and/or mRNAs serve as guides to target an Argonaute nuclease (AGO) to virus-specific RNAs. Complementary base pairing between the small interfering RNA incorporated into the AGO-based protein complex and viral RNA results in the target cleavage or translational repression. As a counter-defensive strategy, viruses have evolved to acquire viral silencing suppressors (VSRs) to inhibit the host plant RNAi pathway. Plant virus VSR proteins use multiple mechanisms to inhibit silencing. VSRs are often multifunctional proteins that perform additional functions in the virus infection cycle, particularly, cell-to-cell movement, genome encapsidation, or replication. This paper summarizes the available data on the proteins with dual VSR/movement protein activity used by plant viruses of nine orders to override the protective silencing response and reviews the different molecular mechanisms employed by these proteins to suppress RNAi.
Collapse
Affiliation(s)
- Anastasia K Atabekova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna D Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Denis A Chergintsev
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Sergey Y Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
9
|
Rosas-Diaz T, Cana-Quijada P, Wu M, Hui D, Fernandez-Barbero G, Macho AP, Solano R, Castillo AG, Wang XW, Lozano-Duran R, Bejarano ER. The transcriptional regulator JAZ8 interacts with the C2 protein from geminiviruses and limits the geminiviral infection in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36946519 DOI: 10.1111/jipb.13482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/17/2023] [Indexed: 05/06/2023]
Abstract
Jasmonates (JAs) are phytohormones that finely regulate critical biological processes, including plant development and defense. JASMONATE ZIM-DOMAIN (JAZ) proteins are crucial transcriptional regulators that keep JA-responsive genes in a repressed state. In the presence of JA-Ile, JAZ repressors are ubiquitinated and targeted for degradation by the ubiquitin/proteasome system, allowing the activation of downstream transcription factors and, consequently, the induction of JA-responsive genes. A growing body of evidence has shown that JA signaling is crucial in defending against plant viruses and their insect vectors. Here, we describe the interaction of C2 proteins from two tomato-infecting geminiviruses from the genus Begomovirus, tomato yellow leaf curl virus (TYLCV) and tomato yellow curl Sardinia virus (TYLCSaV), with the transcriptional repressor JAZ8 from Arabidopsis thaliana and its closest orthologue in tomato, SlJAZ9. Both JAZ and C2 proteins colocalize in the nucleus, forming discrete nuclear speckles. Overexpression of JAZ8 did not lead to altered responses to TYLCV infection in Arabidopsis; however, knock-down of JAZ8 favors geminiviral infection. Low levels of JAZ8 likely affect the viral infection specifically, since JAZ8-silenced plants neither display obvious developmental phenotypes nor present differences in their interaction with the viral insect vector. In summary, our results show that the geminivirus-encoded C2 interacts with JAZ8 in the nucleus, and suggest that this plant protein exerts an anti-geminiviral effect.
Collapse
Affiliation(s)
- Tabata Rosas-Diaz
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Pepe Cana-Quijada
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Mengshi Wu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Du Hui
- Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Gemma Fernandez-Barbero
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, 28049, Spain
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Roberto Solano
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, 28049, Spain
| | - Araceli G Castillo
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Xiao-Wei Wang
- Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, Tübingen, D-72076, Germany
| | - Eduardo R Bejarano
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| |
Collapse
|
10
|
The V2 Protein from the Geminivirus Tomato Yellow Leaf Curl Virus Largely Associates to the Endoplasmic Reticulum and Promotes the Accumulation of the Viral C4 Protein in a Silencing Suppression-Independent Manner. Viruses 2022; 14:v14122804. [PMID: 36560808 PMCID: PMC9784378 DOI: 10.3390/v14122804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Viruses are strict intracellular parasites that rely on the proteins encoded in their genomes for the effective manipulation of the infected cell that ultimately enables a successful infection. Viral proteins have to be produced during the cell invasion and takeover in sufficient amounts and in a timely manner. Silencing suppressor proteins evolved by plant viruses can boost the production of viral proteins; although, additional mechanisms for the regulation of viral protein production likely exist. The strongest silencing suppressor encoded by the geminivirus tomato yellow leaf curl virus (TYLCV) is V2: V2 suppresses both post-transcriptional and transcriptional gene silencing (PTGS and TGS), activities that are associated with its localization in punctate cytoplasmic structures and in the nucleus, respectively. However, V2 has been previously described to largely localize in the endoplasmic reticulum (ER), although the biological relevance of this distribution remains mysterious. Here, we confirm the association of V2 to the ER in Nicotiana benthamiana and assess the silencing suppression activity-independent impact of V2 on protein accumulation. Our results indicate that V2 has no obvious influence on the localization of ER-synthesized receptor-like kinases (RLKs) or ER quality control (ERQC)/ER-associated degradation (ERAD), but dramatically enhances the accumulation of the viral C4 protein, which is co-translationally myristoylated, possibly in proximity to the ER. By using the previously described V2C84S/86S mutant, in which the silencing suppression activity is abolished, we uncouple RNA silencing from the observed effect. Therefore, this work uncovers a novel function of V2, independent of its capacity to suppress silencing, in the promotion of the accumulation of another crucial viral protein.
Collapse
|