1
|
Richter J, Cork AJ, Ong Y, Keller N, Hayes AJ, Schembri MA, Jennison AV, Davies MR, Schroder K, Walker MJ, Brouwer S. Characterization of a novel covS SNP identified in Australian group A Streptococcus isolates derived from the M1 UK lineage. mBio 2024:e0336624. [PMID: 39688411 DOI: 10.1128/mbio.03366-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Group A Streptococcus (GAS) is a human-adapted pathogen responsible for a variety of diseases. The GAS M1UK lineage has contributed significantly to the recently reported increases in scarlet fever and invasive infections. However, the basis for its evolutionary success is not yet fully understood. During the transition to systemic disease, the M1 serotype is known to give rise to spontaneous mutations in the control of virulence two-component regulatory system (CovRS) that confer a fitness advantage during invasive infections. Mutations that inactivate CovS function result in the de-repression of key GAS virulence factors such as streptolysin O (SLO), a pore-forming toxin and major trigger of inflammasome/interleukin-1β-dependent inflammation. Conversely, expression of the streptococcal cysteine protease SpeB, which is required during initial stages of colonization and onset of invasive disease, is typically lost in such mutants. In this study, we identified and characterized a novel covS single nucleotide polymorphism detected in three separate invasive M1UK isolates. The resulting CovSAla318Val mutation caused a significant upregulation of SLO resulting in increased inflammasome activation in human THP-1 macrophages, indicating an enhanced inflammatory potential. Surprisingly, SpeB production was unaffected. Site-directed mutagenesis was performed to assess the impact of this mutation on virulence and global gene expression. We found that the CovSAla318Val mutation led to subtle, virulence-specific changes of the CovRS regulon compared to previously characterized covS mutations, highlighting an unappreciated level of complexity in CovRS-dependent gene regulation. Continued longitudinal surveillance is warranted to determine whether this novel covS mutation will expand in the M1UK lineage.IMPORTANCEThe M1UK lineage of GAS has contributed to a recent global upsurge in scarlet fever and invasive infections. Understanding how GAS can become more virulent is critical for infection control and identifying new treatment approaches. The two-component CovRS system, comprising the sensor kinase CovS and transcription factor CovR, is a central regulator of GAS virulence genes. In the M1 serotype, covRS mutations are associated with an invasive phenotype. Such mutations have not been fully characterized in the M1UK lineage. This study identified a novel covS mutation in invasive Australian M1UK isolates that resulted in a more nuanced virulence gene regulation compared to previously characterized covS mutations. A representative isolate displayed upregulated SLO production and triggered amplified interleukin-1β secretion in infected human macrophages, indicating an enhanced inflammatory potential. These findings underscore the need for comprehensive analyses of covRS mutants to fully elucidate their contribution to M1UK virulence and persistence.
Collapse
Affiliation(s)
- Johanna Richter
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Amanda J Cork
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Yvette Ong
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Nadia Keller
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew J Hayes
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Mark A Schembri
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Amy V Jennison
- Public and Environmental Health, Pathology Queensland, Queensland Health, Coopers Plains, Queensland, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark J Walker
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Stephan Brouwer
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Martín-Delgado MC, De Lucas Ramos P, García-Botella A, Cantón R, García-Lledó A, Hernández-Sampelayo T, Gómez-Pavón J, González Del Castillo J, Martín Sánchez FJ, Martínez-Sellés M, Molero García JM, Moreno Guillén S, Rodríguez-Artalejo FJ, Ruiz-Galiana J, Burillo A, Muñoz P, Calvo Rey C, Catalán-González M, Cendejas-Bueno E, Halperin-Benito V, Recio R, Viñuela-Benítez C, Bouza E. Invasive group A Streptococcus infection (Streptococcus pyogenes): Current situation in Spain. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2024; 37:454-471. [PMID: 39076142 PMCID: PMC11578432 DOI: 10.37201/req/067.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Group A ß-hemolytic Streptococcus (S. pyogenes), also known as GAS, is a Gram-positive bacterium. It can be easily identified in the microbiology laboratory by its ability to hemolyse blood in culture media. This bacterium is highly virulent due to its production of enzymes and toxins, and its ability to cause immunologically mediated diseases such as rheumatic fever and post-streptococcal glomerulonephritis. GAS is the primary cause of bacterial pharyngotonsillitis, although it is typically a benign and non-invasive disease. However, it also has the potential to cause severe skin and soft tissue infections, necrotising fasciitis, bacteraemia and endocarditis, pneumonia and empyema, and streptococcal toxic shock syndrome, without any age or predisposition limits. The term invasive GAS disease (iGAS) is used to refer to this group of conditions. In more developed countries, iGAS disease has declined thanks to improved hygiene and the availability of antibiotics. For example, rheumatic fever has practically disappeared in countries such as Spain. However, recent data suggests a potential increase in some iGAS diseases, although the accuracy of this data is not consistent. Because of this, the COVID and Emerging Pathogens Committee of the Illustrious Official College of Physicians of Madrid (ICOMEM) has posed several questions about invasive GAS infection, especially its current situation in Spain. The committee has enlisted the help of several experts in the field to answer these questions. The following lines contain the answers that we have collaboratively produced, aiming to assist not only the members of ICOMEM but also anyone interested in this topic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - E Bouza
- Emilio Bouza. Servicio de Microbiología Clínica y Enfermedades Infecciosas. Hospital General Universitario Gregorio Marañón, Universidad Complutense. CIBER de Enfermedades Respiratorias (CIBERES). Madrid. Spain.
| |
Collapse
|
3
|
Hall JN, Bah SY, Khalid H, Brailey A, Coleman S, Kirk T, Hussain N, Tovey M, Chaudhuri RR, Davies S, Tilley L, de Silva T, Turner CE. Molecular characterization of Streptococcus pyogenes (StrepA) non-invasive isolates during the 2022-2023 UK upsurge. Microb Genom 2024; 10:001277. [PMID: 39133528 PMCID: PMC11318961 DOI: 10.1099/mgen.0.001277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
At the end of 2022 into early 2023, the UK Health Security Agency reported unusually high levels of scarlet fever and invasive disease caused by Streptococcus pyogenes (StrepA or group A Streptococcus). During this time, we collected and genome-sequenced 341 non-invasive throat and skin S. pyogenes isolates identified during routine clinical diagnostic testing in Sheffield, a large UK city. We compared the data with that obtained from a similar collection of 165 isolates from 2016 to 2017. Numbers of throat-associated isolates collected peaked in early December 2022, reflecting the national scarlet fever upsurge, while skin infections peaked later in December. The most common emm-types in 2022-2023 were emm1 (28.7 %), emm12 (24.9 %) and emm22 (7.7 %) in throat and emm1 (22 %), emm12 (10 %), emm76 (18 %) and emm49 (7 %) in skin. While all emm1 isolates were the M1UK lineage, the comparison with 2016-2017 revealed diverse lineages in other emm-types, including emm12, and emergent lineages within other types including a new acapsular emm75 lineage, demonstrating that the upsurge was not completely driven by a single genotype. The analysis of the capsule locus predicted that only 51 % of throat isolates would produce capsule compared with 78% of skin isolates. Ninety per cent of throat isolates were also predicted to have high NADase and streptolysin O (SLO) expression, based on the promoter sequence, compared with only 56% of skin isolates. Our study has highlighted the value in analysis of non-invasive isolates to characterize tissue tropisms, as well as changing strain diversity and emerging genomic features which may have implications for spillover into invasive disease and future S. pyogenes upsurges.
Collapse
Affiliation(s)
- Jennifer N. Hall
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
- Medical Research Council Unit The Gambia at The London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Saikou Y. Bah
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
- Medical Research Council Unit The Gambia at The London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Henna Khalid
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Alison Brailey
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Sarah Coleman
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Tracey Kirk
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Naveed Hussain
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Mark Tovey
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Roy R. Chaudhuri
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Steve Davies
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Lisa Tilley
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Thushan de Silva
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
| | - Claire E. Turner
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
4
|
Gao P, Wang L, Wang S, Li G, Yi C, Wang Y, Li L, Zhang A, Zhou H, Han L. The activity of hyaD contributed to the virulence of avian Pasteurella multocida. Microb Pathog 2024; 193:106768. [PMID: 38960217 DOI: 10.1016/j.micpath.2024.106768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Fowl cholera is an infectious disease that affects both poultry and wild birds, characterized by hemorrhagic and septicemic symptoms, caused by Pasteurella multocida (P. multocida), and leading to substantial economic losses in the poultry sector. The development of genetic engineering vaccines against avian P. multocida encountered early-stage challenges due to the limited availability of effective gene editing tools. Presently, NgAgoDM-enhanced homologous recombination stands as a potent technique for achieving efficient gene knockout in avian P. multocida. Hence, this study employed NgAgoDM-enhanced homologous recombination to target and knockout hyaE (239-359aa), hyaD, hexABC, and hexD, denoted as ΔhyaE (239-359aa), ΔhyaD, ΔhexABC, and ΔhexD, respectively. Additionally, we generated a hyaD recovery strain with two point mutations, designated as mhyaD. Thus, this study systematically examined the impact of capsular synthetic gene clusters on the pathogenicity of P. multocida. Moreover, the study demonstrated the critical role of hyaD activity in the virulence of avian P. multocida. This study offers novel insights for enhancing attenuated vaccines further.
Collapse
Affiliation(s)
- Peiying Gao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Libo Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Shan Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Wuhan Keqian Biology Co., Ltd, Wuhan, 430070, China
| | - Guohong Li
- Wuhan Keqian Biology Co., Ltd, Wuhan, 430070, China
| | - Chenyang Yi
- Wuhan Keqian Biology Co., Ltd, Wuhan, 430070, China
| | - Yuhua Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Long Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, 430070, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, 430070, China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, 430070, China
| | - Li Han
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
5
|
Shi YA, Lu SL, Noda T, Chiu CH, Chiang-Ni C. Capsule-deficient group A Streptococcus evades autophagy-mediated killing in macrophages. mBio 2024; 15:e0077124. [PMID: 38819157 PMCID: PMC11253618 DOI: 10.1128/mbio.00771-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024] Open
Abstract
The hyaluronic acid capsule is crucial in protecting group A Streptococcus (GAS) against phagocytic killing. However, there have been reported outbreaks caused by capsule-deficient GAS strains, and the mechanisms underlying their evasion of immune clearance remain unclear. This study demonstrated that the capsule-deficient mutant [Cap(-)] of the emm1 strain increased survival within phagocytic cells compared to the wild-type strain [Cap(+)]. Although both Cap(+) and Cap(-) strains exhibited similar abilities to disrupt the phagosome, only the Cap(+) strain was colocalized with lysosomes and acidified compartments in phagocytic cells, indicating its susceptibility to autophagosome elimination. In contrast, the Cap(-) mutant evaded the recognition of galectin-8 and ubiquitin, impairing selective autophagy-mediated elimination. These findings suggest that a deficiency in the capsule could impair the intracellular elimination of GAS in macrophages, revealing previously unknown aspects of the host's recognition of the GAS capsule in macrophages. IMPORTANCE Group A Streptococcus (GAS) is a Gram-positive bacterium that causes diseases ranging from mild pharyngitis to severe necrotizing fasciitis. Phagocytic cells serve as the primary defense against bacterial infections, exhibiting remarkable efficiency in eliminating intracellular pathogens. The hyaluronic acid capsule is a critical virulence factor that contributes to the resistance of phagocytosis in GAS. Nevertheless, the outbreaks caused by GAS strains that lack the hyaluronic acid capsule have been reported, and the selective advantage of capsule-deficient strains during infection is not fully understood. This study showed that the autophagic adaptor proteins recognize the capsulated GAS strain but not the capsule-deficient mutant, indicating that the hyaluronic acid capsule could be the autophagic target in macrophages. These findings imply that the hyaluronic acid capsule of GAS actually enhances its elimination within phagocytic cells, subverting the understanding of the capsule in GAS pathogenesis.
Collapse
Affiliation(s)
- Yong-An Shi
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shiou-Ling Lu
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Takeshi Noda
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chuan Chiang-Ni
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
6
|
Mousavi S, Esfandiar R, Najafpour-Darzi G. Hyaluronic acid production by Streptococcus zooepidemicus MW26985 using potato peel waste hydrolyzate. Bioprocess Biosyst Eng 2024; 47:1003-1015. [PMID: 38811468 DOI: 10.1007/s00449-024-03007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/20/2024] [Indexed: 05/31/2024]
Abstract
In this research, we examined the production of hyaluronic acid (HA) by Streptococcus zooepidemicus strain MW26985 using different substrates and potato peel waste (PPW) as an affordable substrate. First, culture medium components, including carbon and nitrogen sources, were optimized for bacterial HA production. Five different carbon sources (glucose, sucrose, lactose, sago starch, and potato starch, at a concentration of 30 g/L) and three distinct nitrogen sources (peptone, yeast extract, and ammonium sulfate, at a concentration of 10 g/L) were investigated. Glucose, among the carbon sources, and yeast extract, among nitrogen sources, produced the most HA which was determined as 1.41 g/L. Afterward, potato peel sugars were extracted by dilute acid and enzymatic hydrolysis and then employed as a cost-effective carbon source for the growth of S. zooepidemicus. Based on the results, the fermentation process yielded 0.59 g/L HA from potato peel sugars through acid hydrolysis and 0.92 g/L HA from those released by enzymatic hydrolysis. The supplementation of both hydrolyzates with glucose as an additional carbon source enhanced HA production to 0.95 g/L and 1.18 g/L using acidic and enzymatic hydrolyzates, respectively. The cetyltrimethylammonium bromide (CTAB) turbidimetric method was used to evaluate the concentration of HA in the fermentation broth using the colorimetric method. Also, the peaks observed by Fourier transform infrared (FTIR) spectroscopy confirmed that the exopolysaccharide (EPS) was composed of HA. These observations demonstrate that potato peel residues can be a novel alternative as a carbon source for the economical production of HA by S. zooepidemicus.
Collapse
Affiliation(s)
- Seyedali Mousavi
- Biotechnology Research Laboratory, Department of Biochemical Engineering, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, P.O. Box 47148-71167, Babol, Iran
| | - Razieh Esfandiar
- Biotechnology Research Laboratory, Department of Biochemical Engineering, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, P.O. Box 47148-71167, Babol, Iran
| | - Ghasem Najafpour-Darzi
- Biotechnology Research Laboratory, Department of Biochemical Engineering, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, P.O. Box 47148-71167, Babol, Iran.
| |
Collapse
|
7
|
Zöngür A. Antimicrobial, Antioxidant and Cytotoxic Effects of Essential Oil, Fatty Acids and Bioactive Compounds of Beta vulgaris var. crassa (Fodder Beet). Indian J Microbiol 2024; 64:719-731. [PMID: 39010984 PMCID: PMC11246347 DOI: 10.1007/s12088-024-01269-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 03/24/2024] [Indexed: 07/17/2024] Open
Abstract
Beta vulgaris var. crassa is undoubtedly a very important plant that is not used enough in the world. In this study, it was aimed to determine the cytotoxic activities of the components (essential oils, fatty acids, total phenol and flavonoid) found in the leaf parts of Beta vulgaris var. crassa against PC-3, MCF-7 and HeLa cancer cell lines. In addition, the effectiveness of these ingredients against bacteria and fungi that can cause serious health problems in humans was tested. In experiments, three tumor cell lines were exposed to various plant extract concentrations (31.25, 62.5, 125, 250, 500 and 1000 µg/mL) for 72 h. It was found that plant extracts showed high (SI: 2.14 > 2) cytotoxicity to PC-3 cells, moderate (SI: 1.62 < 2) to HeLa cells, and low (SI: 0.93 < 2) cytotoxicity to MCF-7 cells. Also, different plant extract concentrations were found to cause an inhibition rate of 16.3-22.3% in Staphylococcus aureus, 16.8-23.5% in Streptococcus pyogenes and 12-16.2% in Cutibacterium acnes. Similarly, inhibition rates were determined between 9.5-20.7% for Candida albicans, 3.5-7.7% for Candida auris, and 5.5-15.1% for Candida glabrata. The results showed that the plant extract exhibited a concentration-dependent cytotoxic and antimicrobial effect against both cancer cell lines and microbial pathogens. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01269-8.
Collapse
|
8
|
Carroll C, Meehan M, Connolly R, Prendergast J, Magnone C, Meehan A, Migone C, Quintyne KI, Carpenter C, Byrne H, Cunney R, Mullane P. Outbreak of invasive Group A streptococcus disease in a nursing home in Ireland in February 2023 caused by emm type 18. Euro Surveill 2024; 29:2300609. [PMID: 38666398 PMCID: PMC11063667 DOI: 10.2807/1560-7917.es.2024.29.17.2300609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/03/2024] [Indexed: 04/30/2024] Open
Abstract
An out-of-season increase in cases of invasive Group A streptococcus (iGAS) was observed in Ireland between October 2022 and August 2023. We describe the management of an iGAS outbreak involving three nursing home residents in Ireland in early 2023. A regional Department of Public Health was notified of an iGAS case in a nursing home resident in January 2023. When two further cases among residents were notified 7 days later, an outbreak was declared. Surveillance for GAS/iGAS infection in residents and staff was undertaken. The site was visited to provide infection prevention and control (IPC) support. Isolates were emm typed. A total of 38 residents and 29 staff in contact with resident cases were provided with antibiotic chemoprophylaxis. Seven additional staff with no direct resident contact also received chemoprophylaxis after finding one probable localised GAS infection among them. No more iGAS cases subsequently occurred.Site visit recommendations included advice on terminal cleaning and cleaning of shared equipment, as well as strengthening staff education on hand hygiene and masking. All isolates were of emm subtype 18.12, a subtype not previously detected in Ireland. Key outbreak control measures were rapid delivery of IPC support and chemoprophylaxis. Emm18 is infrequently associated with GAS infections.
Collapse
Affiliation(s)
- Ciara Carroll
- Public Health HSE Dublin and North East, Dr Steeven's Hospital, Dublin & Kells Business Park, Kells, Ireland
| | - Mary Meehan
- Irish Meningitis and Sepsis Reference Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland
| | | | - Jayne Prendergast
- Public Health HSE Dublin and North East, Dr Steeven's Hospital, Dublin & Kells Business Park, Kells, Ireland
| | - Colette Magnone
- Public Health HSE Dublin and North East, Dr Steeven's Hospital, Dublin & Kells Business Park, Kells, Ireland
| | - Aine Meehan
- National Immunisation Office, Manor Street Business Park, Dublin, Ireland
| | - Chantal Migone
- National Immunisation Office, Manor Street Business Park, Dublin, Ireland
| | - Keith Ian Quintyne
- Public Health HSE Dublin and North East, Dr Steeven's Hospital, Dublin & Kells Business Park, Kells, Ireland
| | - Caroline Carpenter
- Public Health HSE Dublin and North East, Dr Steeven's Hospital, Dublin & Kells Business Park, Kells, Ireland
| | - Helen Byrne
- Health Protection Surveillance Centre, Dublin, Ireland
| | - Robert Cunney
- Irish Meningitis and Sepsis Reference Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Paul Mullane
- Public Health HSE Dublin and North East, Dr Steeven's Hospital, Dublin & Kells Business Park, Kells, Ireland
| |
Collapse
|
9
|
Xu H, Zhu N, Chen Y, Yue H, Zhuo M, Wangkahart E, Liang Q, Wang R. Pathogenicity of Streptococcus iniae causing mass mortalities of yellow catfish ( Tachysurus fulvidraco) and its induced host immune response. Front Microbiol 2024; 15:1374688. [PMID: 38585696 PMCID: PMC10995319 DOI: 10.3389/fmicb.2024.1374688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 04/09/2024] Open
Abstract
The outbreak of mass mortality occurred in Tachysurus fulvidraco farm in Hubei province of China. The pathogenic strain of Streptococcus iniae (termed 2022SI08) was isolated and identified from diseased T. fulvidraco, based on morphological, physiological, and biochemical characteristics, as well as 16S rRNA gene sequence and phylogenetic analysis. Further, the whole genome of isolate S. iniae was sequenced and predicted to contain one single circular chromosome of 1,776,777 bp with a GC content of 37.14%. The genomic sequence analysis showed that 2022SI08 was positive for 204 virulent and 127 antibiotic resistant genes. The experimental challenge demonstrated the high pathogenicity of the retrieved isolate of S. iniae, with a median lethal dosage (LD50) 9.53 × 105 CFU/g. Histopathological examination indicated that the 2022SI08 strain could induce extensive tissue cell degeneration, necrosis, hemorrhage, and inflammation in the skin, gill, fin, spleen, liver, kidney, intestine, eye, and brain. Moreover, the innate immune enzyme activities in serum such as acid phosphatase and alkaline phosphatase were increased significantly at 24 and 48 h post infection (hpi) and then decreased at 168 hpi. The transcriptional profile of immune associated gene in T. fulvidraco following bacterial infection was detected at each point of time, and the results revealed clear transcriptional activation of those genes, which proving their reacting and regulatory role during the response of the host against S. iniae infection. The results revealed that S. iniae was an etiological agent in the mass mortalities of T. fulvidraco and this research will be conducive for increasing our understanding on pathogenesis and host defensive system in S. iniae invasion.
Collapse
Affiliation(s)
- Hongsen Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Nengbin Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yiling Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Huamei Yue
- Key Lab of Freshwater Biodiversity Conservation Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, CAFS, Wuhan, China
| | - Meiqin Zhuo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Mahasarakham, Thailand
| | - Qianrong Liang
- Zhejiang Fisheries Technical Extension Center, and Zhejiang Fisheries Test and Aquatic Disease Prevention Center, Hangzhou, China
| | - Rui Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
10
|
Gao S, Jin W, Quan Y, Li Y, Shen Y, Yuan S, Yi L, Wang Y, Wang Y. Bacterial capsules: Occurrence, mechanism, and function. NPJ Biofilms Microbiomes 2024; 10:21. [PMID: 38480745 PMCID: PMC10937973 DOI: 10.1038/s41522-024-00497-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
In environments characterized by extended multi-stress conditions, pathogens develop a variety of immune escape mechanisms to enhance their ability to infect the host. The capsules, polymers that bacteria secrete near their cell wall, participates in numerous bacterial life processes and plays a crucial role in resisting host immune attacks and adapting to their niche. Here, we discuss the relationship between capsules and bacterial virulence, summarizing the molecular mechanisms of capsular regulation and pathogenesis to provide new insights into the research on the pathogenesis of pathogenic bacteria.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yue Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
11
|
Shannon BA, Hurst JR, Flannagan RS, Craig HC, Rishi A, Kasper KJ, Tuffs SW, Heinrichs DE, McCormick JK. Streptolysin S is required for Streptococcus pyogenes nasopharyngeal and skin infection in HLA-transgenic mice. PLoS Pathog 2024; 20:e1012072. [PMID: 38452154 PMCID: PMC10950238 DOI: 10.1371/journal.ppat.1012072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/19/2024] [Accepted: 02/25/2024] [Indexed: 03/09/2024] Open
Abstract
Streptococcus pyogenes is a human-specific pathogen that commonly colonizes the upper respiratory tract and skin, causing a wide variety of diseases ranging from pharyngitis to necrotizing fasciitis and toxic shock syndrome. S. pyogenes has a repertoire of secreted virulence factors that promote infection and evasion of the host immune system including the cytolysins streptolysin O (SLO) and streptolysin S (SLS). S. pyogenes does not naturally infect the upper respiratory tract of mice although mice transgenic for MHC class II human leukocyte antigens (HLA) become highly susceptible. Here we used HLA-transgenic mice to assess the role of both SLO and SLS during both nasopharyngeal and skin infection. Using S. pyogenes MGAS8232 as a model strain, we found that an SLS-deficient strain exhibited a 100-fold reduction in bacterial recovery from the nasopharynx and a 10-fold reduction in bacterial burden in the skin, whereas an SLO-deficient strain did not exhibit any infection defects in these models. Furthermore, depletion of neutrophils significantly restored the bacterial burden of the SLS-deficient bacteria in skin, but not in the nasopharynx. In mice nasally infected with the wildtype S. pyogenes, there was a marked change in localization of the tight junction protein ZO-1 at the site of infection, demonstrating damage to the nasal epithelia that was absent in mice infected with the SLS-deficient strain. Overall, we conclude that SLS is required for the establishment of nasopharyngeal infection and skin infection in HLA-transgenic mice by S. pyogenes MGAS8232 and provide evidence that SLS contributes to nasopharyngeal infection through the localized destruction of nasal epithelia.
Collapse
Affiliation(s)
- Blake A. Shannon
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Jacklyn R. Hurst
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Ronald S. Flannagan
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Heather C. Craig
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Aanchal Rishi
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Katherine J. Kasper
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Stephen W. Tuffs
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - David E. Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - John K. McCormick
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
12
|
Guerra S, LaRock C. Group A Streptococcus interactions with the host across time and space. Curr Opin Microbiol 2024; 77:102420. [PMID: 38219421 PMCID: PMC10922997 DOI: 10.1016/j.mib.2023.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
Group A Streptococcus (GAS) has a fantastically wide tissue tropism in humans, manifesting as different diseases depending on the strain's virulence factor repertoire and the tissue involved. Activation of immune cells and pro-inflammatory signaling has historically been considered an exclusively host-protective response that a pathogen would seek to avoid. However, recent advances in human and animal models suggest that in some tissues, GAS will activate and manipulate specific pro-inflammatory pathways to promote growth, nutrient acquisition, persistence, recurrent infection, competition with other microbial species, dissemination, and transmission. This review discusses molecular interactions between the host and pathogen to summarize how infection varies across tissue and stages of inflammation. A need for inflammation for GAS survival during common, mild infections may drive selection for mechanisms that cause pathological and excess inflammation severe diseases such as toxic shock syndrome, necrotizing fasciitis, and rheumatic heart disease.
Collapse
Affiliation(s)
- Stephanie Guerra
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Christopher LaRock
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Antimicrobial Resistance Center, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
13
|
Gao S, Shen Y, Yuan S, Quan Y, Li X, Wang Y, Yi L, Wang Y. Methyl anthranilate deteriorates biofilm structure of Streptococcus suis and antagonizes the capsular polysaccharide defence effect. Int J Antimicrob Agents 2023; 62:106996. [PMID: 37788717 DOI: 10.1016/j.ijantimicag.2023.106996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/28/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND Streptococcus suis is an important zoonotic pathogen that often causes biofilm-associated infection. Bacterial biofilm-dependent infection is associated with enhanced drug resistance, making it difficult to eradicate. Novel therapeutic approaches are required urgently to treat infections associated with S. suis biofilm. This study aimed to investigate the effects and mechanisms of methyl anthranilate (MA) on S. suis biofilm. METHODS The effect of MA on S. suis biofilm was determined using the crystal violet method, and the microstructure of the biofilm was observed by electron microscopy. The effects on capsular polysaccharides were determined using the phenol-sulphuric acid method and high-performance liquid chromatography. Adhesion and antiphagocytosis properties of S. suis were detected via cell assays. Molecular docking, molecular dynamics simulation and enzyme activity inhibition assays were used to further explore the effect of MA on AI-2 quorum sensing (QS) of S. suis. Finally, the therapeutic effect of MA was investigated using a mouse infection model. RESULTS MA destroyed the structure of S. suis biofilm, hindered biofilm formation, and reduced the synthesis of capsular polysaccharides significantly, which further weakened the adhesion and antiphagocytosis ability of S. suis. MA had a docking effect and binding site (SER76 and ASP197) similar to S-adenosylhomocysteine (SAH). Further analysis showed that MA competitively bound 5'-methyladenosine/S-adenosine homocysteine nucleosidase with SAH to interfere with AI-2 QS. In a mouse model, MA reduced the bacterial burden and inflammatory infiltrates effectively. CONCLUSION This study revealed the antibiofilm effects of MA, and highlighted its potential as a QS inhibitor against S. suis infection.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Centre for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Centre for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Centre for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Centre for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Xingping Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Centre for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Centre for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Li Yi
- Henan Provincial Engineering Research Centre for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China; College of Life Science, Luoyang Normal University, Luoyang, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Centre for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China.
| |
Collapse
|
14
|
Wilde S, Dash A, Johnson A, Mackey K, Okumura CYM, LaRock CN. Detoxification of reactive oxygen species by the hyaluronic acid capsule of group A Streptococcus. Infect Immun 2023; 91:e0025823. [PMID: 37874162 PMCID: PMC10652860 DOI: 10.1128/iai.00258-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/17/2023] [Indexed: 10/25/2023] Open
Abstract
The pro-inflammatory cytokine IL-6 regulates antimicrobial responses that are broadly crucial in the defense against infection. Our prior work shows that IL-6 promotes the killing of the M4 serotype group A Streptococcus (GAS) but does not impact the globally disseminated M1T1 serotype associated with invasive infections. Using in vitro and in vivo infection models, we show that IL-6 induces phagocyte reactive oxygen species (ROS) that are responsible for the differential susceptibility of M4 and M1T1 GAS to IL-6-mediated defenses. Clinical isolates naturally deficient in capsule, or M1T1 strains deficient in capsule production, are sensitive to this ROS killing. The GAS capsule is made of hyaluronic acid, an antioxidant that detoxifies ROS and can protect acapsular M4 GAS when added exogenously. During in vitro interactions with macrophages and neutrophils, acapsular GAS can also be rescued with the antioxidant N-acetylcysteine, suggesting this is a major virulence contribution of the capsule. In an intradermal infection model with gp91phox -/- (chronic granulomatous disease [CGD]) mice, phagocyte ROS production had a modest effect on bacterial proliferation and the cytokine response but significantly limited the size of the bacterial lesion in the skin. These data suggest that the capsule broadly provides enhanced resistance to phagocyte ROS but is not essential for invasive infection. Since capsule-deficient strains are observed across several GAS serotypes and are competent for transmission and both mild and invasive infections, additional host or microbe factors may contribute to ROS detoxification during GAS infections.
Collapse
Affiliation(s)
- Shyra Wilde
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Ananya Dash
- Immunology and Molecular Pathogenesis Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Anders Johnson
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Kialani Mackey
- Department of Biology, Occidental College, Los Angeles, California, USA
| | | | - Christopher N. LaRock
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|