1
|
Si JY, Chen YM, Sun YH, Gu MX, Huang ML, Shi LL, Yu X, Yang X, Xiong Q, Ma CB, Liu P, Shi ZL, Yan H. Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness. Nat Commun 2024; 15:8869. [PMID: 39402048 PMCID: PMC11473667 DOI: 10.1038/s41467-024-53029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/24/2024] [Indexed: 10/17/2024] Open
Abstract
Our comprehensive understanding of the multi-species ACE2 adaptiveness of sarbecoviruses remains elusive, particularly for those with various receptor binding motif (RBM) insertions/deletions (indels). Here, we analyzed RBM sequences from 268 sarbecoviruses categorized into four RBM indel types. We examined the ability of 20 representative sarbecovirus Spike glycoproteins (S) and derivatives in utilizing ACE2 from various bats and several other mammalian species. We reveal that sarbecoviruses with long RBMs (type-I) can achieve broad ACE2 tropism, whereas viruses with single deletions in Region 1 (type-II) or Region 2 (type-III) exhibit narrower ACE2 tropism. Sarbecoviruses with double region deletions (type-IV) completely lost ACE2 usage, which is restricted by clade-specific residues within and outside RBM. Lastly, we propose the evolution of sarbecovirus RBM indels and illustrate how loop lengths, disulfide, and residue determinants shape multi-species ACE2 adaptiveness. This study provides profound insights into the mechanisms governing ACE2 usage and spillover risks of sarbecoviruses.
Collapse
Affiliation(s)
- Jun-Yu Si
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yuan-Mei Chen
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ye-Hui Sun
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Meng-Xue Gu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Mei-Ling Huang
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Lu-Lu Shi
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiao Yu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiao Yang
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Qing Xiong
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Cheng-Bao Ma
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Peng Liu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Zheng-Li Shi
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Huan Yan
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Han T, Song L, Niu X, Qiu M, Wang Y, Wang J, Sun X, Ma J, Hu S, Feng Z. Synergistic peptide combinations designed to suppress SARS-CoV-2. Heliyon 2024; 10:e30489. [PMID: 38726116 PMCID: PMC11079089 DOI: 10.1016/j.heliyon.2024.e30489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024] Open
Abstract
The SARS-CoV-2, responsible for the COVID-19 pandemic, poses a significant threat to global healthcare. Peptide and peptide-based inhibitors, known for their safety, efficacy, and selectivity, have recently emerged as promising candidates for treating late-developing viral infections. In this study, three peptides were selected to target different stages of viral invasion, specifically ACE2 and S protein binding, as well as membrane fusion. The objective was to assess their ability to impede the entry of the SARS-CoV-2 Spike pseudotyped virus. Our findings revealed that a combination of these three peptides demonstrated enhanced antiviral effects. This outcome substantiates the feasibility of developing effective peptide combinations to combat diseases related to SARS-CoV-2. Moreover, the three-peptide combinations, designed to target multiple aspects of SARS-CoV-2 viral entry, exhibited heightened viral inhibition and broad-spectrum antiviral properties.
Collapse
Affiliation(s)
- Tao Han
- Department of Neonatology, Senior Department of Pediatrics, the Seventh Medical Center of Chinese PLA General Hospital, China
| | - Linhong Song
- Department of Pediatric Cardiac Surgery, Senior Department of Pediatrics, the Seventh Medical Center of Chinese PLA General Hospital, China
| | - Xinxin Niu
- Department of Organ Transplantation, the Third Medical Center of Chinese PLA General Hospital, China
| | - Meng Qiu
- Senior Department of Pediatrics, the Seventh Medical Center of Chinese PLA General Hospital, China
| | - Yi Wang
- Institute of Pediatrics, Senior Department of Pediatrics, the Seventh Medical Center of Chinese PLA General Hospital, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, the Seventh Medical Center of Chinese PLA General Hospital, China
| | - Xiuyan Sun
- Department of Obstetrics and Gynecology, the Seventh Medical Center of Chinese PLA General Hospital, China
| | - Jiali Ma
- Department of Clinical Laboratory, the Seventh Medical Center of Chinese PLA General Hospital, China
| | - Siqi Hu
- Institute of Pediatrics, Senior Department of Pediatrics, the Seventh Medical Center of Chinese PLA General Hospital, China
| | - Zhichun Feng
- Senior Department of Pediatrics, the Seventh Medical Center of Chinese PLA General Hospital, China
| |
Collapse
|
3
|
Esquivel Gomez LR, Weber A, Kocher A, Kühnert D. Recombination-aware phylogenetic analysis sheds light on the evolutionary origin of SARS-CoV-2. Sci Rep 2024; 14:541. [PMID: 38177346 PMCID: PMC10766966 DOI: 10.1038/s41598-023-50952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/28/2023] [Indexed: 01/06/2024] Open
Abstract
SARS-CoV-2 can infect human cells through the recognition of the human angiotensin-converting enzyme 2 receptor. This affinity is given by six amino acid residues located in the variable loop of the receptor binding domain (RBD) within the Spike protein. Genetic recombination involving bat and pangolin Sarbecoviruses, and natural selection have been proposed as possible explanations for the acquisition of the variable loop and these amino acid residues. In this study we employed Bayesian phylogenetics to jointly reconstruct the phylogeny of the RBD among human, bat and pangolin Sarbecoviruses and detect recombination events affecting this region of the genome. A recombination event involving RaTG13, the closest relative of SARS-CoV-2 that lacks five of the six residues, and an unsampled Sarbecovirus lineage was detected. This result suggests that the variable loop of the RBD didn't have a recombinant origin and the key amino acid residues were likely present in the common ancestor of SARS-CoV-2 and RaTG13, with the latter losing five of them probably as the result of recombination.
Collapse
Affiliation(s)
- Luis Roger Esquivel Gomez
- Transmission, Infection, Diversification and Evolution Group (tide), Max Planck Institute of Geoanthropology (Formerly MPI for the Science of Human History), Jena, Germany.
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Phylogenomics Unit, Center for Artificial Intelligence in Public Health Research, Robert Koch Institute, Wildau, Germany.
| | - Ariane Weber
- Transmission, Infection, Diversification and Evolution Group (tide), Max Planck Institute of Geoanthropology (Formerly MPI for the Science of Human History), Jena, Germany
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Arthur Kocher
- Transmission, Infection, Diversification and Evolution Group (tide), Max Planck Institute of Geoanthropology (Formerly MPI for the Science of Human History), Jena, Germany
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Denise Kühnert
- Transmission, Infection, Diversification and Evolution Group (tide), Max Planck Institute of Geoanthropology (Formerly MPI for the Science of Human History), Jena, Germany.
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Phylogenomics Unit, Center for Artificial Intelligence in Public Health Research, Robert Koch Institute, Wildau, Germany.
| |
Collapse
|
4
|
Palyanov AY, Palyanova NV. On the space of SARS-CoV-2 genetic sequence variants. Vavilovskii Zhurnal Genet Selektsii 2023; 27:839-850. [PMID: 38213712 PMCID: PMC10777302 DOI: 10.18699/vjgb-23-97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 01/13/2024] Open
Abstract
The coronavirus pandemic caused by the SARS-CoV-2 virus, which humanity resisted using the latest advances in science, left behind, among other things, extensive genetic data. Every day since the end of 2019, samples of the virus genomes have been collected around the world, which makes it possible to trace its evolution in detail from its emergence to the present. The accumulated statistics of testing results showed that the number of confirmed cases of SARS-CoV-2 infection was at least 767.5 million (9.5 % of the current world population, excluding asymptomatic people), and the number of sequenced virus genomes is more than 15.7 million (which is over 2 % of the total number of infected people). These new data potentially contain information about the mechanisms of the variability and spread of the virus, its interaction with the human immune system, the main parameters characterizing the mechanisms of the development of a pandemic, and much more. In this article, we analyze the space of possible variants of SARS-CoV-2 genetic sequences both from a mathematical point of view and taking into account the biological limitations inherent in this system, known both from general biological knowledge and from the consideration of the characteristics of this particular virus. We have developed software capable of loading and analyzing SARS-CoV-2 nucleotide sequences in FASTA format, determining the 5' and 3' UTR positions, the number and location of unidentified nucleotides ("N"), performing alignment with the reference sequence by calling the program designed for this, determining mutations, deletions and insertions, as well as calculating various characteristics of virus genomes with a given time step (days, weeks, months, etc.). The data obtained indicate that, despite the apparent mathematical diversity of possible options for changing the virus over time, the corridor of the evolutionary trajectory that the coronavirus has passed through seems to be quite narrow. Thus it can be assumed that it is determined to some extent, which allows us to hope for a possibility of modeling the evolution of the coronavirus.
Collapse
Affiliation(s)
- A Yu Palyanov
- A.P. Ershov Institute of Informatics Systems of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Research Institute of Virology, Federal Research Center of Fundamental and Translational Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - N V Palyanova
- Research Institute of Virology, Federal Research Center of Fundamental and Translational Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
5
|
Fujita S, Kosugi Y, Kimura I, Tokunaga K, Ito J, Sato K. Determination of the factors responsible for the tropism of SARS-CoV-2-related bat coronaviruses to Rhinolophus bat ACE2. J Virol 2023; 97:e0099023. [PMID: 37724881 PMCID: PMC10779674 DOI: 10.1128/jvi.00990-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 09/21/2023] Open
Abstract
IMPORTANCE The efficiency of infection receptor use is the first step in determining the species tropism of viruses. After the coronavirus disease 2019 pandemic, a number of SARS-CoV-2-related coronaviruses (SC2r-CoVs) were identified in Rhinolophus bats, and some of them can use human angiotensin converting enzyme 2 (ACE2) for the infection receptor without acquiring additional mutations. This means that the potential of certain SC2r-CoVs to cause spillover from bats to humans is "off-the-shelf." However, both SC2r-CoVs and Rhinolophus bat species are highly diversified, and the host tropism of SC2r-CoVs remains unclear. Here, we focus on two Laotian SC2r-CoVs, BANAL-20-236 and BANAL-20-52, and determine how the tropism of SC2r-CoVs to Rhinolophus bat ACE2 is determined at the amino acid resolution level.
Collapse
Affiliation(s)
- Shigeru Fujita
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Kosugi
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Izumi Kimura
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kenzo Tokunaga
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - The Genotype to Phenotype Japan (G2P-Japan) Consortium
MatsunoKeita1NaoNaganori1SawaHirofumi1TanakaShinya1TsudaMasumi1WangLei1OdaYoshikata1FerdousZannatul1ShishidoKenji1FukuharaTakasuke1TamuraTomokazu1SuzukiRigel1SuzukiSaori1ItoHayato1KakuYuMisawaNaokoPlianchaisukArnonGuoZiyiHinayAlfredo A.UriuKeiyaTolentinoJarel Elgin M.ChenLuoPanLinSuganamiMaiChibaMikaYoshimuraRyoYasudaKyokoIidaKeikoOhsumiNaomiStrangeAdam P.TanakaShihoYoshimuraKazuhisa2SadamasuKenji2NagashimaMami2AsakuraHiroyuki2YoshidaIsao2NakagawaSo3Takaori-KondoAkifumi4NagataKayoko4NomuraRyosuke4HorisawaYoshihito4TashiroYusuke4KawaiYugo4TakayamaKazuo4HashimotoRina4DeguchiSayaka4WatanabeYukio4SakamotoAyaka4YasuharaNaokoHashiguchiTakao4SuzukiTateki4KimuraKanako4SasakiJiei4NakajimaYukari4YajimaHisano4IrieTakashi5KawabataRyoko5TabataKaori6IkedaTerumasa7NasserHesham7ShimizuRyo7Monira BegumM. S. T.7JonathanMichael7MugitaYuka7TakahashiOtowa7IchiharaKimiko7MotozonoChihiro7UenoTakamasa7ToyodaMako7SaitoAkatsuki8ShofaMaya8ShibataniYuki8NishiuchiTomoko8ShirakawaKotaro4Hokkaido University, Sapporo, JapanTokyo Metropolitan Institute of Public Health, Shinjuku City, JapanTokai University, Shibuya City, JapanKyoto University, Kyoto, JapanHiroshima University, Hiroshima, JapanKyushu University, Fukuoka, JapanKumamoto University, Kumamoto, JapanUniversity of Miyazaki, Miyazaki, Japan
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
6
|
Liu B, Zhao P, Xu P, Han Y, Wang Y, Chen L, Wu Z, Yang J. A comprehensive dataset of animal-associated sarbecoviruses. Sci Data 2023; 10:681. [PMID: 37805633 PMCID: PMC10560225 DOI: 10.1038/s41597-023-02558-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/11/2023] [Indexed: 10/09/2023] Open
Abstract
Zoonotic spillover of sarbecoviruses (SarbeCoVs) from non-human animals to humans under natural conditions has led to two large-scale pandemics, the severe acute respiratory syndrome (SARS) pandemic in 2003 and the ongoing COVID-19 pandemic. Knowledge of the genetic diversity, geographical distribution, and host specificity of SarbeCoVs is therefore of interest for pandemic surveillance and origin tracing of SARS-CoV and SARS-CoV-2. This study presents a comprehensive repository of publicly available animal-associated SarbeCoVs, covering 1,535 viruses identified from 63 animal species distributed in 43 countries worldwide (as of February 14,2023). Relevant meta-information, such as host species, sampling time and location, was manually curated and included in the dataset to facilitate further research on the potential patterns of viral diversity and ecological characteristics. In addition, the dataset also provides well-annotated sequence sets of receptor-binding domains (RBDs) and receptor-binding motifs (RBMs) for the scientific community to highlight the potential determinants of successful cross-species transmission that could be aid in risk estimation and strategic design for future emerging infectious disease control and prevention.
Collapse
Affiliation(s)
- Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Peng Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Panpan Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Yuyang Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China
| | - Lihong Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China.
| | - Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China.
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 110730, China.
| |
Collapse
|
7
|
Devaux CA, Fantini J. ACE2 receptor polymorphism in humans and animals increases the risk of the emergence of SARS-CoV-2 variants during repeated intra- and inter-species host-switching of the virus. Front Microbiol 2023; 14:1199561. [PMID: 37520374 PMCID: PMC10373931 DOI: 10.3389/fmicb.2023.1199561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Like other coronaviruses, SARS-CoV-2 has ability to spread through human-to-human transmission and to circulate from humans to animals and from animals to humans. A high frequency of SARS-CoV-2 mutations has been observed in the viruses isolated from both humans and animals, suggesting a genetic fitness under positive selection in both ecological niches. The most documented positive selection force driving SARS-CoV-2 mutations is the host-specific immune response. However, after electrostatic interactions with lipid rafts, the first contact between the virus and host proteins is the viral spike-cellular receptor binding. Therefore, it is likely that the first level of selection pressure impacting viral fitness relates to the virus's affinity for its receptor, the angiotensin I converting enzyme 2 (ACE2). Although sufficiently conserved in a huge number of species to support binding of the viral spike with enough affinity to initiate fusion, ACE2 is highly polymorphic both among species and within a species. Here, we provide evidence suggesting that when the viral spike-ACE2 receptor interaction is not optimal, due to host-switching, mutations can be selected to improve the affinity of the spike for the ACE2 expressed by the new host. Notably, SARS-CoV-2 is mutation-prone in the spike receptor binding domain (RBD), allowing a better fit for ACE2 orthologs in animals. It is possibly that this may also be true for rare human alleles of ACE2 when the virus is spreading to billions of people. In this study, we present evidence that human subjects expressing the rare E329G allele of ACE2 with higher allele frequencies in European populations exhibit a improved affinity for the SARS-CoV-2 spike N501Y variant of the virus. This may suggest that this viral N501Y variant emerged in the human population after SARS-CoV-2 had infected a human carrying the rare E329G allele of ACE2. In addition, this viral evolution could impact viral replication as well as the ability of the adaptive humoral response to control infection with RBD-specific neutralizing antibodies. In a shifting landscape, this ACE2-driven genetic drift of SARS-CoV-2 which we have named the 'boomerang effect', could complicate the challenge of preventing COVID with a SARS-CoV-2 spike-derived vaccine.
Collapse
Affiliation(s)
- Christian A. Devaux
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, MEPHI, IHU–Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), Marseille, France
| | - Jacques Fantini
- INSERM UMR_S1072, Marseille, France, Aix-Marseille Université, Marseille, France
| |
Collapse
|