1
|
Zhang X, He B, Lu J, Bao Q, Wang J, Yang Y. The crucial roles and research advances of cGAS‑STING pathway in liver diseases. Ann Med 2024; 56:2394588. [PMID: 39183465 PMCID: PMC11348815 DOI: 10.1080/07853890.2024.2394588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Inflammation responses have identified as a key mediator of in various liver diseases with high morbidity and mortality. cGAS-STING signalling is essential in innate immunity since it triggers release of type I interferons and various of proinflammatory cytokines. The potential connection between cGAS-STING pathway and liver inflammatory diseases has recently been reported widely. In our review, the impact of cGAS-STING on liver inflammation and regulatory mechanism are summarized. Furthermore, many inhibitors of cGAS-STING signalling as promising agents to cure liver inflammation are also explored in detail. A comprehensive knowledge of molecular mechanisms of cGAS-STING signalling in liver inflammation is vital for exploring novel treatments and providing recommendations and perspectives for future utilization.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiongling Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yida Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Luo Y, Chang L, Ji Y, Liang T. ER: a critical hub for STING signaling regulation. Trends Cell Biol 2024; 34:865-881. [PMID: 38423853 DOI: 10.1016/j.tcb.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
The Stimulator of Interferon Genes (STING) has a crucial role in mediating the immune response against cytosolic double-stranded DNA (dsDNA) and its activation is critically involved in various diseases. STING is synthesized, modified, and resides in the endoplasmic reticulum (ER), and its ER exit is intimately connected with its signaling. The ER, primarily known for its roles in protein folding, lipid synthesis, and calcium storage, has been identified as a pivotal platform for the regulation of a wide range of STING functions. In this review, we discuss the emerging factors that regulate STING in the ER and examine the interplay between STING signaling and ER pathways, highlighting the impacts of such regulations on immune responses and their potential implications in STING-related disorders.
Collapse
Affiliation(s)
- Yuan Luo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lei Chang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yewei Ji
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
3
|
Liu Y, Xia H, Wang Y, Han S, Liu Y, Zhu S, Wu Y, Luo J, Dai J, Jia Y. Prognosis and immunotherapy in melanoma based on selenoprotein k-related signature. Int Immunopharmacol 2024; 137:112436. [PMID: 38857552 DOI: 10.1016/j.intimp.2024.112436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Selenium and selenoproteins are closely related to melanoma progression. However, it is unclear how SELENOK affects lipid metabolism, endoplasmic reticulum stress (ERS), immune cell infiltration, survival, and prognosis in melanoma patients. Transcriptome data from melanoma patients was used to investigate SELENOK levels and their effect on prognosis, followed by an investigation of SELENOK's effects on immune cell infiltration. Furthermore, a risk model based on ERS, lipid metabolism, and immune-related genes was constructed, and its utility in melanoma prognosis was evaluated. Finally, the drug sensitivity of the risk model was analyzed to provide a reference for melanoma therapy. The results showed that melanoma with a high SELENOK level had a greater degree of immune cell infiltration and a better prognosis. Additionally, SELENOK was found to regulate ERS, lipid metabolism, and immune cell infiltration in melanoma. The risk model based on SELENOK signature genes successfully predicted the prognosis of melanoma, and the low-risk group exhibited a favorable immunological microenvironment. Furthermore, high-risk patients with melanoma were candidates for chemotherapy with RAS pathway inhibitors, whereas low-risk patients were more susceptible to routinely used chemotherapy medicines. In summary, SELENOK was shown to regulate ERS, lipid metabolism, and immune cell infiltration in melanoma, and SELENOK was positively associated with the prognosis of melanoma. The risk model based on SELENOK signature genes was valuable for melanoma prognosis and therapy.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine)/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Huan Xia
- Department of Pathology, GuiZhou QianNan People's Hospital, Qiannan Pathology Research Center of Guizhou Province, QianNan 558000, China
| | - Yongmei Wang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine)/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Shuang Han
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine)/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Yongfen Liu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine)/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Shengzhang Zhu
- Department of Pathology, GuiZhou QianNan People's Hospital, Qiannan Pathology Research Center of Guizhou Province, QianNan 558000, China
| | - Yongjin Wu
- Department of Clinical Laboratory, GuiZhou QianNan People's Hospital, QianNan 558000, China
| | - Jimin Luo
- Department of Pathology, GuiZhou QianNan People's Hospital, Qiannan Pathology Research Center of Guizhou Province, QianNan 558000, China
| | - Jie Dai
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine)/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China.
| | - Yi Jia
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine)/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
4
|
Ouyang P, Cai Z, Peng J, Lin S, Chen X, Chen C, Feng Z, Wang L, Song G, Zhang Z. SELENOK-dependent CD36 palmitoylation regulates microglial functions and Aβ phagocytosis. Redox Biol 2024; 70:103064. [PMID: 38320455 PMCID: PMC10850786 DOI: 10.1016/j.redox.2024.103064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
Amyloid-beta (Aβ) is a key factor in the onset and progression of Alzheimer's disease (AD). Selenium (Se) compounds show promise in AD treatment. Here, we revealed that selenoprotein K (SELENOK), a selenoprotein involved in immune regulation and potentially related to AD pathology, plays a critical role in microglial immune response, migration, and phagocytosis. In vivo and in vitro studies corroborated that SELENOK deficiency inhibits microglial Aβ phagocytosis, exacerbating cognitive deficits in 5xFAD mice, which are reversed by SELENOK overexpression. Mechanistically, SELENOK is involved in CD36 palmitoylation through DHHC6, regulating CD36 localization to microglial plasma membranes and thus impacting Aβ phagocytosis. CD36 palmitoylation was reduced in the brains of patients and mice with AD. Se supplementation promoted SELENOK expression and CD36 palmitoylation, enhancing microglial Aβ phagocytosis and mitigating AD progression. We have identified the regulatory mechanisms from Se-dependent selenoproteins to Aβ pathology, providing novel insights into potential therapeutic strategies involving Se and selenoproteins.
Collapse
Affiliation(s)
- Pei Ouyang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Zhiyu Cai
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiaying Peng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Shujing Lin
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiaochun Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Changbin Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ziqi Feng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Lin Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Guoli Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
| | - Zhonghao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
| |
Collapse
|
5
|
Zhang H, Zhao L, Zhang P, Xie Y, Yao X, Pan X, Fu Y, Wei J, Bai H, Shao X, Ye J, Wu C. Effects of selenoprotein extracts from Cardamine hupingshanensis on growth, selenium metabolism, antioxidant capacity, immunity and intestinal health in largemouth bass Micropterus salmoides. Front Immunol 2024; 15:1342210. [PMID: 38318186 PMCID: PMC10839570 DOI: 10.3389/fimmu.2024.1342210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
This study aimed to assess the impact of dietary selenoprotein extracts from Cardamine hupingshanensis (SePCH) on the growth, hematological parameters, selenium metabolism, immune responses, antioxidant capacities, inflammatory reactions and intestinal barrier functions in juvenile largemouth bass (Micropterus salmoides). The base diet was supplemented with four different concentrations of SePCH: 0.00, 0.30, 0.60 and 1.20 g/Kg (actual selenium contents: 0.37, 0.59, 0.84 and 1.30 mg/kg). These concentrations were used to formulate four isonitrogenous and isoenergetic diets for juvenile largemouth bass during a 60-day culture period. Adequate dietary SePCH (0.60 and 1.20 g/Kg) significantly increased weight gain and daily growth rate compared to the control groups (0.00 g/Kg). Furthermore, 0.60 and 1.20 g/Kg SePCH significantly enhanced amounts of white blood cells, red blood cells, platelets, lymphocytes and monocytes, and levels of hemoglobin, mean corpuscular volume and mean corpuscular hemoglobin in the hemocytes. In addition, 0.60 and 1.20 g/Kg SePCH increased the mRNA expression levels of selenocysteine lyase, selenophosphate synthase 1, 15 kDa selenoprotein, selenoprotein T2, selenoprotein H, selenoprotein P and selenoprotein K in the fish liver and intestine compared to the controls. Adequate SePCH not only significantly elevated the activities of antioxidant enzymes (Total superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase), the levels of total antioxidant capacity and glutathione, while increased mRNA transcription levels of NF-E2-related factor 2, Cu/Zn-superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase. However, adequate SePCH significantly decreased levels of malondialdehyde and H2O2 and the mRNA expression levels of kelch-like ECH-associated protein 1a and kelch-like ECH-associated protein 1b in the fish liver and intestine compared to the controls. Meanwhile, adequate SePCH markedly enhanced the levels of immune factors (alkaline phosphatase, acid phosphatase, lysozyme, complement component 3, complement component 4 and immunoglobulin M) and innate immune-related genes (lysozyme, hepcidin, liver-expressed antimicrobial peptide 2, complement component 3 and complement component 4) in the fish liver and intestine compared to the controls. Adequate SePCH reduced the levels of pro-inflammatory cytokines (tumour necrosis factor-α, interleukin 8, interleukin 1β and interferon γ), while increasing transforming growth factor β1 levels at both transcriptional and protein levels in the liver and intestine. The mRNA expression levels of mitogen-activated protein kinase 13 (MAPK 13), MAPK14 and nuclear factor kappa B p65 were significantly reduced in the liver and intestine of fish fed with 0.60 and 1.20 g/Kg SePCH compared to the controls. Histological sections also demonstrated that 0.60 and 1.20 g/Kg SePCH significantly increased intestinal villus height and villus width compared to the controls. Furthermore, the mRNA expression levels of tight junction proteins (zonula occludens-1, zonula occludens-3, Claudin-1, Claudin-3, Claudin-5, Claudin-11, Claudin-23 and Claudin-34) and Mucin-17 were significantly upregulated in the intestinal epithelial cells of 0.60 and 1.20 g/Kg SePCH groups compared to the controls. In conclusion, these results found that 0.60 and 1.20 g/Kg dietary SePCH can not only improve growth, hematological parameters, selenium metabolism, antioxidant capacities, enhance immune responses and intestinal functions, but also alleviate inflammatory responses. This information can serve as a useful reference for formulating feeds for largemouth bass.
Collapse
Affiliation(s)
- Hao Zhang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Long Zhao
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Penghui Zhang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Yuanyuan Xie
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Xinfeng Yao
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Xuewen Pan
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Yifan Fu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Jiao Wei
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Hongfeng Bai
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Xianping Shao
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Jinyun Ye
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| | - Chenglong Wu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), School of Life Science, Huzhou University, Huzhou, China
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou, China
| |
Collapse
|