1
|
Abstract
Biological dosimetry is an internationally recognized method for quantifying and estimating radiation dose following suspected or verified excessive exposure to ionising radiation. In severe radiation accidents where a large number of people are potentially affected, it is possible to distinguish irradiated from non-irradiated people in order to initiate appropriate medical care if necessary. In addition to severe incidents caused by technical failure, environmental disasters, military actions, or criminal abuse, there are also radiation accidents in which only one or a few individuals are affected in the frame of occupational or medical exposure. The requirements for biological dosimetry are fundamentally different for these two scenarios. In particular, for large-scale radiation accidents, pre-screening methods are necessary to increase the throughput of samples for a rough first-dose categorization. The rapid development and increasing use of omics methods in research as well as in individual applications provides new opportunities for biological dosimetry. In addition to the discovery and search for new biomarkers, dosimetry assays based on omics technologies are becoming increasingly interesting and hold great potential, especially for large-scale dosimetry. In the following review, the different areas of biological dosimetry, the problems in finding suitable biomarkers, the current status of biomarker research based on omics, the potential applications of assays using omics technologies, and also the limitations for the different areas of biological dosimetry are discussed.
Collapse
|
2
|
Blakely WF, Port M, Abend M. Early-response multiple-parameter biodosimetry and dosimetry: risk predictions. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:R152-R175. [PMID: 34280908 DOI: 10.1088/1361-6498/ac15df] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The accepted generic multiple-parameter and early-response biodosimetry and dosimetry assessment approach for suspected high-dose radiation (i.e. life-threatening) exposure includes measuring radioactivity associated with the exposed individual (if appropriate); observing and recording prodromal signs/symptoms; obtaining serial complete blood counts with white-blood-cell differential; sampling blood for the chromosome-aberration cytogenetic bioassay using the 'gold standard' dicentric assay (premature chromosome condensation assay for exposures >5 Gy photon acute doses equivalent), measurement of proteomic biomarkers and gene expression assays for dose assessment; bioassay sampling, if appropriate, to determine radioactive internal contamination; physical dose reconstruction, and using other available opportunistic dosimetry approaches. Biodosimetry and dosimetry resources are identified and should be setup in advance along with agreements to access additional national, regional, and international resources. This multifaceted capability needs to be integrated into a biodosimetry/dosimetry 'concept of operations' for use in a radiological emergency. The combined use of traditional biological-, clinical-, and physical-dosimetry should be use in an integrated approach to provide: (a) early-phase diagnostics to guide the development of initial medical-management strategy, and (b) intermediate and definitive assessment of radiation dose and injury. Use of early-phase (a) clinical signs and symptoms, (b) blood chemistry biomarkers, and (c) triage cytogenetics shows diagnostic utility to predict acute radiation injury severity.
Collapse
Affiliation(s)
- William F Blakely
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Matthias Port
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| |
Collapse
|
3
|
Glasow A, Patties I, Priest ND, Mitchel REJ, Hildebrandt G, Manda K. Dose and Dose Rate-Dependent Effects of Low-Dose Irradiation on Inflammatory Parameters in ApoE-Deficient and Wild Type Mice. Cells 2021; 10:3251. [PMID: 34831473 PMCID: PMC8625495 DOI: 10.3390/cells10113251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
Anti-inflammatory low-dose therapy is well established, whereas the immunomodulatory impact of doses below 0.1 Gy is much less clear. In this study, we investigated dose, dose rate and time-dependent effects in a dose range of 0.005 to 2 Gy on immune parameters after whole body irradiation (IR) using a pro-inflammatory (ApoE-/-) and a wild type mouse model. Long-term effects on spleen function (proliferation, monocyte expression) were analyzed 3 months, and short-term effects on immune plasma parameters (IL6, IL10, IL12p70, KC, MCP1, INFγ, TGFβ, fibrinogen, sICAM, sVCAM, sE-selectin/CD62) were analyzed 1, 7 and 28 days after Co60 γ-irradiation (IR) at low dose rate (LDR, 0.001 Gy/day) and at high dose rate (HDR). In vitro measurements of murine monocyte (WEHI-274.1) adhesion and cytokine release (KC, MCP1, IL6, TGFβ) after low-dose IR (150 kV X-ray unit) of murine endothelial cell (EC) lines (H5V, mlEND1, bEND3) supplement the data. RT-PCR revealed significant reduction of Ki67 and CD68 expression in the spleen of ApoE-/- mice after 0.025 to 2 Gy exposure at HDR, but only after 2 Gy at LDR. Plasma levels in wild type mice, showed non-linear time-dependent induction of proinflammatory cytokines and reduction of TGFβ at doses as low as 0.005 Gy at both dose rates, whereas sICAM and fibrinogen levels changed in a dose rate-specific manner. In ApoE-/- mice, levels of sICAM increased and fibrinogen decreased at both dose rates, whereas TGFβ increased mainly at HDR. Non-irradiated plasma samples revealed significant age-related enhancement of cytokines and adhesion molecules except for sICAM. In vitro data indicate that endothelial cells may contribute to systemic IR effects and confirm changes of adhesion properties suggested by altered sICAM plasma levels. The differential immunomodulatory effects shown here provide insights in inflammatory changes occurring at doses far below standard anti-inflammatory therapy and are of particular importance after diagnostic and chronic environmental exposures.
Collapse
Affiliation(s)
- Annegret Glasow
- Department of Radiation Oncology, University of Leipzig, 04103 Leipzig, Germany;
| | - Ina Patties
- Department of Radiation Oncology, University of Leipzig, 04103 Leipzig, Germany;
| | - Nicholas D. Priest
- Département de Chimie, Université Laval, Québec, QC G1V 0A6, Canada;
- Radiological Protection Research and Instrumentation Branch, Canadian Nuclear Laboratories (Retired), Chalk River, ON K0J 1J0, Canada;
| | - Ronald E. J. Mitchel
- Radiological Protection Research and Instrumentation Branch, Canadian Nuclear Laboratories (Retired), Chalk River, ON K0J 1J0, Canada;
| | - Guido Hildebrandt
- Department of Radiation Oncology, University of Rostock, 18059 Rostock, Germany; (G.H.); (K.M.)
| | - Katrin Manda
- Department of Radiation Oncology, University of Rostock, 18059 Rostock, Germany; (G.H.); (K.M.)
| |
Collapse
|
4
|
Qin S, Yang L, Kong S, Xu Y, Liang B, Ju S. LncRNA HCP5 : A Potential Biomarker for Diagnosing Gastric Cancer. Front Oncol 2021; 11:684531. [PMID: 34222007 PMCID: PMC8252797 DOI: 10.3389/fonc.2021.684531] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Background It has been reported that long non-coding RNAs (lncRNAs) can be regarded as a biomarker and had particular clinical significance for early screening and gastric cancer (GC) diagnosis. Therefore, this study aimed to investigate whether serum HCP5 could be a new diagnostic biomarker. Methods Filtered out the HCP5 from the GEO database. The specificity of HCP5 was verified by real-time fluorescence quantitative PCR (qRT-PCR), and then the stability of HCP5 was verified by room temperature storage and repeated freeze-thaw experiments. Meanwhile, the accuracy of HCP5 was verified by agarose gel electrophoresis (AGE) and Sanger sequencing. Simultaneously, the expression level of serum HCP5 was detected by qRT-PCR in 98 patients with primary gastric cancer, 21 gastritis patients, 82 healthy donors, and multiple cancer types. Then, the methodology analysis was carried on. Moreover, receiver operating characteristic (ROC) was used to evaluate its diagnostic efficiency. Results qRT-PCR method had good repeatability and stability in detecting HCP5. The expression level of HCP5 in the serum of gastric cancer patients was remarkably higher than that of healthy controls, and it could distinguish gastritis patients from healthy donors. Besides, the expression of HCP5 was increased dramatically in MKN-45 and MGC-803. The FISH assay showed that HCP5 was mainly distributed in the cytoplasm of MKN-45 and BGC-823 cells. When HCP5 was combined with existing tumor markers, the diagnostic efficiency of HCP5 was the best, and the combined diagnosis of carcinoembryonic antigen (CEA), carbohydrate antigen199 (CA199), and HCP5 can significantly improve the diagnostic sensitivity. Besides, compared with the expression levels of thyroid cancer (THCA), colorectal cancer (CRC), and breast cancer (BRCA), serum HCP5 in gastric cancer was the most specific. Moreover, the high expression of serum HCP5 was related to differentiation, lymph node metastasis, and nerve invasion. The term of serum HCP5 after the operation was significantly lower than that of patients with primary gastric cancer. Conclusion Serum HCP5 can be used as a potential biomarker of non-invasive fluid biopsy, which had a unique value in the early diagnosis, development, and prognosis of gastric cancer.
Collapse
Affiliation(s)
- Shiyi Qin
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong University, Nantong, China
| | - Lei Yang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong University, Nantong, China
| | - Shan Kong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong University, Nantong, China
| | - Yanhua Xu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong University, Nantong, China
| | - Bo Liang
- Department of Medical Ultrasonics, Affiliated Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
5
|
Bene BJ, Blakely WF, Burmeister DM, Cary L, Chhetri SJ, Davis CM, Ghosh SP, Holmes-Hampton GP, Iordanskiy S, Kalinich JF, Kiang JG, Kumar VP, Lowy RJ, Miller A, Naeem M, Schauer DA, Senchak L, Singh VK, Stewart AJ, Velazquez EM, Xiao M. Celebrating 60 Years of Accomplishments of the Armed Forces Radiobiology Research Institute1. Radiat Res 2021; 196:129-146. [PMID: 33979439 DOI: 10.1667/21-00064.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 11/03/2022]
Abstract
Chartered by the U.S. Congress in 1961, the Armed Forces Radiobiology Research Institute (AFRRI) is a Joint Department of Defense (DoD) entity with the mission of carrying out the Medical Radiological Defense Research Program in support of our military forces around the globe. In the last 60 years, the investigators at AFRRI have conducted exploratory and developmental research with broad application to the field of radiation sciences. As the only DoD facility dedicated to radiation research, AFRRI's Medical Radiobiology Advisory Team provides deployable medical and radiobiological subject matter expertise, advising commanders in the response to a U.S. nuclear weapon incident and other nuclear or radiological material incidents. AFRRI received the DoD Joint Meritorious Unit Award on February 17, 2004, for its exceptionally meritorious achievements from September 11, 2001 to June 20, 2003, in response to acts of terrorism and nuclear/radiological threats at home and abroad. In August 2009, the American Nuclear Society designated the institute a nuclear historic landmark as the U.S.'s primary source of medical nuclear and radiological research, preparedness and training. Since then, research has continued, and core areas of study include prevention, assessment and treatment of radiological injuries that may occur from exposure to a wide range of doses (low to high). AFRRI collaborates with other government entities, academic institutions, civilian laboratories and other countries to research the biological effects of ionizing radiation. Notable early research contributions were the establishment of dose limits for major acute radiation syndromes in primates, applicable to human exposures, followed by the subsequent evolution of radiobiology concepts, particularly the importance of immune collapse and combined injury. In this century, the program has been essential in the development and validation of prophylactic and therapeutic drugs, such as Amifostine, Neupogen®, Neulasta®, Nplate® and Leukine®, all of which are used to prevent and treat radiation injuries. Moreover, AFRRI has helped develop rapid, high-precision, biodosimetry tools ranging from novel assays to software decision support. New drug candidates and biological dose assessment technologies are currently being developed. Such efforts are supported by unique and unmatched radiation sources and generators that allow for comprehensive analyses across the various types and qualities of radiation. These include but are not limited to both 60Co facilities, a TRIGA® reactor providing variable mixed neutron and γ-ray fields, a clinical linear accelerator, and a small animal radiation research platform with low-energy photons. There are five major research areas at AFRRI that encompass the prevention, assessment and treatment of injuries resulting from the effects of ionizing radiation: 1. biodosimetry; 2. low-level and low-dose-rate radiation; 3. internal contamination and metal toxicity; 4. radiation combined injury; and 5. radiation medical countermeasures. These research areas are bolstered by an educational component to broadcast and increase awareness of the medical effects of ionizing radiation, in the mass-casualty scenario after a nuclear detonation or radiological accidents. This work provides a description of the military medical operations as well as the radiation facilities and capabilities present at AFRRI, followed by a review and discussion of each of the research areas.
Collapse
Affiliation(s)
| | | | | | - Lynnette Cary
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Catherine M Davis
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sanchita P Ghosh
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Gregory P Holmes-Hampton
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sergey Iordanskiy
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Juliann G Kiang
- Scientific Research Department.,Medicine.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | | | | | | | - David A Schauer
- Radiation Sciences Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Vijay K Singh
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | | | | |
Collapse
|
6
|
Graham TG, Dugast‐Darzacq C, Dailey GM, Darzacq X, Tjian R. Simple, Inexpensive RNA Isolation and One-Step RT-qPCR Methods for SARS-CoV-2 Detection and General Use. Curr Protoc 2021; 1:e130. [PMID: 33905620 PMCID: PMC8206771 DOI: 10.1002/cpz1.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The most common method for RNA detection involves reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR) analysis. Commercial one-step master mixes-which include both a reverse transcriptase and a thermostable polymerase and thus allow performing both the RT and qPCR steps consecutively in a sealed well-are key reagents for SARS-CoV-2 diagnostic testing; yet, these are typically expensive and have been affected by supply shortages in periods of high demand. As an alternative, we describe here how to express and purify Taq polymerase and M-MLV reverse transcriptase and assemble a homemade one-step RT-qPCR master mix. This mix can be easily assembled from scratch in any laboratory equipped for protein purification. We also describe two simple alternative methods to prepare clinical swab samples for SARS-CoV-2 RNA detection by RT-qPCR: heat-inactivation for direct addition, and concentration of RNA by isopropanol precipitation. Finally, we describe how to perform RT-qPCR using the homemade master mix, how to prepare in vitro-transcribed RNA standards, and how to use a fluorescence imager for endpoint detection of RT-PCR amplification in the absence of a qPCR machine In addition to being useful for diagnostics, these versatile protocols may be adapted for nucleic acid quantification in basic research. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of a one-step RT-qPCR master mix using homemade enzymes Basic Protocol 2: Preparation of swab samples for direct RT-PCR Alternate Protocol 1: Concentration of RNA from swab samples by isopropanol precipitation Basic Protocol 3: One-step RT-qPCR of RNA samples using a real-time thermocycler Support Protocol: Preparation of RNA concentration standards by in vitro transcription Alternate Protocol 2: One-step RT-PCR using endpoint fluorescence detection.
Collapse
Affiliation(s)
- Thomas G.W. Graham
- Department of Molecular and Cell Biology, 475D Li Ka Shing CenterUniversity of CaliforniaBerkeleyCalifornia
| | - Claire Dugast‐Darzacq
- Department of Molecular and Cell Biology, 475D Li Ka Shing CenterUniversity of CaliforniaBerkeleyCalifornia
| | - Gina M. Dailey
- Department of Molecular and Cell Biology, 475D Li Ka Shing CenterUniversity of CaliforniaBerkeleyCalifornia
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, 475D Li Ka Shing CenterUniversity of CaliforniaBerkeleyCalifornia
| | - Robert Tjian
- Department of Molecular and Cell Biology, 475D Li Ka Shing CenterUniversity of CaliforniaBerkeleyCalifornia
| |
Collapse
|
7
|
Sustained DDB-2 and TRX transcriptional response of quercetin-treated lymphocytes exposed to Co-60 radiation. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
De BP, Chen A, Salami CO, Van de Graaf B, Rosenberg JB, Pagovich OE, Sondhi D, Crystal RG, Kaminsky SM. In Vivo Potency Assay for Adeno-Associated Virus-Based Gene Therapy Vectors Using AAVrh.10 as an Example. Hum Gene Ther Methods 2018; 29:146-155. [PMID: 29706115 DOI: 10.1089/hgtb.2017.246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The development of a drug product requires rigorous methods of characterization and quality control to assure drug potency. Gene therapy products, a relatively new strategy for drug design with very few licensed examples, represent a unique challenge for the measure of potency. Unlike traditional drugs, potency for a gene therapeutic is a tally of the measures of multiple steps, including infectivity, transcription, translation, protein modifications, proper localization of the protein product, and protein function. This is particularly challenging for products based on the adeno-associated virus (AAV) platform, which has poor in vitro infectivity, limiting the sensitivity and thus the usefulness of cell-based assays. A rigorous in vivo assay has been established that separately evaluates infection, transcription, and resulting protein levels with specifications for each based on real time polymerase chain reaction (DNA and RNA) and standard protein assays. For an acceptance criterion, an administered vector must have vector DNA, transgene mRNA, and transgene expressed protein each concurrently meet individual specifications or the production lot fails. Using the AAVrh.10 serotype as a model vector and three different transgenes as examples, the assay is based on intravenous administration of the vector to male mice. At 2 weeks, the harvested liver is homogenized and assessed for vector genome levels (to assess for vector delivery), mRNA (to assess vector infectivity and transcription), and protein in the liver or serum (to assess protein expression). For all AAV vectors, the assay is robust and reproducible: vector DNA (linearity 102-109 copies, coefficient of variation) intra-assay <0.8%, inter-assay <0.5%; mRNA intra-assay <3.3%, inter-assay <3.4%. The reproducibility of the assay for transgene expressed protein is product specific. This in vivo potency assay is a strategy for characterization and a quantitative lot release test, providing a path forward to meet regulatory drug requirements for any AAV gene therapy vectors.
Collapse
Affiliation(s)
- Bishnu P De
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Alvin Chen
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Christiana O Salami
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | | | - Jonathan B Rosenberg
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Odelya E Pagovich
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| |
Collapse
|
9
|
Li S, Zhang QZ, Zhang DQ, Feng JB, Luo Q, Lu X, Wang XR, Li KP, Chen DQ, Mu XF, Gao L, Liu QJ. GDF-15 gene expression alterations in human lymphoblastoid cells and peripheral blood lymphocytes following exposure to ionizing radiation. Mol Med Rep 2017; 15:3599-3606. [PMID: 28440431 PMCID: PMC5436215 DOI: 10.3892/mmr.2017.6476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 02/20/2017] [Indexed: 02/05/2023] Open
Abstract
The identification of rapid, sensitive and high‑throughput biomarkers is imperative in order to identify individuals harmed by radiation accidents, and accurately evaluate the absorbed doses of radiation. DNA microarrays have previously been used to evaluate the alterations in growth/differentiation factor 15 (GDF15) gene expression in AHH‑1 human lymphoblastoid cells, following exposure to γ‑rays. The present study aimed to characterize the relationship between the dose of ionizing radiation and the produced effects in GDF‑15 gene expression in AHH‑1 cells and human peripheral blood lymphocytes (HPBLs). GDF‑15 mRNA and protein expression levels following exposure to γ‑rays and neutron radiation were assessed by reverse transcription‑quantitative polymerase chain reaction and western blot analysis in AHH‑1 cells. In addition, alterations in GDF‑15 gene expression in HPBLs following ex vivo irradiation were evaluated. The present results demonstrated that GDF‑15 mRNA and protein expression levels in AHH‑1 cells were significantly upregulated following exposure to γ‑ray doses ranging between 1 and 10 Gy, regardless of the dose rate. A total of 48 h following exposure to neutron radiation, a dose‑response relationship was identified in AHH‑1 cells at γ‑ray doses between 0.4 and 1.6 Gy. GDF‑15 mRNA levels in HPBLs were significantly upregulated following exposure to γ‑ray doses between 1 and 8 Gy, within 4‑48 h following irradiation. These results suggested that significant time‑ and dose‑dependent alterations in GDF‑15 mRNA and protein expression occur in AHH‑1 cells and HPBLs in the early phases following exposure to ionizing radiation. In conclusion, alterations in GDF‑15 gene expression may have potential as a biomarker to evaluate radiation exposure.
Collapse
Affiliation(s)
- Shuang Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - Qing-Zhao Zhang
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - De-Qin Zhang
- Beijing Shijingshan Center for Disease Control and Prevention, Beijing 100043, P.R. China
| | - Jiang-Bin Feng
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - Qun Luo
- Department of Transfusion, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - Xin-Ru Wang
- Department of Clinical Laboratory, Second Artillery General Hospital PLA, Beijing 100088, P.R. China
| | - Kun-Peng Li
- Department of Radiotherapy, General Hospital of Armed Police Forces, Beijing 100039, P.R. China
| | - De-Qing Chen
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - Xiao-Feng Mu
- Department of Radiotherapy, General Hospital of Armed Police Forces, Beijing 100039, P.R. China
| | - Ling Gao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| |
Collapse
|
10
|
Kim SY, Chung B, Chang JH, Jung GY, Kim HW, Park BY, Oh SS, Oh MH. Simultaneous Identification of 13 Foodborne Pathogens by Using Capillary Electrophoresis-Single Strand Conformation Polymorphism Coupled with Multiplex Ligation-Dependent Probe Amplification and Its Application in Foods. Foodborne Pathog Dis 2016; 13:566-574. [PMID: 27494415 DOI: 10.1089/fpd.2016.2143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Capillary electrophoresis-single strand conformation polymorphism (CE-SSCP) coupled with stuffer-free multiplex ligation-dependent probe amplification (MLPA) was developed to identify 13 species of foodborne pathogens simultaneously. Species-specific MLPA probes were designed for nine of these species. These probes were targeted to the groEL, glyA, MMS, tuf, inv, ipaH, nuc, vvh, and 16S rRNA genes, which corresponded to Bacillus cereus, Campylobacter coli, Cronobacter sakazakii, Enterococcus spp., Salmonella spp., Shigella spp., Staphylococcus aureus, Vibrio vulnificus, and Yersinia enterocolitica, respectively. MLPA probes that had been previously developed by our laboratory were used for the other four species (Campylobacter jejuni, Clostridium perfringens, Escherichia coli O157:H7, and Listeria monocytogenes). The CE-SSCP method was optimized to identify all 13 foodborne microbes simultaneously in a single electrogram, in which 50-500 pg genomic DNA was detected per microbe. Twelve species were detected from animal-derived food samples (specifically, milk and sliced ham) that had been artificially inoculated with 12 of the foodborne pathogens, excluding V. vulnificus, which is not usually associated with animal foods. The method developed here could be used as an early warning system for outbreaks of foodborne diseases associated with animal-derived foods in the food industry.
Collapse
Affiliation(s)
- So-Young Kim
- 1 National Institute of Animal Science , Rural Development Administration, Wanju-gun, Korea
| | - Boram Chung
- 2 Department of Chemical Engineering, Pohang University of Science and Technology , Pohang, Korea
| | - Jin-Hee Chang
- 1 National Institute of Animal Science , Rural Development Administration, Wanju-gun, Korea
| | - Gyoo Yeol Jung
- 2 Department of Chemical Engineering, Pohang University of Science and Technology , Pohang, Korea.,3 School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology , Pohang, Korea
| | - Hyoun Wook Kim
- 1 National Institute of Animal Science , Rural Development Administration, Wanju-gun, Korea
| | - Beom-Young Park
- 1 National Institute of Animal Science , Rural Development Administration, Wanju-gun, Korea
| | - Sang Suk Oh
- 4 Department of Food Science and Technology, College of Engineering, Ewha Womans University , Seoul, Korea
| | - Mi-Hwa Oh
- 1 National Institute of Animal Science , Rural Development Administration, Wanju-gun, Korea
| |
Collapse
|
11
|
Vaiphei ST, Keppen J, Nongrum S, Chaubey RC, Kma L, Sharan RN. Evaluation of endogenous control gene(s) for gene expression studies in human blood exposed to 60Co γ-rays ex vivo. JOURNAL OF RADIATION RESEARCH 2015; 56:177-185. [PMID: 25271263 PMCID: PMC4572586 DOI: 10.1093/jrr/rru074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/01/2014] [Accepted: 08/04/2014] [Indexed: 06/03/2023]
Abstract
In gene expression studies, it is critical to normalize data using a stably expressed endogenous control gene in order to obtain accurate and reliable results. However, we currently do not have a universally applied endogenous control gene for normalization of data for gene expression studies, particularly those involving (60)Co γ-ray-exposed human blood samples. In this study, a comparative assessment of the gene expression of six widely used housekeeping endogenous control genes, namely 18S, ACTB, B2M, GAPDH, MT-ATP6 and CDKN1A, was undertaken for a range of (60)Co γ-ray doses (0.5, 1.0, 2.0 and 4.0 Gy) at 8.4 Gy min(-1) at 0 and 24 h post-irradiation time intervals. Using the NormFinder algorithm, real-time PCR data obtained from six individuals (three males and three females) were analyzed with respect to the threshold cycle (Ct) value and abundance, ΔCt pair-wise comparison, intra- and inter-group variability assessments, etc. GAPDH, either alone or in combination with 18S, was found to be the most suitable endogenous control gene and should be used in gene expression studies, especially those involving qPCR of γ-ray-exposed human blood samples.
Collapse
Affiliation(s)
- S Thangminlal Vaiphei
- Radiation and Molecular Biology Unit, Department of Biochemistry, North-Eastern Hill University (NEHU), Shillong, 793022, India
| | - Joshua Keppen
- Radiation and Molecular Biology Unit, Department of Biochemistry, North-Eastern Hill University (NEHU), Shillong, 793022, India
| | - Saibadaiahun Nongrum
- Radiation and Molecular Biology Unit, Department of Biochemistry, North-Eastern Hill University (NEHU), Shillong, 793022, India
| | - R C Chaubey
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, 400085, India
| | - L Kma
- Radiation Countermeasures Unit, Department of Biochemistry, North-Eastern Hill University (NEHU), Shillong, 793022, India
| | - R N Sharan
- Radiation and Molecular Biology Unit, Department of Biochemistry, North-Eastern Hill University (NEHU), Shillong, 793022, India
| |
Collapse
|
12
|
Liu QJ, Zhang DQ, Zhang QZ, Feng JB, Lu X, Wang XR, Li KP, Chen DQ, Mu XF, Li S, Gao L. Dose-effect of ionizing radiation-inducedPIG3gene expression alteration in human lymphoblastoid AHH-1 cells and human peripheral blood lymphocytes. Int J Radiat Biol 2014; 91:71-80. [DOI: 10.3109/09553002.2014.938374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Lim S, Nan H, Lee MJ, Kang SH. Fast on-site diagnosis of influenza A virus by Palm PCR and portable capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 963:134-9. [PMID: 24956080 DOI: 10.1016/j.jchromb.2014.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 05/17/2014] [Accepted: 06/02/2014] [Indexed: 11/19/2022]
Abstract
A method combining Palm polymerase chain reaction (PCR) and portable capillary electrophoresis (CE) was developed for rapid on-site analysis of influenza A (H1N1) virus. The portable CE system was suitable for rapid diagnosis which was able to detect a sample in ∼4 min after sample loading, while the 'Palm PCR' system allowed for high-speed nucleic acid amplification in ∼16 min. The analysis time from DNA sample to analysis of amplified target DNA molecule was only ∼20 min, which was significantly less than slab gel electrophoresis with other commercially available PCR machine. When the 100-bp DNA ladder was separated, the relative standard deviation values (n=5) for the migration times and peak areas of the 100 and 200-bp DNA molecules were 0.26 and 8.9%. The detection limits were 6.3 and 7.2 pg/μL, respectively. The combined method was also able to identify two influenza A-associated genes (the HA and NP genes of the novel H1N1 influenza). CE separation was achieved with a sieving matrix of 1% poly(vinylpyrrolidone) (Mr=1,300,000) in 1× TBE buffer (pH 8.45). The combined Palm PCR-portable CE system should provide an improved, fast on-site molecular genetic diagnostic method.
Collapse
Affiliation(s)
- Seoyeon Lim
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin-si, Gyunggi-do 446-701, Republic of Korea
| | - He Nan
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin-si, Gyunggi-do 446-701, Republic of Korea
| | - Min-Jun Lee
- Ahram Biosystems Inc., Seoul 133-120, Republic of Korea
| | - Seong Ho Kang
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin-si, Gyunggi-do 446-701, Republic of Korea.
| |
Collapse
|
14
|
Sullivan JM, Prasanna PGS, Grace MB, Wathen L, Wallace RL, Koerner JF, Coleman CN. Assessment of biodosimetry methods for a mass-casualty radiological incident: medical response and management considerations. HEALTH PHYSICS 2013; 105:540-54. [PMID: 24162058 PMCID: PMC3810609 DOI: 10.1097/hp.0b013e31829cf221] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Following a mass-casualty nuclear disaster, effective medical triage has the potential to save tens of thousands of lives. In order to best use the available scarce resources, there is an urgent need for biodosimetry tools to determine an individual's radiation dose. Initial triage for radiation exposure will include location during the incident, symptoms, and physical examination. Stepwise triage will include point of care assessment of less than or greater than 2 Gy, followed by secondary assessment, possibly with high throughput screening, to further define an individual's dose. Given the multisystem nature of radiation injury, it is unlikely that any single biodosimetry assay can be used as a standalone tool to meet the surge in capacity with the timeliness and accuracy needed. As part of the national preparedness and planning for a nuclear or radiological incident, the authors reviewed the primary literature to determine the capabilities and limitations of a number of biodosimetry assays currently available or under development for use in the initial and secondary triage of patients. Understanding the requirements from a response standpoint and the capability and logistics for the various assays will help inform future biodosimetry technology development and acquisition. Factors considered include: type of sample required, dose detection limit, time interval when the assay is feasible biologically, time for sample preparation and analysis, ease of use, logistical requirements, potential throughput, point-of-care capability, and the ability to support patient diagnosis and treatment within a therapeutically relevant time point.
Collapse
Affiliation(s)
- Julie M. Sullivan
- Office of Preparedness and Emergency Operations, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
- AAAS Science and Technology Policy Fellow, Washington DC
| | - Pataje G. S. Prasanna
- Radia on Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Marcy B. Grace
- Biomedical Advanced Research & Development Authority, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
| | - Lynne Wathen
- Biomedical Advanced Research & Development Authority, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
| | - Rodney L. Wallace
- Biomedical Advanced Research & Development Authority, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
| | - John F. Koerner
- Office of Preparedness and Emergency Operations, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
| | - C. Norman Coleman
- Office of Preparedness and Emergency Operations, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
- Radia on Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| |
Collapse
|
15
|
Yong KJ, Milenic DE, Baidoo KE, Kim YS, Brechbiel MW. Gene expression profiling upon (212) Pb-TCMC-trastuzumab treatment in the LS-174T i.p. xenograft model. Cancer Med 2013; 2:646-53. [PMID: 24403230 PMCID: PMC3892796 DOI: 10.1002/cam4.132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/30/2013] [Accepted: 08/14/2013] [Indexed: 02/03/2023] Open
Abstract
Recent studies have demonstrated that therapy with (212) Pb-TCMC-trastuzumab resulted in (1) induction of apoptosis, (2) G2/M arrest, and (3) blockage of double-strand DNA damage repair in LS-174T i.p. (intraperitoneal) xenografts. To further understand the molecular basis of the cell killing efficacy of (212) Pb-TCMC-trastuzumab, gene expression profiling was performed with LS-174T xenografts 24 h after exposure to (212) Pb-TCMC-trastuzumab. DNA damage response genes (84) were screened using a quantitative real-time polymerase chain reaction array (qRT-PCR array). Differentially regulated genes were identified following exposure to (212) Pb-TCMC-trastuzumab. These included genes involved in apoptosis (ABL, GADD45α, GADD45γ, PCBP4, and p73), cell cycle (ATM, DDIT3, GADD45α, GTSE1, MKK6, PCBP4, and SESN1), and damaged DNA binding (DDB) and repair (ATM and BTG2). The stressful growth arrest conditions provoked by (212) Pb-TCMC-trastuzumab were found to induce genes involved in apoptosis and cell cycle arrest in the G2/M phase. The expression of genes involved in DDB and single-strand DNA breaks was also enhanced by (212) Pb-TCMC-trastuzumab while no modulation of genes involved in double-strand break repair was apparent. Furthermore, the p73/GADD45 signaling pathway mediated by p38 kinase signaling may be involved in the cellular response, as evidenced by the enhanced expression of genes and proteins of this pathway. These results further support the previously described cell killing mechanism by (212) Pb-TCMC-trastuzumab in the same LS-174T i.p. xenograft. Insight into these mechanisms could lead to improved strategies for rational application of radioimmunotherapy using α-particle emitters.
Collapse
Affiliation(s)
- Kwon J Yong
- Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of HealthBethesda, Maryland
| | - Diane E Milenic
- Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of HealthBethesda, Maryland
| | - Kwamena E Baidoo
- Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of HealthBethesda, Maryland
| | - Young-Seung Kim
- Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of HealthBethesda, Maryland
| | - Martin W Brechbiel
- Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of HealthBethesda, Maryland
| |
Collapse
|
16
|
Zhou B, Xiao J, Liu S, Yang J, Wang Y, Nie F, Zhou Q, Li Y, Zhao G. Simultaneous detection of six food-borne pathogens by multiplex PCR with a GeXP analyzer. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.11.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Manning G, Rothkamm K. Deoxyribonucleic acid damage-associated biomarkers of ionising radiation: current status and future relevance for radiology and radiotherapy. Br J Radiol 2013; 86:20130173. [PMID: 23659923 DOI: 10.1259/bjr.20130173] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diagnostic and therapeutic radiation technology has developed dramatically in recent years, and its use has increased significantly, bringing clinical benefit. The use of diagnostic radiology has become widespread in modern society, particularly in paediatrics where the clinical benefit needs to be balanced with the risk of leukaemia and brain cancer increasing after exposure to low doses of radiation. With improving long-term survival rates of radiotherapy patients and the ever-increasing use of diagnostic and interventional radiology procedures, concern has risen over the long-term risks and side effects from such treatments. Biomarker development in radiology and radiotherapy has progressed significantly in recent years to investigate the effects of such use and optimise treatment. Recent biomarker development has focused on improving the limitations of established techniques by the use of automation, increasing sensitivity and developing novel biomarkers capable of quicker results. The effect of low-dose exposure (0-100 mGy) used in radiology, which is increasingly linked to cancer incidences, is being investigated, as some recent research challenges the linear-no-threshold model. Radiotherapy biomarkers are focused on identifying radiosensitive patients, determining the treatment-associated risk and allowing for a tailored and more successful treatment of cancer patients. For biomarkers in any of these areas to be successfully developed, stringent criteria must be applied in techniques and analysis of data to reduce variation among reports and allow data sets to be accurately compared. Newly developed biomarkers can then be used in combination with the established techniques to better understand and quantify the individual biological response to exposures associated with radiology tests and to personalise treatment plans for patients.
Collapse
Affiliation(s)
- G Manning
- Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, UK.
| | | |
Collapse
|
18
|
Hwang HS, Shin GW, Chung B, Na J, Jung GY. Multiplex and quantitative pathogen detection with high-resolution capillary electrophoresis-based single-strand conformation polymorphism. Methods Mol Biol 2013; 919:155-163. [PMID: 22976099 DOI: 10.1007/978-1-62703-029-8_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Among the molecular diagnostic methods for bacteria-induced diseases, capillary electrophoresis-based single-strand conformation polymorphism (CE-SSCP) combined with 16S rRNA gene-specific PCR has enormous potential because it can separate sequence variants using a simple procedure. However, conventional CE-SSCP systems have limited resolution and cannot separate most 16S rRNA gene-specific markers into separate peaks. A high-resolution CE-SSCP system that uses a poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) triblock copolymer matrix was recently developed and shown to effectively separate highly similar PCR products. In this report, a protocol for the detection of 12 pathogenic bacteria is provided. Pathogen markers were amplified by PCR using universal primers and separated by CE-SSCP; each marker peak was well separated at baseline and showed a characteristic mobility, allowing the easy identification of the pathogens.
Collapse
Affiliation(s)
- Hee Sung Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea
| | | | | | | | | |
Collapse
|
19
|
Chung B, Shin GW, Choi W, Hwang HS, Oh MH, Jung GY. An accurate multiplex antibiotic susceptibility test using a high-resolution CE-SSCP-based stuffer-free multiplex ligation-dependent probe amplification system. Electrophoresis 2012; 34:284-8. [DOI: 10.1002/elps.201200372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/04/2012] [Accepted: 09/08/2012] [Indexed: 02/05/2023]
Affiliation(s)
- Boram Chung
- School of Interdisciplinary Bioscience and Bioengineering; Pohang University of Science and Technology; Pohang; Gyeongbuk; Korea
| | - Gi Won Shin
- Institute of Environmental and Energy Technology; Pohang University of Science and Technology; Pohang; Gyeongbuk; Korea
| | - Woong Choi
- School of Interdisciplinary Bioscience and Bioengineering; Pohang University of Science and Technology; Pohang; Gyeongbuk; Korea
| | - Hee Sung Hwang
- School of Interdisciplinary Bioscience and Bioengineering; Pohang University of Science and Technology; Pohang; Gyeongbuk; Korea
| | - Mi-Hwa Oh
- National Institute of Animal Science; Rural Development Administration; Suwon; Gyeonggi; Korea
| | | |
Collapse
|
20
|
Grace MB, Singh VK, Rhee JG, Jackson WE, Kao TC, Whitnall MH. 5-AED enhances survival of irradiated mice in a G-CSF-dependent manner, stimulates innate immune cell function, reduces radiation-induced DNA damage and induces genes that modulate cell cycle progression and apoptosis. JOURNAL OF RADIATION RESEARCH 2012; 53:840-53. [PMID: 22843381 PMCID: PMC3483857 DOI: 10.1093/jrr/rrs060] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/25/2012] [Accepted: 06/26/2012] [Indexed: 05/18/2023]
Abstract
The steroid androst-5-ene-3ß,17ß-diol (5-androstenediol, 5-AED) elevates circulating granulocytes and platelets in animals and humans, and enhances survival during the acute radiation syndrome (ARS) in mice and non-human primates. 5-AED promotes survival of irradiated human hematopoietic progenitors in vitro through induction of Nuclear Factor-κB (NFκB)-dependent Granulocyte Colony-Stimulating Factor (G-CSF) expression, and causes elevations of circulating G-CSF and interleukin-6 (IL-6). However, the in vivo cellular and molecular effects of 5-AED are not well understood. The aim of this study was to investigate the mechanisms of action of 5-AED administered subcutaneously (s.c.) to mice 24 h before total body γ- or X-irradiation (TBI). We used neutralizing antibodies, flow cytometric functional assays of circulating innate immune cells, analysis of expression of genes related to cell cycle progression, DNA repair and apoptosis, and assessment of DNA strand breaks with halo-comet assays. Neutralization experiments indicated endogenous G-CSF but not IL-6 was involved in survival enhancement by 5-AED. In keeping with known effects of G-CSF on the innate immune system, s.c. 5-AED stimulated phagocytosis in circulating granulocytes and oxidative burst in monocytes. 5-AED induced expression of both bax and bcl-2 in irradiated animals. Cdkn1a and ddb1, but not gadd45a expression, were upregulated by 5-AED in irradiated mice. S.c. 5-AED administration caused decreased DNA strand breaks in splenocytes from irradiated mice. Our results suggest 5-AED survival enhancement is G-CSF-dependent, and that it stimulates innate immune cell function and reduces radiation-induced DNA damage via induction of genes that modulate cell cycle progression and apoptosis.
Collapse
Affiliation(s)
- Marcy B. Grace
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | - Vijay K. Singh
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
- Department of Radiation Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | - Juong G. Rhee
- Department of Radiation Oncology, University of Maryland School of Medicine, 655 West Baltimore St., Baltimore, MD 21201-1559, USA
| | - William E. Jackson
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | - Tzu-Cheg Kao
- Division of Epidemiology and Biostatistics, Department of Preventive Medicine and Biometrics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Mark H. Whitnall
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
- Corresponding author. Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave., Bethesda, MD 20889-5603. Phone: 1-301-295-9262; Fax: 1-301-295-6503; E-mail:
| |
Collapse
|
21
|
Riecke A, Rufa CG, Cordes M, Hartmann J, Meineke V, Abend M. Gene expression comparisons performed for biodosimetry purposes on in vitro peripheral blood cellular subsets and irradiated individuals. Radiat Res 2012; 178:234-43. [PMID: 22769026 DOI: 10.1667/rr2738.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We examined the benefit of gene expression analysis on peripheral blood cellular subsets of different radiosensitivity to elucidate their utility as biodosimeters for estimation of dose in irradiated individuals. Peripheral mononucleated cells were isolated from 18 healthy volunteers employing density separation in a CPT-NH tube. Peripheral mononucleated cells were cultured in RPMI 1640 medium containing 10% autologous serum and were irradiated with 0.1-1 Gy (240 kV, 13 mA, X rays at 1 Gy/min). A low-dose study was performed with isolated peripheral mononucleated cells from one healthy donor in three independent experiments. Peripheral mononucleated cells were irradiated at 0 (sham), 1, 2.5 and 5 cGy (70 kV, 13 mA X rays at 1 cGy/min) and gene expression was measured 24 and 48 h after irradiation. After irradiation, CD4(+) or CD8(+) cells were isolated by magnetic beads in independent experiments. RNA from lymphocyte subsets and peripheral mononucleated cells was isolated after 24 and 48 h and converted into cDNA. Gene expression of GADD45, CDKN1A, DDB2, PCNA, BAX and ATF3 were determined using RTQ-PCR. Data were analyzed employing linear and logistic regression analysis. The same examinations were performed in 5 individuals either diagnosed using CT scans (up to 4.3 cGy) or by administering (F-18)-fluoro-2-deoxy-d-glucose (F-18 FDG, 0.6 cGy). Methodological, intra- and inter-individual variability in 90-95% of measurements did not exceed the introduced twofold change over sham-irradiated control values in peripheral mononucleated cells and CD4(+) cells, and therefore no false positive results were observed. Dose reconstruction in peripheral mononucleated cells in opposite to CD4(+) lymphocytes required fewer genes and appeared more efficient (R-square = 84.8% compared to 51.8%). In vitro samples exposed to 10 cGy could be completely discriminated from sham-irradiated samples without individual pre-exposure controls, which coincided with our preliminary in vivo results. However, in vitro differential gene expression was measured relative to control values and did not differ significantly at 24 and 48 h after irradiation in contrast to our preliminary in vivo data. In addition, below 5 cGy in vitro data did not show reproducible significant changes in gene expression, which was opposite to our preliminary in vivo data. Therefore a twofold change in gene expression over control sufficiently controls for different sources of variance, and measuring gene expression in peripheral mononucleated cell for biological dosimetry purposes appears superior over measurements in lymphocyte subsets. The increased gene expression measured after low absorbed doses in vivo and in vitro might indicate a particular applicability of this method for a low-level radiation scenario in the absence of individual pre-exposure controls. However, the constant gene expression values measured up to 48 h in our in vitro model at doses >10 cGy, and the absence of reproducible and statistically significant gene expression changes below 5 cGy contrast to the preliminary in vivo results performed at similar doses. Therefore, measurements with our in vitro models should be interpreted cautiously.
Collapse
Affiliation(s)
- A Riecke
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Singh DD, Jain A. Multipurpose instantaneous microarray detection of acute encephalitis causing viruses and their expression profiles. Curr Microbiol 2012; 65:290-303. [PMID: 22674173 PMCID: PMC7080014 DOI: 10.1007/s00284-012-0154-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/14/2012] [Indexed: 01/15/2023]
Abstract
Detection of multiple viruses is important for global analysis of gene or protein content and expression, opening up new prospects in terms of molecular and physiological systems for pathogenic diagnosis. Early diagnosis is crucial for disease treatment and control as it reduces inappropriate use of antiviral therapy and focuses surveillance activity. This requires the ability to detect and accurately diagnose infection at or close to the source/outbreak with minimum delay and the need for specific, accessible point-of-care diagnosis able to distinguish causative viruses and their subtypes. None of the available viral diagnostic assays combine a point-of-care format with the complex capability to identify a large range of human and animal viruses. Microarray detection provides a useful, labor-saving tool for detection of multiple viruses with several advantages, such as convenience and prevention of cross-contamination of polymerase chain reaction (PCR) products, which is of foremost importance in such applications. Recently, real-time PCR assays with the ability to confirm the amplification product and quantitate the target concentration have been developed. Furthermore, nucleotide sequence analysis of amplification products has facilitated epidemiological studies of infectious disease outbreaks and monitoring of treatment outcomes for infections, in particular for viruses that mutate at high frequency. This review discusses applications of microarray technology as a potential new tool for detection and identification of acute encephalitis-causing viruses in human serum, plasma, and cell cultures.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Virology Laboratory, Department of Microbiology, C S M Medical University, Lucknow, UP 226003, India.
| | | |
Collapse
|
23
|
Paul S, Amundson SA. Gene expression signatures of radiation exposure in peripheral white blood cells of smokers and non-smokers. Int J Radiat Biol 2012; 87:791-801. [PMID: 21801107 DOI: 10.3109/09553002.2011.568574] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE The issue of potential confounding factors is critical to the development of any approach to radiation biodosimetry, and has not been fully addressed for gene expression-based approaches. MATERIALS AND METHODS As a step in this direction, we have investigated the effect of smoking on the global radiation gene expression response in ex vivo-irradiated peripheral blood cells using microarray analysis. We also evaluated the ability of gene expression signatures to predict the radiation exposure level of ex vivo-exposed samples from smokers and non-smokers of both genders. RESULTS We identified eight genes with a radiation response that was significantly affected by smoking status, and confirmed an effect of smoking on the radiation response of the four and a half LIM domains 2 (FHL2) gene using quantitative real-time polymerase chain reaction. The performance of our previously defined 74-gene signature in predicting the radiation dose to samples in this study was unaffected by differences in gender or smoking status, however, giving 98% correct prediction of dose category. This is the same accuracy as that found in the original study from which the signature was derived, using different donors. CONCLUSION The results support the development of peripheral blood gene expression as a viable strategy for radiation biodosimetry.
Collapse
Affiliation(s)
- Sunirmal Paul
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | | |
Collapse
|
24
|
Göransson Nyberg A, Stricklin D, Sellström Å. Mass casualties and health care following the release of toxic chemicals or radioactive material--contribution of modern biotechnology. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:4521-49. [PMID: 22408587 PMCID: PMC3290976 DOI: 10.3390/ijerph8124521] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 11/25/2011] [Accepted: 11/29/2011] [Indexed: 11/16/2022]
Abstract
Catastrophic chemical or radiological events can cause thousands of casualties. Such disasters require triage procedures to identify the development of health consequences requiring medical intervention. Our objective is to analyze recent advancements in biotechnology for triage in mass emergency situations. In addition to identifying persons "at risk" of developing health problems, these technologies can aid in securing the unaffected or "worried well". We also highlight the need for public/private partnerships to engage in some of the underpinning sciences, such as patho-physiological mechanisms of chemical and radiological hazards, and for the necessary investment in the development of rapid assessment tools through identification of biochemical, molecular, and genetic biomarkers to predict health effects. For chemical agents, biomarkers of neurotoxicity, lung damage, and clinical and epidemiological databases are needed to assess acute and chronic effects of exposures. For radiological exposures, development of rapid, sensitive biomarkers using advanced biotechnologies are needed to sort exposed persons at risk of life-threatening effects from persons with long-term risk or no risk. The final implementation of rapid and portable diagnostics tools suitable for emergency care providers to guide triage and medical countermeasures use will need public support, since commercial incentives are lacking.
Collapse
Affiliation(s)
- Ann Göransson Nyberg
- Swedish Defence Research Agency, FOI CBRN—Defence and Security, 20 Cementvägen, SE 901 82 Umea, Sweden
| | - Daniela Stricklin
- Applied Research Associates, Inc., 1235 South Clark Street Ste, Arlington, VA 22203, USA;
| | - Åke Sellström
- European CBRNE Center, KBC Building, 6 Linnaeus väg, SE 901 87 Umea, Sweden;
| |
Collapse
|
25
|
Development of a single-step subtraction method for eukaryotic 18S and 28S ribonucleic acids. J Biomed Biotechnol 2011; 2011:910369. [PMID: 21765639 PMCID: PMC3134377 DOI: 10.1155/2011/910369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 04/29/2011] [Indexed: 11/18/2022] Open
Abstract
The abundance of mammalian 18S and 28S ribosomal RNA can decrease the detection sensitivity of bacterial or viral targets in complex host-pathogen mixtures. A method to capture human RNA in a single step was developed and characterized to address this issue. For this purpose, capture probes were covalently attached to magnetic microbeads using a dendrimer linker and the solid phase was tested using rat thymus RNA (mammalian components) with Escherichia coli RNA (bacterial target) as a model system. Our results indicated that random capture probes demonstrated better performance than specific ones presumably by increasing the number of possible binding sites, and the use of a tetrame-thylammonium-chloride (TMA-Cl-) based buffer for the hybridization showed a beneficial effect in the selectivity. The subtraction efficiency determined through real-time RT-PCR revealed capture-efficiencies comparable with commercially available enrichment kits. The performance of the solid phase can be further fine tuned by modifying the annealing time and temperature.
Collapse
|
26
|
Kabacik S, Mackay A, Tamber N, Manning G, Finnon P, Paillier F, Ashworth A, Bouffler S, Badie C. Gene expression following ionising radiation: Identification of biomarkers for dose estimation and prediction of individual response. Int J Radiat Biol 2010; 87:115-29. [DOI: 10.3109/09553002.2010.519424] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Shin GW, Hwang HS, Oh MH, Doh J, Jung GY. Simultaneous quantitative detection of 12 pathogens using high-resolution CE-SSCP. Electrophoresis 2010; 31:2405-10. [PMID: 20568262 DOI: 10.1002/elps.201000091] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Several methods based on screening for a 16S ribosomal RNA gene marker have been developed for rapid and sensitive detection of pathogenic microorganisms. One such method, CE-based SSCP (CE-SSCP), has enormous potential because the technique can separate sequence variants using a simple procedure. However, conventional CE-SSCP systems have limited resolution and cannot separate most 16S ribosomal RNA gene-specific markers unless combined with additional modification steps. A high-resolution CE-SSCP system that uses a poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) triblock copolymer matrix was recently developed and shown to effectively separate highly similar PCR products. In this study, we developed a method based on a high-resolution CE-SSCP system using a poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) triblock copolymer that is capable of simultaneous and quantitative detection of 12 clinically important pathogens. Pathogen markers were amplified by PCR using universal primers and separated by CE-SSCP; each marker peak was well separated at baseline and showed a characteristic mobility, allowing easy identification of pathogens. A series of experiments using different amounts of genomic pathogen DNA showed that the method had a limit of detection of 0.31-1.56 pg and a dynamic range of approximately 10(2). These results indicate that high-resolution CE-SSCP systems have considerable potential in the clinical diagnosis of bacteria-induced diseases.
Collapse
Affiliation(s)
- Gi Won Shin
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea
| | | | | | | | | |
Collapse
|
28
|
Birerdinc A, Nohelty E, Marakhonov A, Manyam G, Panov I, Coon S, Nikitin E, Skoblov M, Chandhoke V, Baranova A. Pro-apoptotic and antiproliferative activity of human KCNRG, a putative tumor suppressor in 13q14 region. Tumour Biol 2009; 31:33-45. [PMID: 20237900 PMCID: PMC2803748 DOI: 10.1007/s13277-009-0005-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 11/04/2009] [Indexed: 12/04/2022] Open
Abstract
Deletion of 13q14.3 and a candidate gene KCNRG (potassium channel regulating gene) is the most frequent chromosomal abnormality in B-cell chronic lymphocytic leukemia and is a common finding in multiple myeloma (MM). KCNRG protein may interfere with the normal assembly of the K+ channel proteins causing the suppression of Kv currents. We aimed to examine possible role of KCNRG haploinsufficiency in chronic lymphocytic leukemia (CLL) and MM cells. We performed detailed genomic analysis of the KCNRG locus; studied effects of the stable overexpression of KCNRG isoforms in RPMI-8226, HL-60, and LnCaP cells; and evaluated relative expression of its transcripts in various human lymphomas. Three MM cell lines and 35 CLL PBL samples were screened for KCNRG mutations. KCNRG exerts growth suppressive and pro-apoptotic effects in HL-60, LnCaP, and RPMI-8226 cells. Direct sequencing of KCNRG exons revealed point mutation delT in RPMI-8226 cell line. Levels of major isoform of KCNRG mRNA are lower in DLBL lymphomas compared to normal PBL samples, while levels of its minor mRNA are decreased across the broad range of the lymphoma types. The haploinsufficiency of KCNRG might be relevant to the progression of CLL and MM at least in a subset of patients.
Collapse
Affiliation(s)
- Aybike Birerdinc
- Molecular Biology and Microbiology Department, College of Science, George Mason University, David King Hall, MSN 3E1, Fairfax, VA 22030 USA
| | - Elizabeth Nohelty
- Molecular Biology and Microbiology Department, College of Science, George Mason University, David King Hall, MSN 3E1, Fairfax, VA 22030 USA
| | - Andrey Marakhonov
- Research Center for Medical Genetics, RAMS, Moskvorechie Str., 1, Moscow, Russian Federation
| | - Ganiraju Manyam
- Molecular Biology and Microbiology Department, College of Science, George Mason University, David King Hall, MSN 3E1, Fairfax, VA 22030 USA
| | - Ivan Panov
- Molecular Biology and Microbiology Department, College of Science, George Mason University, David King Hall, MSN 3E1, Fairfax, VA 22030 USA
| | - Stephanie Coon
- Molecular Biology and Microbiology Department, College of Science, George Mason University, David King Hall, MSN 3E1, Fairfax, VA 22030 USA
| | - Eugene Nikitin
- Hematology Research Center of Russia, Moscow, Russian Federation
| | - Mikhail Skoblov
- Research Center for Medical Genetics, RAMS, Moskvorechie Str., 1, Moscow, Russian Federation
| | - Vikas Chandhoke
- Molecular Biology and Microbiology Department, College of Science, George Mason University, David King Hall, MSN 3E1, Fairfax, VA 22030 USA
| | - Ancha Baranova
- Molecular Biology and Microbiology Department, College of Science, George Mason University, David King Hall, MSN 3E1, Fairfax, VA 22030 USA
- Research Center for Medical Genetics, RAMS, Moskvorechie Str., 1, Moscow, Russian Federation
| |
Collapse
|
29
|
Shin GW, Cho YS, Hwang HS, Oh MH, Nam HG, Park JH, Jung GY. A new single-step quantitative pathogen detection system: template-tagging followed by multiplex asymmetric PCR using common primers and CE-SSCP. Electrophoresis 2009; 30:2728-36. [PMID: 19621380 DOI: 10.1002/elps.200900074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid diagnosis of bacterial infection is important for patient management and appropriate therapy during the early phase of bacteria-induced disease. Among the existing techniques for identifying microbial, CE-SSCP combined with 16S ribosomal RNA gene-specific PCR has the benefits of excellent sensitivity, resolution, and reproducibility. However, even though CE-SSCP can separate PCR products with high-resolution, multiplex detection and quantification are complicated by primer-dimer formation and non-specific amplification. Here, we describe a novel technique for multiplex detection and quantification of pathogens by template-tagging followed by multiplex asymmetric PCR and subsequent CE-SSCP. More specifically, we reverse transcribed 16S ribosomal RNAs from seven septicemia-inducing pathogens, tagged the templates with common end sequences, and amplified them using common primers. The resulting amplicons could be successfully separated by CE-SSCP and quantified by comparison to an internal standard. This method yielded results that illustrate the potential of this system for diagnosing infectious disease.
Collapse
Affiliation(s)
- Gi Won Shin
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea
| | | | | | | | | | | | | |
Collapse
|
30
|
Effects of genistein administration on cytokine induction in whole-body gamma irradiated mice. Int Immunopharmacol 2009; 9:1401-10. [DOI: 10.1016/j.intimp.2009.08.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 08/17/2009] [Accepted: 08/18/2009] [Indexed: 12/25/2022]
|
31
|
Tocopherol succinate: A promising radiation countermeasure. Int Immunopharmacol 2009; 9:1423-30. [DOI: 10.1016/j.intimp.2009.08.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/10/2009] [Accepted: 08/20/2009] [Indexed: 11/23/2022]
|
32
|
Straume T, Amundson SA, Blakely WF, Burns FJ, Chen A, Dainiak N, Franklin S, Leary JA, Loftus DJ, Morgan WF, Pellmar TC, Stolc V, Turteltaub KW, Vaughan AT, Vijayakumar S, Wyrobek AJ. NASA Radiation Biomarker Workshop, September 27-28, 2007. Radiat Res 2008; 170:393-405. [PMID: 18763867 DOI: 10.1667/rr1382.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 05/10/2008] [Indexed: 11/03/2022]
Abstract
A summary is provided of presentations and discussions at the NASA Radiation Biomarker Workshop held September 27-28, 2007 at NASA Ames Research Center in Mountain View, CA. Invited speakers were distinguished scientists representing key sectors of the radiation research community. Speakers addressed recent developments in the biomarker and biotechnology fields that may provide new opportunities for health-related assessment of radiation-exposed individuals, including those exposed during long-duration space travel. Topics discussed included the space radiation environment, biomarkers of radiation sensitivity and individual susceptibility, molecular signatures of low-dose responses, multivariate analysis of gene expression, biomarkers in biodefense, biomarkers in radiation oncology, biomarkers and triage after large-scale radiological incidents, integrated and multiple biomarker approaches, advances in whole-genome tiling arrays, advances in mass spectrometry proteomics, radiation biodosimetry for estimation of cancer risk in a rat skin model, and confounding factors. A summary of conclusions is provided at the end of the report.
Collapse
Affiliation(s)
- Tore Straume
- NASA Ames Research Center, Moffett Field, California 94035, B. Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Paul S, Amundson SA. Development of gene expression signatures for practical radiation biodosimetry. Int J Radiat Oncol Biol Phys 2008; 71:1236-1244. [PMID: 18572087 DOI: 10.1016/j.ijrobp.2008.03.043] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 02/11/2008] [Accepted: 03/19/2008] [Indexed: 11/24/2022]
Abstract
PURPOSE In a large-scale radiologic emergency, estimates of exposure doses and radiation injury would be required for individuals without physical dosimeters. Current methods are inadequate for the task, so we are developing gene expression profiles for radiation biodosimetry. This approach could provide both an estimate of physical radiation dose and an indication of the extent of individual injury or future risk. METHODS AND MATERIALS We used whole genome microarray expression profiling as a discovery platform to identify genes with the potential to predict radiation dose across an exposure range relevant for medical decision making in a radiologic emergency. Human peripheral blood from 10 healthy donors was irradiated ex vivo, and global gene expression was measured both 6 and 24 h after exposure. RESULTS A 74-gene signature was identified that distinguishes between four radiation doses (0.5, 2, 5, and 8 Gy) and controls. More than one third of these genes are regulated by TP53. A nearest centroid classifier using these same 74 genes correctly predicted 98% of samples taken either 6 h or 24 h after treatment as unexposed, exposed to 0.5, 2, or > or =5 Gy. Expression patterns of five genes (CDKN1A, FDXR, SESN1, BBC3, and PHPT1) from this signature were also confirmed by real-time polymerase chain reaction. CONCLUSION The ability of a single gene set to predict radiation dose throughout a window of time without need for individual pre-exposure controls represents an important advance in the development of gene expression for biodosimetry.
Collapse
Affiliation(s)
- Sunirmal Paul
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | | |
Collapse
|
34
|
Weidmann M, Armbruster K, Hufert FT. Challenges in designing a Taqman-based multiplex assay for the simultaneous detection of Herpes simplex virus types 1 and 2 and Varicella-zoster virus. J Clin Virol 2008; 42:326-34. [PMID: 18439871 DOI: 10.1016/j.jcv.2008.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 01/30/2008] [Accepted: 03/03/2008] [Indexed: 01/11/2023]
Abstract
To optimise molecular detection of herpesviruses an internally controlled multiplex Taqman-PCR for the detection of Herpes simplex virus 1 (HSV1), Herpes simplex virus 2 (HSV2) and Varicella-zoster virus (VZV) was developed. The selection of the dye combination working on the ABI 7700 cycler for this multiplex PCR revealed crosstalk phenomena between several combinations of reference dyes and reporter dyes. A final dye combination with CY5 as reference dye and FAM/JOE/TXR as reporter dyes was selected. The influence of the concentration of the internal positive control (IPC) concentration on the quantitative results of HSV1, HSV2 and VZV positive patient samples was analysed. The results indicate that high IPC concentrations are detrimental for the sensitivity of the multiplex assay and that the presence of the IPC molecule narrows the dynamic range of the duplex PCRs between any of the virus PCRs and the IPC-PCR. The optimised multiplex assay detecting HSV1, HSV2 and VZV using 10(3) IPC molecules showed a performance and sensitivity comparable to that of the individual assays.
Collapse
Affiliation(s)
- Manfred Weidmann
- Institute of Virology, University of Göttingen, Göttingen, Germany.
| | | | | |
Collapse
|
35
|
Singh V, Grace M, Jacobsen K, Chang CM, Parekh V, Inal C, Shafran R, Whitnall A, Kao TC, Jackson W, Whitnall M. Administration of 5-androstenediol to mice: Pharmacokinetics and cytokine gene expression. Exp Mol Pathol 2008; 84:178-88. [DOI: 10.1016/j.yexmp.2007.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 12/10/2007] [Accepted: 12/12/2007] [Indexed: 01/31/2023]
|
36
|
Grace M, Blakely W, Landauer M. Genistein-induced alterations of radiation-responsive gene expression. RADIAT MEAS 2007. [DOI: 10.1016/j.radmeas.2007.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Alexander GA, Swartz HM, Amundson SA, Blakely WF, Buddemeier B, Gallez B, Dainiak N, Goans RE, Hayes RB, Lowry PC, Noska MA, Okunieff P, Salner AL, Schauer DA, Trompier F, Turteltaub KW, Voisin P, Wiley AL, Wilkins R. BiodosEPR-2006 Meeting: Acute dosimetry consensus committee recommendations on biodosimetry applications in events involving uses of radiation by terrorists and radiation accidents. RADIAT MEAS 2007. [DOI: 10.1016/j.radmeas.2007.05.035] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Grace M, Blakely W. Transcription of five p53- and Stat-3-Inducible genes after ionizing radiation. RADIAT MEAS 2007. [DOI: 10.1016/j.radmeas.2007.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Leung HWC, Yang WH, Lai MY, Lin CJ, Lee HZ. Inhibition of 12-lipoxygenase during baicalein-induced human lung nonsmall carcinoma H460 cell apoptosis. Food Chem Toxicol 2006; 45:403-11. [PMID: 17050058 DOI: 10.1016/j.fct.2006.08.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2005] [Revised: 05/01/2006] [Accepted: 08/30/2006] [Indexed: 11/26/2022]
Abstract
Baicalein is known as a 12-lipoxygenase (12-LOX) inhibitor. The 12-LOX is found to be involved in the progression of human cancers and the inhibitor of 12-LOX offers a target for the prevention cancer. We demonstrated the inhibitory effect of baicalein on the gene and protein expression of 12-LOX in H460 human lung nonsmall carcinoma cell line. Treatment of baicalein inhibited the growth of H460 cells in a dose-dependent manner. Following 24h exposure to 50muM baicalein, cell cycle analysis revealed an increase in the cell population in S-phase. During the S-phase arrest, baicalein decreased the protein levels of cdk1 and cyclin B1, which are the regulating proteins of S-phase transition to G2/M-phase, in this study. Furthermore, baicalein induced the most of H460 cell apoptosis after treatment for 48h. H460 cells formed vesicles and apoptotic body, and then floated after treatment with baicalein. Baicalein-induced H460 cell apoptosis was confirmed by DNA condensation and fragmentation. Baicalein-induced apoptosis were also accompanied by decreasing in Bcl-2 and proform of caspase-3 and increasing p53 and Bax protein levels. Pretreatment with a specific caspase-3 inhibitor, Ac-DEVD-CHO, partially reduced baicalein-induced cell death, indicating baicalein induces apoptosis is partially dependent on caspase-3 pathway in H460 cells. These data suggest that baicalein, a 12-LOX inhibitor, inhibits the proliferation of H460 cells via S-phase arrest and induces apoptosis in association with the regulation of molecules in the cell cycle and apoptosis-related proteins.
Collapse
Affiliation(s)
- Henry W C Leung
- Department of Radiation Oncology, Chi Mei Hospital, Liouying, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
40
|
Ogino S, Kawasaki T, Brahmandam M, Cantor M, Kirkner GJ, Spiegelman D, Makrigiorgos GM, Weisenberger DJ, Laird PW, Loda M, Fuchs CS. Precision and performance characteristics of bisulfite conversion and real-time PCR (MethyLight) for quantitative DNA methylation analysis. J Mol Diagn 2006; 8:209-17. [PMID: 16645207 PMCID: PMC1867588 DOI: 10.2353/jmoldx.2006.050135] [Citation(s) in RCA: 349] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Assays to measure DNA methylation, which are important in epigenetic research and clinical diagnostics, typically rely on conversion of unmethylated cytosine to uracil by sodium bisulfite. However, no study has comprehensively evaluated the precision and performance characteristics of sodium bisulfite conversion and subsequent quantitative methylation assay. We developed quantitative real-time polymerase chain reaction (MethyLight) to measure percentage of methylated reference (PMR, ie, degree of methylation) for the MGMT, MLH1, and CDKN2A (p16) promoters. To measure the precision of bisulfite conversion, we bisulfite-treated seven different aliquots of DNA from each of four paraffin-embedded colon cancer samples. To assess run-to-run variation, we repeated MethyLight five times. Bisulfite-to-bisulfite coefficient of variation (CV) of PMR ranged from 0.10 to 0.38 (mean, 0.21), and run-to-run CV of PMR ranged from 0.046 to 0.60 (mean, 0.31). Interclass correlation coefficients were 0.74 to 0.84 for the three loci, indicating good reproducibility. DNA mixing study with methylated and unmethylated DNA showed good linearity of the assay. Of 272 colorectal cancers evaluated, most showed PMR either <1 or >10, and promoter methylation (PMR >4) was tightly associated with loss of respective protein expression (P < 10(-16)). In conclusion, sodium bisulfite conversion and quantitative MethyLight assays have good precision and linearity and can be effectively used for high-throughput DNA methylation analysis on paraffin-embedded tissue.
Collapse
Affiliation(s)
- Shuji Ogino
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Swift-Scanlan T, Blackford A, Argani P, Sukumar S, Fackler MJ. Two-color quantitative multiplex methylation-specific PCR. Biotechniques 2006; 40:210-9. [PMID: 16526411 DOI: 10.2144/000112097] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In recent years, several methylation-specific PCR-based techniques have been developed to identify and characterize hypermethylation of CpG dinucleotides with the primary goal of elucidating a better understanding of the role of DNA methylation in important biological processes, such as chromosome X inactivation and carcinogenesis. The specificity of methylation-specific PCR (MSP) techniques relies on amplifying sodium bisulfite-treated DNA with primers specific to predicted sequences of unmethylated and methylated DNA within the gene of interest. In the past, unmethylated and methylated reactions were singleplex and performed in separate wells. In this paper we report a modification of the real-time quantitative multiplex MSP (QM-MSP) technique of Fackler and colleagues that can be applied to any real-time MSP experiment. Although co-amplification with multiple fluorophores is common in standard reverse transcription PCR (RT-PCR), MSP presents unique challenges both mechanistically and operationally that must be overcome in order to successfully co-amplify two methylation-specific targets. In this two-color modification, unmethylated and methylated primer/probe sets are successfully co-amplified in the same reaction using FAM- and VIC-labeled probes. Our modification decreases the cost and time of each real-time experiment by allowing increased throughput of clinical samples and by doubling either the number of genes or the number of samples that can be analyzed per real-time plate.
Collapse
|
42
|
Persson K, Hamby K, Ugozzoli LA. Four-color multiplex reverse transcription polymerase chain reaction--overcoming its limitations. Anal Biochem 2005; 344:33-42. [PMID: 16039598 DOI: 10.1016/j.ab.2005.06.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 06/04/2005] [Accepted: 06/09/2005] [Indexed: 11/21/2022]
Abstract
Quantitative reverse transcription polymerase chain reaction (qRT-PCR) conducted in real time is a powerful tool for measuring messenger RNA (mRNA) levels in biological samples. Multiplex PCR is defined as the simultaneous amplification of two or more DNA (cDNA) targets in a single reaction vessel and may be carried out only using uniquely labeled probes for each target. Up to four genes can be detected in a multiplex 5' nuclease assay when using the appropriate instrument and the right combination of fluorophores. One of the more important advantages of multiplexing is a reduced sample requirement, which is especially important when sample material is scarce. Additional benefits are saving time on reaction setup and lower cost compared to singleplex reactions. Although multiplexing has several advantages over singleplex qRT-PCR, limited work has been done to show its feasibility. Few publications on four-color multiplex qRT-PCR have been reported, and to our knowledge no work has been done to explore the assay's limitations. In this paper, we report the first in-depth analysis of a four-gene multiplex qRT-PCR. To achieve a better understanding of the potential limitations of the qRT-PCR assay, we used in vitro transcribed RNA derived from four human genes. To emulate gene expression experiments, we developed a model system in which the in vitro transcripts were spiked with plant total RNA. This model allowed us to develop an artificial system closely resembling differential gene expression levels varying up to a million fold. We identified a single "universal" reaction condition that enabled optimal amplification in real time of up to four genes over a wide range of template concentrations. This study shows that multiplexing is a feasible approach applicable to most qRT-PCR assays performed with total RNA, independent of the expression levels of the genes under scrutiny.
Collapse
Affiliation(s)
- Kent Persson
- Gene Expression Division, Bio-Rad Laboratories, Hercules, CA 94547, USA
| | | | | |
Collapse
|
43
|
Bustin SA, Mueller R. Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis. Clin Sci (Lond) 2005; 109:365-79. [PMID: 16171460 DOI: 10.1042/cs20050086] [Citation(s) in RCA: 329] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
qRT-PCR (real-time reverse transcription-PCR) has become the benchmark for the detection and quantification of RNA targets and is being utilized increasingly in novel clinical diagnostic assays. Quantitative results obtained by this technology are not only more informative than qualitative data, but simplify assay standardization and quality management. qRT-PCR assays are most established for the detection of viral load and therapy monitoring, and the development of SARS (severe acute respiratory syndrome)-associated coronavirus qRT-PCR assays provide a textbook example of the value of this technology for clinical diagnostics. The widespread use of qRT-PCR assays for diagnosis and the detection of disease-specific prognostic markers in leukaemia patients provide further examples of their usefulness. Their value for the detection of disease-associated mRNA expressed by circulating tumour cells in patients with solid malignancies is far less apparent, and the clinical significance of results obtained from such tests remains unclear. This is because of conceptual reservations as well as technical limitations that can interfere with the diagnostic specificity of qRT-PCR assays. Therefore, although it is evident that qRT-PCR assay has become a useful and important technology in the clinical diagnostic laboratory, it must be used appropriately and it is essential to be aware of its limitations if it is to fulfil its potential.
Collapse
Affiliation(s)
- Stephen A Bustin
- Centre for Academic Surgery, Institute of Cell and Molecular Science, Barts and The London, Queen Mary's School of Medicine and Dentistry, University of London, London E1 1BB, U.K.
| | | |
Collapse
|
44
|
Blakely WF, Salter CA, Prasanna PGS. Early-response biological dosimetry--recommended countermeasure enhancements for mass-casualty radiological incidents and terrorism. HEALTH PHYSICS 2005; 89:494-504. [PMID: 16217193 DOI: 10.1097/01.hp.0000175913.36594.a4] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The effective medical management of a suspected acute radiation overexposure incident necessitates recording dynamic medical data, measuring appropriate radiation bioassays, and estimating dose from dosimeters and radioactivity assessments in order to provide diagnostic information to the treating physician and a dose assessment for personnel radiation protection records. The accepted generic multiparameter and early-response approach includes measuring radioactivity and monitoring the exposed individual; observing and recording prodromal signs/symptoms and erythema; obtaining complete blood counts with white blood cell differential; sampling blood for the chromosome-aberration cytogenetic bioassay using the "gold standard" dicentric assay (translocation assay for long times after exposure) for dose assessment; bioassay sampling, if appropriate, to determine radioactivity contamination; and using other available dosimetry approaches. In the event of a radiological mass-casualty incident, current national resources need to be enhanced to provide suitable dose assessment and medical triage and diagnoses. This capability should be broadly based and include stockpiling reagents and devices; establishing deployable (i.e., hematology and biodosimetry) laboratories and reference (i.e., cytogenetic biodosimetry, radiation bioassay) laboratories; networking qualified reference radioactivity-counting bioassay laboratories, cytogenetic biodosimetry, and deployable hematology laboratories with the medical responder community and national radiation protection program; and researching efforts to identify novel radiation biomarkers and develop applied biological dosimetry assays monitored with clinical, deployable, and hand-held analytical systems. These research and applied science efforts should ultimately contribute towards approved, regulated biodosimetry devices or diagnostic tests integrated into a national radioprotection program.
Collapse
Affiliation(s)
- William F Blakely
- Biological Dosimetry Team, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA.
| | | | | |
Collapse
|
45
|
Zhang A, Pastor L, Nguyen Q, Luo Y, Yang W, Flagella M, Chavli R, Bui S, Nguyen CT, Zheng Z, He W, McMaster G, Witney F. Small interfering RNA and gene expression analysis using a multiplex branched DNA assay without RNA purification. ACTA ACUST UNITED AC 2005; 10:549-56. [PMID: 16103413 DOI: 10.1177/1087057105277414] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The authors have developed a novel multiplex detection system that quantitatively measures the expression level of 11 messenger RNAs (mRNAs) directly from cell lysates or tissue homogenates without RNA purification. The system incorporates branched DNA (bDNA) technology from Bayer and a multiplex bead array platform from Luminex. In this study, a 21-nt synthetic small interfering RNA (siRNA; specifically designed to knockdown interleukin-8 [IL-8] expression) was delivered into HeLa cells. Using the multiplex bDNA assay, gene expression levels were measured simultaneously from cell lysates for 11 genes. After treating the HeLa cells for 20 h with phorbol myristate acetate (PMA), IL-8 mRNA levels were induced by almost 50-fold; transfection with 30 nM IL-8-specific siRNA reduced the PMA-induced IL-8 mRNA by 80%. In addition, PMA induced mRNA expression in IL-1alpha (3-fold) and IL-6 (4-fold); however, the IL-8 siRNA did not affect the expression of either of these 2 cytokine genes, indicating that the siRNA was selective for IL-8 mRNA expression. Three housekeeping genes' expression levels were measured under all conditions tested. The multiplex bDNA assay provides a powerful tool for quantitative multiplex gene expression analysis directly from cell lysates, which could be extremely valuable for conservation of rare or difficult-to-obtain samples.
Collapse
|
46
|
Younossi ZM, Gorreta F, Ong JP, Schlauch K, Del Giacco L, Elariny H, Van Meter A, Younoszai A, Goodman Z, Baranova A, Christensen A, Grant G, Chandhoke V. Hepatic gene expression in patients with obesity-related non-alcoholic steatohepatitis. Liver Int 2005; 25:760-71. [PMID: 15998427 DOI: 10.1111/j.1478-3231.2005.01117.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is among the most common causes of chronic liver disease. NAFLD includes a spectrum of clinicopathologic syndromes that includes non-alcoholic steatohepatitis (NASH) that has potential for progression. The pathogenesis of NASH is poorly characterized. AIM This study was designed to identify differences in hepatic gene expression in patients with NASH and to relate such differences to their clinical characteristics. DESIGN Consecutive patients undergoing bariatric surgery were prospectively recruited. Extensive clinical data and two liver biopsy specimens were obtained at the time of enrollment. A single hepatopathologist reviewed and classified the liver biopsies. Patients with excessive alcohol use and other causes of liver disease were excluded. A group of 29 NASH patients, 12 with steatosis alone, seven obese controls and six non-obese controls were selected for further investigation. Customized cDNA microarrays containing 5220 relevant genes were designed specifically for this study. Microarray experiments were run in triplicate for each sample and a selected group of genes were confirmed using real-time PCR. OUTCOME MEASURE Differential hepatic gene expressions in patients with NASH as compared with controls. RESULTS Thirty-four genes with significant differential expression were identified in patients with NASH when compared with non-obese controls. Moreover, 19 of these genes showed no significant expression differences in obese vs. non-obese controls, suggesting a stronger association of these genes to NASH. CONCLUSIONS Several differentially expressed genes in patients with NASH are related to lipid metabolism and extracellular matrix remodeling. Additionally, genes related to liver regeneration, apoptosis, and the detoxification process were differentially expressed. These findings may help clarify the molecular pathogenesis of NASH and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Zobair M Younossi
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, VA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lotze MT, Wang E, Marincola FM, Hanna N, Bugelski PJ, Burns CA, Coukos G, Damle N, Godfrey TE, Howell WM, Panelli MC, Perricone MA, Petricoin EF, Sauter G, Scheibenbogen C, Shivers SC, Taylor DL, Weinstein JN, Whiteside TL. Workshop on Cancer Biometrics: Identifying Biomarkers and Surrogates of Cancer in Patients. J Immunother 2005; 28:79-119. [PMID: 15725954 DOI: 10.1097/01.cji.0000154251.20125.2e] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The current excitement about molecular targeted therapies has driven much of the recent dialog in cancer diagnosis and treatment. Particularly in the biologic therapy of cancer, identifiable antigenic T-cell targets restricted by MHC molecules and the related novel stress molecules such as MICA/B and Letal allow a degree of precision previously unknown in cancer therapy. We have previously held workshops on immunologic monitoring and angiogenesis monitoring. This workshop was designed to discuss the state of the art in identification of biomarkers and surrogates of tumor in patients with cancer, with particular emphasis on assays within the blood and tumor. We distinguish this from immunologic monitoring in the sense that it is primarily a measure of the tumor burden as opposed to the immune response to it. Recommendations for intensive investigation and targeted funding to enable such strategies were developed in seven areas: genomic analysis; detection of molecular markers in peripheral blood and lymph node by tumor capture and RT-PCR; serum, plasma, and tumor proteomics; immune polymorphisms; high content screening using flow and imaging cytometry; immunohistochemistry and tissue microarrays; and assessment of immune infiltrate and necrosis in tumors. Concrete recommendations for current application and enabling further development in cancer biometrics are summarized. This will allow a more informed, rapid, and accurate assessment of novel cancer therapies.
Collapse
Affiliation(s)
- Michael T Lotze
- Translational Research, University of Pittsburgh Molecular Medicine Institute, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gorreta F, Barzaghi D, VanMeter AJ, Chandhoke V, Del Giacco L. Development of a new reference standard for microarray experiments. Biotechniques 2005; 36:1002-9. [PMID: 15211751 DOI: 10.2144/04366rr01] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Often microarray studies require a reference to indirectly compare the samples under observation. References based on pooled RNA from different cell lines have already been described (here referred to as RNA-R), but they usually do not exhaustively represent the set of genes printed on a chip, thus requiring many adjustments during the analyses. A reference could also be generated in vitro transcribing the collection of cDNA clones printed on the microarray in use (here referred to as T3-R). Here we describe an alternative and simpler PCR-based methodology to construct a similar reference (Chip-R), and we extensively test and compare it to both RNA-R and T3-R. The use of both Chip-R and T3-R dramatically increases the number of signals on the slides and gives more reproducible results than RNA-R. Each reference preparation is also evaluated in a simple microarray experiment comparing two different RNA populations. Our results show that the introduction of a reference always interferes with the analysis. Indeed, the direct comparison is able to identify more up- or down-regulated genes than any reference-mediated analysis. However, if a reference has to be used, Chip-R and T3-R are able to guarantee more reliable results than RNA-R.
Collapse
|
49
|
Amundson SA, Grace MB, McLeland CB, Epperly MW, Yeager A, Zhan Q, Greenberger JS, Fornace AJ. Human in vivo radiation-induced biomarkers: gene expression changes in radiotherapy patients. Cancer Res 2004; 64:6368-71. [PMID: 15374940 DOI: 10.1158/0008-5472.can-04-1883] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
After initially identifying potential biomarkers of radiation exposure through microarray studies of ex vivo irradiated human peripheral white blood cells, we have now measured the in vivo responses of several of these biomarker genes in patients undergoing total body irradiation. Microarray analysis has identified additional in vivo radiation-responsive genes, although the general in vivo patterns of stress-gene induction appear similar to those obtained from ex vivo white blood cell experiments. Additional studies may reveal correlations between responses and either diagnosis or prognosis, and such in vivo validation marks an important step in the development of potentially informative radiation exposure biomarkers.
Collapse
Affiliation(s)
- Sally A Amundson
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Iwasaki T, Nakahama KI, Nagano M, Fujioka A, Ohyanagi H, Shigeyoshi Y. A partial hepatectomy results in altered expression of clock-related and cyclic glyceraldehyde 3-phosphate dehydrogenase (GAPDH) genes. Life Sci 2004; 74:3093-102. [PMID: 15081575 DOI: 10.1016/j.lfs.2003.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Accepted: 11/10/2003] [Indexed: 11/26/2022]
Abstract
The liver is among the peripheral organs that display a clear circadian rhythmicity. To investigate whether specific pathological conditions affect circadian rhythms in the liver, we examined the expression profiles of the clock-related and glyceraldehyde 3-phosphate dehydrogenase (GADPH) genes following a partial hepatectomy in the mouse. This surgical procedure causes dynamic proliferation of residual hepatocytes and within one day of the operation the hepatectomized mice demonstrated higher expression of both mPer1 and mPer2 genes in the remaining liver tissue when compared to control mice that had undergone a Sham-operation. In contrast, the mCry1 gene in hepatectomized mice displayed a circadian gene expression profile that was similar to the control group. In addition, GAPDH levels, that demonstrated no oscillations in Sham-hepatectomized mice, underwent daily alterations following a partial hepatectomy. These findings suggest that the regenerative state of the liver affects the expression not only of clock-related genes but also of genes that are constitutively expressed under steady state conditions.
Collapse
Affiliation(s)
- Takuya Iwasaki
- Department of Surgery, Kinki University, School of Medicine, Osakasayama City, 589-8511, Japan
| | | | | | | | | | | |
Collapse
|