1
|
Desrosiers NA, Huestis MA. Oral Fluid Drug Testing: Analytical Approaches, Issues and Interpretation of Results. J Anal Toxicol 2019; 43:415-443. [DOI: 10.1093/jat/bkz048] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/12/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022] Open
Abstract
AbstractWith advances in analytical technology and new research informing result interpretation, oral fluid (OF) testing has gained acceptance over the past decades as an alternative biological matrix for detecting drugs in forensic and clinical settings. OF testing offers simple, rapid, non-invasive, observed specimen collection. This article offers a review of the scientific literature covering analytical methods and interpretation published over the past two decades for amphetamines, cannabis, cocaine, opioids, and benzodiazepines. Several analytical methods have been published for individual drug classes and, increasingly, for multiple drug classes. The method of OF collection can have a significant impact on the resultant drug concentration. Drug concentrations for amphetamines, cannabis, cocaine, opioids, and benzodiazepines are reviewed in the context of the dosing condition and the collection method. Time of last detection is evaluated against several agencies' cutoffs, including the proposed Substance Abuse and Mental Health Services Administration, European Workplace Drug Testing Society and Driving Under the Influence of Drugs, Alcohol and Medicines cutoffs. A significant correlation was frequently observed between matrices (i.e., between OF and plasma or blood concentrations); however, high intra-subject and inter-subject variability precludes prediction of blood concentrations from OF concentrations. This article will assist individuals in understanding the relative merits and limitations of various methods of OF collection, analysis and interpretation.
Collapse
Affiliation(s)
| | - Marilyn A Huestis
- Lambert Center for the Study of Medicinal Cannabis and Hemp, Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
2
|
Vidal JC, Bertolín JR, Bonel L, Asturias L, Arcos-Martínez MJ, Castillo JR. A Multi-electrochemical Competitive Immunosensor for Sensitive Cocaine Determination in Biological Samples. ELECTROANAL 2015. [DOI: 10.1002/elan.201500517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
3
|
Arroyo A, Sanchez M, Barberia E, Barbal M, Marrón MT, Mora A. Comparison of the Cozart DDS 801 on-site drug test device and gas chromatography/mass spectrometry (GC/MS) confirmation results of cannabis and cocaine in oral fluid specimens. AUST J FORENSIC SCI 2013. [DOI: 10.1080/00450618.2013.832796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
Bioanalytical methods for the determination of cocaine and metabolites in human biological samples. Bioanalysis 2011; 1:977-1000. [PMID: 21083066 DOI: 10.4155/bio.09.72] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Determination of cocaine and its metabolites in biological specimens is of great importance, not only in clinical and forensic toxicology, but also in workplace drug testing. These compounds are normally screened for using sensitive immunological methods. However, screening methods are unspecific and, therefore, the posterior confirmation of presumably positive samples by a specific technique is mandatory. Although GC-MS-based techniques are still the most commonly used for confirmation purposes of cocaine and its metabolites in biological specimens, the advent of LC-MS and LC-MS/MS has enabled the detection of even lower amounts of these drugs, which assumes particular importance when sample volume available is small, as frequently occurs with oral fluid. This paper will review recently-published papers that describe procedures for detection of cocaine and metabolites, not only in the most commonly used specimens, such as blood and urine, but also in other 'alternative' matrices (e.g., oral fluid and hair) with a special focus on sample preparation and chromatographic analysis.
Collapse
|
5
|
Abstract
BACKGROUND Oral fluid (OF) is an exciting alternative matrix for monitoring drugs of abuse in workplace, clinical toxicology, criminal justice, and driving under the influence of drugs (DUID) programs. During the last 5 years, scientific and technological advances in OF collection, point-of-collection testing devices, and screening and confirmation methods were achieved. Guidelines were proposed for workplace OF testing by the Substance Abuse and Mental Health Services Administration, DUID testing by the European Union's Driving under the Influence of Drugs, Alcohol and Medicines (DRUID) program, and standardization of DUID research. Although OF testing is now commonplace in many monitoring programs, the greatest current limitation is the scarcity of controlled drug administration studies available to guide interpretation. CONTENT This review outlines OF testing advantages and limitations, and the progress in OF that has occurred during the last 5 years in collection, screening, confirmation, and interpretation of cannabinoids, opioids, amphetamines, cocaine, and benzodiazepines. We examine controlled drug administration studies, immunoassay and chromatographic methods, collection devices, point-of-collection testing device performance, and recent applications of OF testing. SUMMARY Substance Abuse and Mental Health Services Administration approval of OF testing was delayed because questions about drug OF disposition were not yet resolved, and collection device performance and testing assays required improvement. Here, we document the many advances achieved in the use of OF. Additional research is needed to identify new biomarkers, determine drug detection windows, characterize OF adulteration techniques, and evaluate analyte stability. Nevertheless, there is no doubt that OF offers multiple advantages as an alternative matrix for drug monitoring and has an important role in DUID, treatment, workplace, and criminal justice programs.
Collapse
Affiliation(s)
- Wendy M. Bosker
- Maastricht University, Faculty of Psychology and Neuroscience, Neuropsychology & Psychopharmacology, Experimental Psychopharmacology Unit, Maastricht, The Netherlands
- Chemistry and Drug Metabolism, National Institute on Drug Abuse, NIH, Baltimore, MD
| | - Marilyn A. Huestis
- Chemistry and Drug Metabolism, National Institute on Drug Abuse, NIH, Baltimore, MD
| |
Collapse
|
6
|
Sanles-Sobrido M, Rodríguez-Lorenzo L, Lorenzo-Abalde S, González-Fernández A, Correa-Duarte MA, Alvarez-Puebla RA, Liz-Marzán LM. Label-free SERS detection of relevant bioanalytes on silver-coated carbon nanotubes: The case of cocaine. NANOSCALE 2009; 1:153-158. [PMID: 20644874 DOI: 10.1039/b9nr00059c] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy can be used for the label-free determination and quantification of relevant small biometabolites that are hard to identify by conventional immunological methods, in the absence of labelling. In this work, detection is based on monitoring the vibrational changes occurring at a specific biointerface (a monoclonal antibody, mAb) supported on silver-coated carbon nanotubes (CNT@Ag). Engineered CNT@Ag play a key role, as they offer a stable substrate to support the biointerface, with a high density of hot spots. Proof of concept is demonstrated through the analysis and quantification of the main cocaine metabolite benzoylecgonine. These results open a new avenue toward the generation of portable sensors for fast ultradetection and quantification of relevant metabolites. The use of discrete particles (CNT@Ag@mAb) rather than rough films, or other conventional SERS supports, will also enable a safe remote interrogation of highly toxic sources in environmental problems or in biological fluids.
Collapse
Affiliation(s)
- Marcos Sanles-Sobrido
- Departamento de Química Física and Unidad Asociada CSIC, Universidade de Vigo, 36310 Vigo, Spain.
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Drug oral fluid analysis was first used almost 30 years ago for the purpose of therapeutic drug monitoring. Since then, oral fluid bioanalysis has become more popular, mainly in the fields of pharmacokinetics, workplace drug testing, criminal justice, driving under the influence testing and therapeutic drug monitoring. In fact, oral fluid can provide a readily available and noninvasive medium, without any privacy loss by the examinee, which occurs, for instance, during the collection of urine samples. It is believed that drug concentrations in oral fluid may parallel those measured in blood. This feature makes oral fluid an alternative analytical specimen to blood, which assumes particular importance in roadside testing, the most published application of this sample. Great improvements in the development of accurate and reliable methods for sample collection, in situ detection devices (on-site drug detection kits), and highly sensitive and specific analytical methods for oral fluid testing of drugs have been observed in the last few years. However, without mass spectrometry-based analytical methods, such as liquid chromatography coupled to mass spectrometry (LC–MS) or tandem mass spectrometry (LC–MS/MS), the desired sensitivity would not be met, due to the low amounts of sample usually available for analysis. This review will discuss a series of published papers on the applicability of oral fluid in the field of analytical, clinical and forensic toxicology, with a special focus on its advantages and drawbacks over the normally used biological specimens and the main technological advances over the last decade, which have made oral fluid analysis of drugs possible.
Collapse
|
8
|
Gallardo E, Queiroz JA. The role of alternative specimens in toxicological analysis. Biomed Chromatogr 2008; 22:795-821. [DOI: 10.1002/bmc.1009] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Phipps RJ, Smith JJ, Darwin WD, Cone EJ. Chapter 2 Current methods for the separation and analysis of cocaine analytes. HANDBOOK OF ANALYTICAL SEPARATIONS 2008. [DOI: 10.1016/s1567-7192(06)06002-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Smith ML, Vorce SP, Holler JM, Shimomura E, Magluilo J, Jacobs AJ, Huestis MA. Modern instrumental methods in forensic toxicology. J Anal Toxicol 2007; 31:237-53, 8A-9A. [PMID: 17579968 PMCID: PMC2745311 DOI: 10.1093/jat/31.5.237] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This article reviews modern analytical instrumentation in forensic toxicology for identification and quantification of drugs and toxins in biological fluids and tissues. A brief description of the theory and inherent strengths and limitations of each methodology is included. The focus is on new technologies that address current analytical limitations. A goal of this review is to encourage innovations to improve our technological capabilities and to encourage use of these analytical techniques in forensic toxicology practice.
Collapse
Affiliation(s)
- Michael L. Smith
- Division of Forensic Toxicology, Office of the Armed Forces Medical Examiner, Armed Forces Institute of Pathology, 1413 Research Blvd., Bldg. 102, Rockville, Maryland 20850
| | - Shawn P. Vorce
- Division of Forensic Toxicology, Office of the Armed Forces Medical Examiner, Armed Forces Institute of Pathology, 1413 Research Blvd., Bldg. 102, Rockville, Maryland 20850
| | - Justin M. Holler
- Division of Forensic Toxicology, Office of the Armed Forces Medical Examiner, Armed Forces Institute of Pathology, 1413 Research Blvd., Bldg. 102, Rockville, Maryland 20850
| | - Eric Shimomura
- Division of Forensic Toxicology, Office of the Armed Forces Medical Examiner, Armed Forces Institute of Pathology, 1413 Research Blvd., Bldg. 102, Rockville, Maryland 20850
| | - Joe Magluilo
- Division of Forensic Toxicology, Office of the Armed Forces Medical Examiner, Armed Forces Institute of Pathology, 1413 Research Blvd., Bldg. 102, Rockville, Maryland 20850
| | - Aaron J. Jacobs
- Division of Forensic Toxicology, Office of the Armed Forces Medical Examiner, Armed Forces Institute of Pathology, 1413 Research Blvd., Bldg. 102, Rockville, Maryland 20850
- Army Medical Department Board, Fort Sam Houston, Texas 78234
| | - Marilyn A. Huestis
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, Maryland 21224
| |
Collapse
|
11
|
Samyn N, Laloup M, De Boeck G. Bioanalytical procedures for determination of drugs of abuse in oral fluid. Anal Bioanal Chem 2007; 388:1437-53. [PMID: 17404716 DOI: 10.1007/s00216-007-1245-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 03/02/2007] [Accepted: 03/06/2007] [Indexed: 10/23/2022]
Abstract
Recent advances in analytical techniques have enabled the detection of drugs and drug metabolites in oral fluid specimens. Although GC-MS is still commonly used in practice, many laboratories have developed and successfully validated methods for LC-MS(-MS) that can detect a large number of compounds in the limited sample volume available. In addition, several enzyme immunoassays have been commercialized for the detection of drugs of abuse in oral fluid samples, enabling the fast screening and selection of presumably positive samples. A number of concerns are discussed, such as the variability in the volume of sample collected and its implications in terms of quantitative measurements, and the drug recoveries of the many different specimen collection systems on the market. Additional considerations that also receive attention are the importance of providing complete validation data with respect to analyte stability, matrix effect, and the choice of collection method.
Collapse
Affiliation(s)
- Nele Samyn
- Laboratory of Toxicology, National Institute of Criminalistics and Criminology (N.I.C.C.), Federal Public Service Justice, Vilvoordsesteenweg 100, 1120 Brussels, Belgium.
| | | | | |
Collapse
|
12
|
Laloup M, Tilman G, Maes V, De Boeck G, Wallemacq P, Ramaekers J, Samyn N. Validation of an ELISA-based screening assay for the detection of amphetamine, MDMA and MDA in blood and oral fluid. Forensic Sci Int 2005; 153:29-37. [PMID: 15922530 DOI: 10.1016/j.forsciint.2005.04.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The use of amphetamine and 'ecstasy' (MDMA) has increased exponentially in many European countries since the late nineties, leading to a rapid growth in the number of clinical and forensic analyses. Therefore, a rapid screening procedure for these substances in biological specimens has become an important part of routine toxicological analysis in forensic laboratories. The objective of this study was to evaluate the Cozart amphetamine enzyme-linked immunosorbent assay (ELISA) for the screening of plasma samples and oral fluid samples (collected with the Intercept device). Authentic plasma samples from drivers (n=360) were screened, using an 1:5-fold dilution. True positive, true negative, false positive and false negative results were determined relative to the in-house routine GC-MS analysis. Samples consisted of 144 amphetamine-only positives, 141MDMA/MDA-only positives, and 74 negatives when using the limit of quantitation as the cut-off level for confirmation (10 ng/mL). Using these results, receiver operating characteristic (ROC) curves were generated and optimal cut-off values for the screening assay were calculated. Analysis showed that the ELISA is able to predict the presence of either amphetamine or *MDMA/MDA (*MDMA as its metabolite MDA) in plasma samples with 98.3% sensitivity and 100% specificity at a cut-off value of 66.5 ng/mL d-amphetamine equivalents. A similar analysis was conducted on 216 oral fluid specimens collected from a controlled double blind study. Subjects received placebo or a high (100 mg) or low (75 mg) dose of MDMA. Oral fluid samples were collected at 1.5 and 5.5h after administration. Combined results of the analysis of the high and low dose oral fluid samples indicated a screening cut-off of 51 ng/mL d-amphetamine equivalents with both a sensitivity and specificity of 98.6% (using a LC-MS/MS confirmation cut-off of 10 ng/mL). In conclusion, these data indicate that the Cozart AMP EIA plates constitute a fast and accurate screening technique for the identification of amphetamine and MDMA/MDA positive plasma samples and oral fluid specimens (collected with Intercept. It should be emphasized that method validation should be performed for each type of biological matrix.
Collapse
Affiliation(s)
- Marleen Laloup
- Federal Public Service Justice, National Institute of Criminalistics and Criminology (NICC), Section Toxicology, Vilvoordsesteenweg 98, 1120 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
13
|
Wood M, Laloup M, Ramirez Fernandez MDM, Jenkins KM, Young MS, Ramaekers JG, De Boeck G, Samyn N. Quantitative analysis of multiple illicit drugs in preserved oral fluid by solid-phase extraction and liquid chromatography–tandem mass spectrometry. Forensic Sci Int 2005; 150:227-38. [PMID: 15944064 DOI: 10.1016/j.forsciint.2004.11.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 11/13/2004] [Accepted: 11/14/2004] [Indexed: 10/25/2022]
Abstract
We present a validated method for the simultaneous analysis of basic drugs which comprises a sample clean-up step, using mixed-mode solid-phase extraction (SPE), followed by LC-MS/MS analysis. Deuterated analogues for all of the analytes of interest were used for quantitation. The applied HPLC gradient ensured the elution of all the drugs examined within 14 min and produced chromatographic peaks of acceptable symmetry. Selectivity of the method was achieved by a combination of retention time, and two precursor-product ion transitions for the non-deuterated analogues. Oral fluid was collected with the Intercept, a FDA approved sampling device that is used on a large scale in the US for workplace drug testing. However, this collection system contains some ingredients (stabilizers and preservatives) that can cause substantial interferences, e.g. ion suppression or enhancement during LC-MS/MS analysis, in the absence of suitable sample pre-treatment. The use of the SPE was demonstrated to be highly effective and led to significant decreases in the interferences. Extraction was found to be both reproducible and efficient with recoveries >76% for all of the analytes. Furthermore, the processed samples were demonstrated to be stable for 48 h, except for cocaine and benzoylecgonine, where a slight negative trend was observed, but did not compromise the quantitation. In all cases the method was linear over the range investigated (2-200 microg/L) with an excellent intra-assay and inter-assay precision (coefficients of variation <10% in most cases) for QC samples spiked at a concentration of 4, 12 and 100 microg/L. Limits of quantitation were estimated to be at 2 microg/L with limits of detection ranging from 0.2 to 0.5 microg/L, which meets the requirements of SAMHSA for oral fluid testing in the workplace. The method was subsequently applied to the analysis of Intercept samples collected at the roadside by the police, and to determine MDMA and MDA levels in oral fluid samples from a controlled study.
Collapse
Affiliation(s)
- Michelle Wood
- Waters Corporation, MS Technologies Centre, Manchester, UK
| | | | | | | | | | | | | | | |
Collapse
|