1
|
Ulrich E, Kistenmacher S, Martin G, Schlötzer-Schrehardt U, Seitz B, Auw-Hädrich C, Schlunck G, Reinhard T, Polisetti N. PAX3 expression patterns in ocular surface melanocytes. Sci Rep 2025; 15:12472. [PMID: 40216818 PMCID: PMC11992251 DOI: 10.1038/s41598-025-90318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/12/2025] [Indexed: 04/14/2025] Open
Abstract
PAX3, a transcription factor essential for neural crest development and melanocyte progenitors, is expressed in various melanocytic tissues. However, its role in ocular surface tissues remains poorly understood. This study investigated the expression patterns of PAX3 in the limbal stem cell niche, specifically in limbal epithelial progenitor cells (LEPC), limbal melanocytes (LM), and limbal mesenchymal stem cells (LMSC). Additionally, PAX3 expression was studied in conjunctival/limbal melanoma specimens. Immunohistochemical analysis revealed predominant PAX3 expression in LM as well in the conjunctival melanocytes, suggesting distinct roles in stem cell regulation and melanocyte maintenance. Notably, PAX3 was significantly upregulated in conjunctival/limbal melanoma tissues compared to healthy counterparts, with expression co-localizing with melanocyte markers (Melan-A, HMB45, SOX10) and the proliferation marker Ki-67 in melanoma cells. These findings suggests that while PAX3 expression is restricted to melanocytes in limbal/conjunctival tissues and its dysregulation may play a crucial role in conjunctival/limbal melanoma development. Further investigation into mechanisms by which PAX3 influences corneal pathophysiology and contributes to conjunctival/limbal melanoma pathogenesis could identify potential therapeutic targets for this aggressive ocular malignancy.
Collapse
Affiliation(s)
- Eva Ulrich
- Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Sebastian Kistenmacher
- Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Gottfried Martin
- Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | | | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Claudia Auw-Hädrich
- Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany
| | - Naresh Polisetti
- Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106, Freiburg, Germany.
| |
Collapse
|
2
|
Kamińska P, Buszka K, Zabel M, Nowicki M, Alix-Panabières C, Budna-Tukan J. Liquid Biopsy in Melanoma: Significance in Diagnostics, Prediction and Treatment Monitoring. Int J Mol Sci 2021; 22:9714. [PMID: 34575876 PMCID: PMC8468624 DOI: 10.3390/ijms22189714] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Liquid biopsy is a common term referring to circulating tumor cells and other biomarkers, such as circulating tumor DNA (ctDNA) or extracellular vesicles. Liquid biopsy presents a range of clinical advantages, such as the low invasiveness of the blood sample collection and continuous control of the tumor progression. In addition, this approach enables the mechanisms of drug resistance to be determined in various methods of cancer treatment, including immunotherapy. However, in the case of melanoma, the application of liquid biopsy in patient stratification and therapy needs further investigation. This review attempts to collect all of the relevant and recent information about circulating melanoma cells (CMCs) related to the context of malignant melanoma and immunotherapy. Furthermore, the biology of liquid biopsy analytes, including CMCs, ctDNA, mRNA and exosomes, as well as techniques for their detection and isolation, are also described. The available data support the notion that thoughtful selection of biomarkers and technologies for their detection can contribute to the development of precision medicine by increasing the efficacy of cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Paula Kamińska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.K.); (K.B.); (M.N.)
| | - Karolina Buszka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.K.); (K.B.); (M.N.)
| | - Maciej Zabel
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, 65-046 Zielona Góra, Poland;
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.K.); (K.B.); (M.N.)
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, 34093 Montpellier, France;
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, 34000 Montpellier, France
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.K.); (K.B.); (M.N.)
| |
Collapse
|
3
|
Revythis A, Shah S, Kutka M, Moschetta M, Ozturk MA, Pappas-Gogos G, Ioannidou E, Sheriff M, Rassy E, Boussios S. Unraveling the Wide Spectrum of Melanoma Biomarkers. Diagnostics (Basel) 2021; 11:diagnostics11081341. [PMID: 34441278 PMCID: PMC8391989 DOI: 10.3390/diagnostics11081341] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
The use of biomarkers in medicine has become essential in clinical practice in order to help with diagnosis, prognostication and prediction of treatment response. Since Alexander Breslow’s original report on “melanoma and prognostic values of thickness”, providing the first biomarker for melanoma, many promising new biomarkers have followed. These include serum markers, such as lactate dehydrogenase and S100 calcium-binding protein B. However, as our understanding of the DNA mutational profile progresses, new gene targets and proteins have been identified. These include point mutations, such as mutations of the BRAF gene and tumour suppressor gene tP53. At present, only a small number of the available biomarkers are being utilised, but this may soon change as more studies are published. The aim of this article is to provide a comprehensive review of melanoma biomarkers and their utility for current and, potentially, future clinical practice.
Collapse
Affiliation(s)
- Antonios Revythis
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (A.R.); (S.S.); (M.K.)
| | - Sidrah Shah
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (A.R.); (S.S.); (M.K.)
| | - Mikolaj Kutka
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (A.R.); (S.S.); (M.K.)
| | - Michele Moschetta
- CHUV, Lausanne University Hospital, Rue du Bugnon, 21 CH-1011 Lausanne, Switzerland;
| | - Mehmet Akif Ozturk
- Department of Internal Medicine, School of Medicine, Bahcesehir University, Istanbul 34353, Turkey;
| | - George Pappas-Gogos
- Department of Surgery, University Hospital of Ioannina, 45111 Ioannina, Greece;
| | - Evangelia Ioannidou
- Department of Paediatrics and Child Health, West Suffolk Hospital NHS Foundation Trust, Hardwick Lane, Bury St Edmunds IP33 2QZ, UK;
| | - Matin Sheriff
- Department of Urology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK;
| | - Elie Rassy
- Department of Cancer Medicine, Gustave Roussy Institut, 94805 Villejuif, France;
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (A.R.); (S.S.); (M.K.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
- Correspondence: or or
| |
Collapse
|
4
|
Song W, Zhao YY, Ren YJ, Liu LL, Wei SD, Yang HB. Proanthocyanidins isolated from the leaves of Photinia × fraseri block the cell cycle and induce apoptosis by inhibiting tyrosinase activity in melanoma cells. Food Funct 2021; 12:3978-3991. [PMID: 33977989 DOI: 10.1039/d1fo00134e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Tyrosinase is considered a molecular marker of melanoma, and few natural antitumor drugs targeting tyrosinase have been identified. In this study, proanthocyanidins (PAs) were isolated from the leaves of Photinia × fraseri and their structures were characterized by high performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and the effects of antityrosinase activity were investigated. The results showed that the basic structural units of PAs are composed of catechin and epicatechin and that oligomer is the main component. PAs exhibited better antityrosinase activity via chelation of copper ions and by disturbing o-quinone production. Furthermore, analyses of the cell cycle, apoptosis rate, and regulation of melanin protein expression revealed preliminarily that PAs could affect melanin production by downregulating microphthalmia transcription factor (MITF) expression and by inhibiting the activities of tyrosinase and tyrosinase related protein 1 (TRP-1), leading to cell cycle arrest and apoptosis of melanoma cells. Collectively, our study demonstrated that PAs are potential tyrosinase inhibitors and have good antimelanoma effects. These findings provide a theoretical support for the application of tyrosinase inhibitors and for further drug development.
Collapse
Affiliation(s)
- Wei Song
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China.
| | - Ya-Ying Zhao
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China. and College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China.
| | - Yuan-Jing Ren
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China. and College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China.
| | - Lu-Lu Liu
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China. and College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China.
| | - Shu-Dong Wei
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China.
| | - Hai-Bo Yang
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China. and Forestry College, Henan Agricultural University, Zhengzhou, Henan 450000, China
| |
Collapse
|
5
|
Pilla L, Alberti A, Di Mauro P, Gemelli M, Cogliati V, Cazzaniga ME, Bidoli P, Maccalli C. Molecular and Immune Biomarkers for Cutaneous Melanoma: Current Status and Future Prospects. Cancers (Basel) 2020; 12:E3456. [PMID: 33233603 PMCID: PMC7699774 DOI: 10.3390/cancers12113456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022] Open
Abstract
Advances in the genomic, molecular and immunological make-up of melanoma allowed the development of novel targeted therapy and of immunotherapy, leading to changes in the paradigm of therapeutic interventions and improvement of patients' overall survival. Nevertheless, the mechanisms regulating either the responsiveness or the resistance of melanoma patients to therapies are still mostly unknown. The development of either the combinations or of the sequential treatment of different agents has been investigated but without a strongly molecularly motivated rationale. The need for robust biomarkers to predict patients' responsiveness to defined therapies and for their stratification is still unmet. Progress in immunological assays and genomic techniques as long as improvement in designing and performing studies monitoring the expression of these markers along with the evolution of the disease allowed to identify candidate biomarkers. However, none of them achieved a definitive role in predicting patients' clinical outcomes. Along this line, the cross-talk of melanoma cells with tumor microenvironment plays an important role in the evolution of the disease and needs to be considered in light of the role of predictive biomarkers. The overview of the relationship between the molecular basis of melanoma and targeted therapies is provided in this review, highlighting the benefit for clinical responses and the limitations. Moreover, the role of different candidate biomarkers is described together with the technical approaches for their identification. The provided evidence shows that progress has been achieved in understanding the molecular basis of melanoma and in designing advanced therapeutic strategies. Nevertheless, the molecular determinants of melanoma and their role as biomarkers predicting patients' responsiveness to therapies warrant further investigation with the vision of developing more effective precision medicine.
Collapse
Affiliation(s)
- Lorenzo Pilla
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Andrea Alberti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Health Science and Public Health, University of Brescia, ASST Ospedali Civili, 25123 Brescia, Italy;
| | - Pierluigi Di Mauro
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Maria Gemelli
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Viola Cogliati
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Marina Elena Cazzaniga
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Paolo Bidoli
- Division of Medical Oncology, San Gerardo Hospital, University of Milano-Bicocca School of Medicine, 20900 Monza, Italy; (P.D.M.); (M.G.); (V.C.); (M.E.C.); (P.B.)
| | - Cristina Maccalli
- Laboratory of Immune and Biological Therapy, Research Department, Sidra Medicine, Doha 26999, Qatar;
| |
Collapse
|
6
|
Lin SY, Chang SC, Lam S, Ramos RI, Tran K, Ohe S, Salomon MP, Bhagat AAS, Lim CT, Fischer TD, Foshag LJ, Boley CL, O’Day SJ, Hoon DS. Prospective Molecular Profiling of Circulating Tumor Cells from Patients with Melanoma Receiving Combinatorial Immunotherapy. Clin Chem 2020; 66:169-177. [PMID: 31672856 PMCID: PMC7193771 DOI: 10.1373/clinchem.2019.307140] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Blood molecular profiling of circulating tumor cells (CTCs) can enable monitoring of patients with metastatic melanoma during checkpoint inhibitor immunotherapy (CII) and in combination with targeted therapies. We developed a microfluidics-based CTC platform to explore CTC profiling utility in CII-treated patients with melanoma using a melanoma messenger RNA (mRNA)/DNA biomarker panel. METHODS Blood samples (n = 213) were collected prospectively from 75 American Joint Committee on Cancer-staged III/IV melanoma patients during CII treatment and those enriched for CTCs. CTC profiling was performed using 5 known melanoma mRNA biomarkers and BRAF V600E DNA mutation. CTC biomarker status associations with clinical outcomes were assessed. RESULTS CTCs were detected in 88% of blood samples from patients with melanoma. CTC-derived biomarkers and clinical variables analyzed using classification and regression tree analysis revealed that a combination of lactate dehydrogenase, CTC-mRNA biomarkers, and tumor BRAF-mutation status was indicative of clinical outcomes for patients with stage IV melanoma (n = 52). The panel stratified low-risk and high-risk patients, whereby the latter had poor disease-free (P = 0.03) and overall survival (P = 0.02). Incorporation of a DNA biomarker with mRNA profiling increased overall CTC-detection capability by 57% compared to mRNA profiling only. RNA sequencing of isolated CTCs identified significant catenin beta 1 (CTNNB1) overexpression (P <0.01) compared to nondisease donor blood. CTC-CTNNB1 was associated with progressive disease/stable disease compared to complete-responder patient status (P = 0.02). Serial CTC profiling identified subclinical disease in patients who developed progressive disease during treatment/follow-up. CONCLUSIONS CTC-derived mRNA/DNA biomarkers have utility for monitoring CII, targeted, and combinatorial therapies in metastatic melanoma patients.
Collapse
Affiliation(s)
- Selena Y. Lin
- Department of Translational Molecular Medicine, John Wayne
Cancer Institute, Saint John’s Health Center, PHS, Santa Monica, CA
| | - Shu-Ching Chang
- Medical Data Research Center, Providence Saint Joseph
Health, Portland, OR
| | - Stella Lam
- Department of Translational Molecular Medicine, John Wayne
Cancer Institute, Saint John’s Health Center, PHS, Santa Monica, CA
| | - Romela Irene Ramos
- Department of Translational Molecular Medicine, John Wayne
Cancer Institute, Saint John’s Health Center, PHS, Santa Monica, CA
| | - Kevin Tran
- Department of Translational Molecular Medicine, John Wayne
Cancer Institute, Saint John’s Health Center, PHS, Santa Monica, CA
| | - Shuichi Ohe
- Department of Translational Molecular Medicine, John Wayne
Cancer Institute, Saint John’s Health Center, PHS, Santa Monica, CA
| | - Matthew P. Salomon
- Department of Translational Molecular Medicine, John Wayne
Cancer Institute, Saint John’s Health Center, PHS, Santa Monica, CA
| | - Ali Asgar S. Bhagat
- Department of Biomedical Engineering and Department of
Mechanical Engineering, National University of Singapore, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering and Department of
Mechanical Engineering, National University of Singapore, Singapore
| | - Trevan D. Fischer
- Department of Surgical Oncology, John Wayne Cancer
Institute, PHS, Santa Monica, CA
| | - Leland J. Foshag
- Department of Surgical Oncology, John Wayne Cancer
Institute, PHS, Santa Monica, CA
| | - Christine L. Boley
- Department of Immuno-Oncology and Clinical Research, John
Wayne Cancer Institute, PHS, Santa Monica, CA
| | - Steven J. O’Day
- Department of Immuno-Oncology and Clinical Research, John
Wayne Cancer Institute, PHS, Santa Monica, CA
| | - Dave S.B. Hoon
- Department of Translational Molecular Medicine, John Wayne
Cancer Institute, Saint John’s Health Center, PHS, Santa Monica, CA
| |
Collapse
|
7
|
Intra-Patient Heterogeneity of Circulating Tumor Cells and Circulating Tumor DNA in Blood of Melanoma Patients. Cancers (Basel) 2019; 11:cancers11111685. [PMID: 31671846 PMCID: PMC6896052 DOI: 10.3390/cancers11111685] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/20/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Despite remarkable progress in melanoma therapy, the exceptional heterogeneity of the disease has prevented the development of reliable companion biomarkers for the prediction or monitoring of therapy responses. Here, we show that difficulties in detecting blood-based markers, like circulating tumor cells (CTC), might arise from the translation of the mutational heterogeneity of melanoma cells towards their surface marker expression. We provide a unique method, which enables the molecular characterization of clinically relevant CTC subsets, as well as circulating tumor DNA (ctDNA), from a single blood sample. The study demonstrates the benefit of a combined analysis of ctDNA and CTC counts in melanoma patients, revealing that CTC subsets and ctDNA provide synergistic real-time information on the mutational status, RNA and protein expression of melanoma cells in individual patients, in relation to clinical outcome.
Collapse
|
8
|
Anu Prathap MU, Castro-Pérez E, Jiménez-Torres JA, Setaluri V, Gunasekaran S. A flow-through microfluidic system for the detection of circulating melanoma cells. Biosens Bioelectron 2019; 142:111522. [PMID: 31336226 DOI: 10.1016/j.bios.2019.111522] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/03/2019] [Accepted: 07/16/2019] [Indexed: 12/19/2022]
Abstract
We report the fabrication of polyaniline nanofiber (PANI)-modified screen-printed electrode (PANI/SPE) incorporated in a poly-dimethylsiloxane (PDMS) microfluidic channel for the detection of circulating tumor cells. We employed this device to detect melanoma skin cancer cells through specific immunogenic binding of cell surface biomarker melanocortin 1 receptor (MC1R) to anti-MC1R antibody. The antibody-functionalized PANI/SPE was used in batch-continuous flow-through fashion. An aqueous cell suspension of ferri/ferrocyanide at a flow rate of 1.5 mL/min was passed over the immunosensor, which allowed for continuous electrochemical measurements. The sensor performed exceptionally well affording an ultralow limit of quantification of 1 melanoma cell/mL, both in buffer and when mixed with peripheral blood mononuclear cells, and the response was log-linear over the range of 10-9000 melanoma cells/10 mL.
Collapse
Affiliation(s)
| | - Edgardo Castro-Pérez
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706, USA
| | - José A Jiménez-Torres
- Microtechnology, Medicine and Biology Lab Biomedical Engineering, College of Engineering University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Vijaysaradhi Setaluri
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706, USA.
| | - Sundaram Gunasekaran
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI, 53706, USA.
| |
Collapse
|
9
|
Rodrigues-Junior DM, Tan SS, Lim SK, de Souza Viana L, Carvalho AL, Vettore AL, Iyer NG. High expression of MLANA in the plasma of patients with head and neck squamous cell carcinoma as a predictor of tumor progression. Head Neck 2019; 41:1199-1205. [PMID: 30803092 DOI: 10.1002/hed.25510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 05/04/2018] [Accepted: 08/15/2018] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND There is a paucity of plasma-based biomarkers that predict outcome in patients with head and neck squamous cell carcinoma (HNSCC) treated with chemoradiation therapy (CRT). Here, we evaluate the prognostic potential of plasma Melanoma-Antigen Recognized by T-cells 1 (MLANA) in this setting. METHODS MLANA expression in HNSCC lines were evaluated by reverse transcription polymerase chain reaction, whereas plasma levels were quantified using ELISA in 48 patients with locally advanced HNSCC undergoing a phase 2 trial with CRT. RESULTS MLANA is expressed at variable levels in a panel of HNSCC lines. In plasma, levels were elevated in patients with tumor relapse compared to those without (P < .004); 73.9% of the patients expressing high plasma MLANA levels progressed with recurrent disease (P = .020). Multivariate analysis showed that plasma MLANA levels and tumor resectability were independent prognostic factors for progression free survival. CONCLUSION Plasma MLANA expression appears to be an effective noninvasive biomarker for outcomes in patients treated with CRT, and could potentially guide therapeutic decisions in this context.
Collapse
Affiliation(s)
- Dorival Mendes Rodrigues-Junior
- Biological Science Department, Campus Diadema, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil.,Cancer Therapeutics Research Laboratory, National Cancer Centre, Singapore
| | | | | | - Luciano de Souza Viana
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Andre Lopes Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Andre Luiz Vettore
- Biological Science Department, Campus Diadema, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - N Gopalakrishna Iyer
- Cancer Therapeutics Research Laboratory, National Cancer Centre, Singapore.,Division of Surgical Oncology, National Cancer Centre, Singapore
| |
Collapse
|
10
|
Dunkel Y, Reid AL, Ear J, Aznar N, Millward M, Gray E, Pearce R, Ziman M, Ghosh P. Prognostic Relevance of CCDC88C (Daple) Transcripts in the Peripheral Blood of Patients with Cutaneous Melanoma. Sci Rep 2018; 8:18036. [PMID: 30575751 PMCID: PMC6303298 DOI: 10.1038/s41598-018-36173-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/15/2018] [Indexed: 01/12/2023] Open
Abstract
A loss of balance between G protein activation and deactivation has been implicated in the initiation of melanomas, and non-canonical Wnt signaling via the Wnt5A/Frizzled (FZD) pathway has been shown to be critical for the switch to an invasive phenotype. Daple [CCDC88C], a cytosolic guanine nucleotide exchange modulator (GEM) which enhances non-canonical Wnt5A/FZD signaling via activation of trimeric G protein, Gαi, has been shown to serve opposing roles-as an inducer of EMT and invasiveness and a potent tumor suppressor-via two isoforms, V1 (full-length) and V2 (short spliced isoform), respectively. Here we report that the relative abundance of these isoforms in the peripheral circulation, presumably largely from circulating tumor cells (CTCs), is a prognostic marker of cutaneous melanomas. Expression of V1 is increased in both the early and late clinical stages (p < 0.001, p = 0.002, respectively); V2 is decreased exclusively in the late clinical stage (p = 0.003). The two isoforms have opposing prognostic effects: high expression of V2 increases relapse-free survival (RFS; p = 0.014), whereas high expression of V1 tends to decrease RFS (p = 0.051). Furthermore, these effects are additive, in that melanoma patients with a low V2-high V1 signature carry the highest risk of metastatic disease. We conclude that detection of Daple transcripts in the peripheral blood (i.e., liquid biopsies) of patients with melanoma may serve as a prognostic marker and an effective strategy for non-invasive long-term follow-up of patients with melanoma.
Collapse
Affiliation(s)
- Ying Dunkel
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Anna L Reid
- School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Jason Ear
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Nicolas Aznar
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Centre de Recherche enCancérologie de Lyon (CRCL), Lyon, France
| | - Michael Millward
- School of Medicine, University of Western Australia, Crawley, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Elin Gray
- School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Robert Pearce
- School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Melanie Ziman
- School of Medical Sciences, Edith Cowan University, Perth, WA, Australia.
- School of Biomedical Science, University of Western Australia, Crawley, Australia.
| | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, La Jolla, California, USA.
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA.
- Rebecca and John Moores Cancer Center, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
11
|
Gaiser MR, von Bubnoff N, Gebhardt C, Utikal JS. Liquid Biopsy zur Überwachung von Melanompatienten. J Dtsch Dermatol Ges 2018; 16:405-416. [DOI: 10.1111/ddg.13461_g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/21/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Maria Rita Gaiser
- Klinische Kooperationseinheit Klinische Kooperationseinheit Dermatoonkologie des Deutschen; Krebsforschungszentrums (DKFZ); Heidelberg Deutschland
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsmedizin Mannheim, Ruprecht-Karls-Universität Heidelberg; Mannheim Deutschland
| | - Nikolas von Bubnoff
- Klinik für Hämatologie; Onkologie und Stammzelltransplantation; Universitätsklinikum Freiburg; Deutschland
- Deutsches Konsortium für Translationale Krebsforschung (DKTK); Deutsches Krebsforschungszentrum (DKFZ); Heidelberg Deutschland
| | - Christoffer Gebhardt
- Klinische Kooperationseinheit Klinische Kooperationseinheit Dermatoonkologie des Deutschen; Krebsforschungszentrums (DKFZ); Heidelberg Deutschland
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsmedizin Mannheim, Ruprecht-Karls-Universität Heidelberg; Mannheim Deutschland
| | - Jochen Sven Utikal
- Klinische Kooperationseinheit Klinische Kooperationseinheit Dermatoonkologie des Deutschen; Krebsforschungszentrums (DKFZ); Heidelberg Deutschland
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsmedizin Mannheim, Ruprecht-Karls-Universität Heidelberg; Mannheim Deutschland
| |
Collapse
|
12
|
Marsavela G, Aya-Bonilla CA, Warkiani ME, Gray ES, Ziman M. Melanoma circulating tumor cells: Benefits and challenges required for clinical application. Cancer Lett 2018; 424:1-8. [PMID: 29548820 DOI: 10.1016/j.canlet.2018.03.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/01/2018] [Accepted: 03/09/2018] [Indexed: 02/07/2023]
Abstract
The implementation of novel therapeutic interventions has improved the survival rates of melanoma patients with metastatic disease. Nonetheless, only 33% of treated cases exhibit long term responses. Circulating tumor cell (CTC) measurements are currently of clinical value in breast, prostate and colorectal cancers. However, the clinical utility of melanoma CTCs (MelCTCs) is still unclear due to challenges that appear intrinsic to MelCTCs (i.e. rarity, heterogeneity) and a lack of standardization in their isolation, across research laboratories. Here, we review the latest developments, pinpoint the challenges in MelCTC isolation and address their potential role in melanoma management.
Collapse
Affiliation(s)
- G Marsavela
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - C A Aya-Bonilla
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.
| | - M E Warkiani
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia; School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia; Institute of Molecular Medicine, Sechenov First Moscow State University, Moscow, Russia
| | - E S Gray
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - M Ziman
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia; School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Australia
| |
Collapse
|
13
|
Gaiser MR, von Bubnoff N, Gebhardt C, Utikal JS. Liquid biopsy to monitor melanoma patients. J Dtsch Dermatol Ges 2018. [PMID: 29512873 DOI: 10.1111/ddg.13461] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During the last six years, several innovative, systemic therapies for the treatment of metastatic malignant melanoma (MM) have emerged. Conventional chemotherapy has been superseded by novel first-line therapies, including systemic immunotherapies (anti-CTLA4 and anti-PD1; authorization of anti-PDL1 is anticipated) and therapies targeting specific mutations (BRAF, NRAS, and c-KIT). Thus, treating physicians are confronted with new challenges, such as stratifying patients for appropriate treatments and monitoring long-term responders for progression. Consequently, reliable methods for monitoring disease progression or treatment resistance are necessary. Localized and advanced cancers may generate circulating tumor cells and circulating tumor DNA (ctDNA) that can be detected and quantified from peripheral blood samples (liquid biopsy). For melanoma patients, liquid biopsy results may be useful as novel predictive biomarkers to guide therapeutic decisions, particularly in the context of mutation-based targeted therapies. The challenges of using liquid biopsy include strict criteria for the phenotypic nature of circulating MM cells or their fragments and the instability of ctDNA in blood. The limitations of liquid biopsy in routine diagnostic testing are discussed in this review.
Collapse
Affiliation(s)
- Maria Rita Gaiser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Nikolas von Bubnoff
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University of Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoffer Gebhardt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Sven Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
14
|
Molecular signatures of circulating melanoma cells for monitoring early response to immune checkpoint therapy. Proc Natl Acad Sci U S A 2018; 115:2467-2472. [PMID: 29453278 PMCID: PMC5877960 DOI: 10.1073/pnas.1719264115] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Identifying predictive biomarkers of therapeutic response for melanoma patients treated with immune checkpoint inhibitors is a major challenge. By combining microfluidic enrichment for melanoma circulating tumor cells (CTCs) together with RNA-based droplet digital PCR quantitation, we have established a highly sensitive and robust platform for noninvasive, blood-based monitoring of tumor burden. Serial monitoring of melanoma patients treated with immune checkpoint inhibitors shows rapid changes in CTC score, which precede standard clinical assessment and are highly predictive of long-term clinical outcome. Early on-treatment digital monitoring of CTC dynamics may thus help identify patients likely to benefit from immune checkpoint inhibition therapy. A subset of patients with metastatic melanoma have sustained remissions following treatment with immune checkpoint inhibitors. However, analyses of pretreatment tumor biopsies for markers predictive of response, including PD-1 ligand (PD-L1) expression and mutational burden, are insufficiently precise to guide treatment selection, and clinical radiographic evidence of response on therapy may be delayed, leading to some patients receiving potentially ineffective but toxic therapy. Here, we developed a molecular signature of melanoma circulating tumor cells (CTCs) to quantify early tumor response using blood-based monitoring. A quantitative 19-gene digital RNA signature (CTC score) applied to microfluidically enriched CTCs robustly distinguishes melanoma cells, within a background of blood cells in reconstituted and in patient-derived (n = 42) blood specimens. In a prospective cohort of 49 patients treated with immune checkpoint inhibitors, a decrease in CTC score within 7 weeks of therapy correlates with marked improvement in progression-free survival [hazard ratio (HR), 0.17; P = 0.008] and overall survival (HR, 0.12; P = 0.04). Thus, digital quantitation of melanoma CTC-derived transcripts enables serial noninvasive monitoring of tumor burden, supporting the rational application of immune checkpoint inhibition therapies.
Collapse
|
15
|
Abdel-Gawad FK, Osman O, Bassem SM, Nassar HF, Temraz TA, Elhaes H, Ibrahim M. Spectroscopic analyses and genotoxicity of dioxins in the aquatic environment of Alexandria. MARINE POLLUTION BULLETIN 2018; 127:618-625. [PMID: 29475705 DOI: 10.1016/j.marpolbul.2017.12.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 06/08/2023]
Abstract
Dioxins have global concerns because of the bioaccumulation tendency and persistency in the environment. Water, seabream Pagrus auratus and seabass Dicentrarchus labrax samples were collected from Abu Qir, Alexandria to evaluate the concentration of dioxin. Fourier Transform Infrared Spectrometer (FTIR) and molecular modeling was applied for elucidating the molecular structure of fish samples. Furthermore, HPLC with UV detection was used to determine the concentration of dioxins (2,8-dichloro dibenzo-p-dioxin). RT-PCR assay was conducted to verify the expression of some immune genes in the fish species as a result of water pollution. The average detected concentrations varied from 0.2 to 1.3μg/l. Gene expression revealed that MHC class 1 and C3 were highly upregulated in liver and muscle of seabass and seabream while T2BP was highly regulated in seabass liver and seabream muscle and seabass muscle for transferrin, FTIR and molecular modeling indicate that dioxin finds its way to fish protein.
Collapse
Affiliation(s)
- Fagr Kh Abdel-Gawad
- Environmental Research Division, Centre of Excellence for Advanced Science, National Research Centre, 33 El-Bohouth St., 12622 Dokki, Giza, Egypt
| | - Osama Osman
- Spectroscopy Department, National Research Centre, 33 El-Bohouth St., 12622 Dokki, Giza, Egypt
| | - Samah M Bassem
- Environmental Research Division, Centre of Excellence for Advanced Science, National Research Centre, 33 El-Bohouth St., 12622 Dokki, Giza, Egypt
| | - Hossam F Nassar
- Environmental Sciences and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Tarek A Temraz
- Marine Science Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Hanan Elhaes
- Faculty of Women for Arts, Science and Education, Physics Department, Ain Shams University, 11757 Cairo, Egypt
| | - Medhat Ibrahim
- Spectroscopy Department, National Research Centre, 33 El-Bohouth St., 12622 Dokki, Giza, Egypt.
| |
Collapse
|
16
|
Lim SY, Lee JH, Diefenbach RJ, Kefford RF, Rizos H. Liquid biomarkers in melanoma: detection and discovery. Mol Cancer 2018; 17:8. [PMID: 29343260 PMCID: PMC5772714 DOI: 10.1186/s12943-018-0757-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/02/2018] [Indexed: 12/18/2022] Open
Abstract
A vast array of tumor-derived genetic, proteomic and cellular components are constantly released into the circulation of cancer patients. These molecules including circulating tumor DNA and RNA, proteins, tumor and immune cells are emerging as convenient and accurate liquid biomarkers of cancer. Circulating cancer biomarkers provide invaluable information on cancer detection and diagnosis, prognosticate patient outcomes, and predict treatment response. In this era of effective molecular targeted treatments and immunotherapies, there is now an urgent need to implement use of these circulating biomarkers in the clinic to facilitate personalized therapy. In this review, we present recent findings in circulating melanoma biomarkers, examine the challenges and promise of evolving technologies used for liquid biomarker discovery, and discuss future directions and perspectives in melanoma biomarker research.
Collapse
Affiliation(s)
- Su Yin Lim
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Melanoma Institute Australia, Sydney, NSW, Australia
| | - Jenny H Lee
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Melanoma Institute Australia, Sydney, NSW, Australia
| | - Russell J Diefenbach
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Melanoma Institute Australia, Sydney, NSW, Australia
| | - Richard F Kefford
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Melanoma Institute Australia, Sydney, NSW, Australia.,Department of Medical Oncology, Crown Princess Mary Cancer Centre, Westmead and Blacktown Hospitals, Sydney, NSW, Australia
| | - Helen Rizos
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia. .,Melanoma Institute Australia, Sydney, NSW, Australia. .,Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, Sydney, NSW, 2109, Australia.
| |
Collapse
|
17
|
Ferguson PM, Long GV, Scolyer RA, Thompson JF. Impact of genomics on the surgical management of melanoma. Br J Surg 2018; 105:e31-e47. [PMID: 29341162 DOI: 10.1002/bjs.10751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/28/2017] [Accepted: 10/10/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Although surgery for early-stage melanoma offers the best chance of cure, recent advances in molecular medicine have revolutionized the management of late-stage melanoma, leading to significant improvements in clinical outcomes. Research into the genomic drivers of disease and cancer immunology has not only ushered in a new era of targeted and immune-based therapies for patients with metastatic melanoma, but has also provided new tools for monitoring disease recurrence and selecting therapeutic strategies. These advances present new opportunities and challenges to the surgeon treating patients with melanoma. METHODS The literature was reviewed to evaluate diagnostic and therapeutic advances in the management of cutaneous melanoma, and to highlight the impact of these advances on surgical decision-making. RESULTS Genomic testing is not required in the surgical management of primary melanoma, although it can provide useful information in some situations. Circulating nucleic acids from melanoma cells can be detected in peripheral blood to predict disease recurrence before it manifests clinically, but validation is required before routine clinical application. BRAF mutation testing is the standard of care for all patients with advanced disease to guide therapy, including the planning of surgery in adjuvant and neoadjuvant settings. CONCLUSION Surgery remains central for managing primary melanoma, and is an important element of integrated multidisciplinary care in advanced disease, particularly for patients with resectable metastases. The field will undergo further change as clinical trials address the relationships between surgery, radiotherapy and systemic therapy for patients with high-risk, early-stage and advanced melanoma.
Collapse
Affiliation(s)
- P M Ferguson
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - G V Long
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - R A Scolyer
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - J F Thompson
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Macías M, Alegre E, Díaz-Lagares A, Patiño A, Pérez-Gracia JL, Sanmamed M, López-López R, Varo N, González A. Liquid Biopsy: From Basic Research to Clinical Practice. Adv Clin Chem 2017; 83:73-119. [PMID: 29304904 DOI: 10.1016/bs.acc.2017.10.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liquid biopsy refers to the molecular analysis in biological fluids of nucleic acids, subcellular structures, especially exosomes, and, in the context of cancer, circulating tumor cells. In the last 10 years, there has been an intensive research in liquid biopsy to achieve a less invasive and more precise personalized medicine. Molecular assessment of these circulating biomarkers can complement or even surrogate tissue biopsy. Because of this research, liquid biopsy has been introduced in clinical practice, especially in oncology, prenatal screening, and transplantation. Here we review the biology, methodological approaches, and clinical applications of the main biomarkers involved in liquid biopsy.
Collapse
Affiliation(s)
| | - Estibaliz Alegre
- Clínica Universidad de Navarra, Pamplona, Spain; The Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| | - Angel Díaz-Lagares
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS), CIBERONC, Santiago de Compostela, Spain; Roche-CHUS Joint Unit, University Clinical Hospital of Santiago (CHUS), Santiago de Compostela, Spain
| | - Ana Patiño
- Clínica Universidad de Navarra, Pamplona, Spain; The Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| | - Jose L Pérez-Gracia
- Clínica Universidad de Navarra, Pamplona, Spain; The Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| | - Miguel Sanmamed
- Yale University School of Medicine, New Haven, CT, United States
| | - Rafael López-López
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS), CIBERONC, Santiago de Compostela, Spain; Roche-CHUS Joint Unit, University Clinical Hospital of Santiago (CHUS), Santiago de Compostela, Spain
| | - Nerea Varo
- Clínica Universidad de Navarra, Pamplona, Spain; The Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| | - Alvaro González
- Clínica Universidad de Navarra, Pamplona, Spain; The Health Research Institute of Navarra (IDISNA), Pamplona, Spain.
| |
Collapse
|
19
|
Hathaway-Schrader JD, Doonan BP, Hossain A, Radwan FFY, Zhang L, Haque A. Autophagy-dependent crosstalk between GILT and PAX-3 influences radiation sensitivity of human melanoma cells. J Cell Biochem 2017; 119:2212-2221. [PMID: 28857256 DOI: 10.1002/jcb.26383] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/23/2017] [Indexed: 01/19/2023]
Abstract
Melanoma represents an ever-increasing problem in the western world as incidence rates continue to climb. Though manageable during early stages, late stage metastatic disease is highly resistant to current intervention. We have previously shown that gamma-interferon-inducible lysosomal thiol-reductase (GILT) enhances HLA class II antigen processing and immune detection of human melanoma cells. Here we report that GILT expression inhibits a potential target, paired box-3 (PAX-3) protein, in late stage human metastatic melanoma. We also show that GILT transfection or induction by IFN-γ, decreases PAX-3 protein expression while upregulating the expression of Daxx, which is also a repressor of PAX-3. Confocal microscopic analysis demonstrated that GILT co-localizes with PAX-3 protein, but not with Daxx within melanoma cells. Immunoprecipitation and immunoblotting studies suggest that GILT expression negatively regulates PAX-3 through the autophagy pathway, potentially resulting in increased susceptibility to conventional treatment in the form of chemotherapy or radiotherapy. While high-dose radiation is a common treatment for melanoma patients, our data suggest that GILT expression significantly increased the susceptibility of melanoma cells to low-dose radiation therapy via upregulation of tumor suppressor protein p53. Overall, these data suggest that GILT has multiple roles in inducing human melanoma cells as better targets for radiation and immunotherapy.
Collapse
Affiliation(s)
- Jessica D Hathaway-Schrader
- Department of Microbiology and Immunology, Hollings Cancer Center, and Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Bently P Doonan
- Department of Microbiology and Immunology, Hollings Cancer Center, and Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Azim Hossain
- Department of Microbiology and Immunology, Hollings Cancer Center, and Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Faisal F Y Radwan
- Department of Microbiology and Immunology, Hollings Cancer Center, and Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Lixia Zhang
- Department of Microbiology and Immunology, Hollings Cancer Center, and Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Azizul Haque
- Department of Microbiology and Immunology, Hollings Cancer Center, and Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
20
|
Tu SH, Hsieh YC, Huang LC, Lin CY, Hsu KW, Hsieh WS, Chi WM, Lee CH. A rapid and quantitative method to detect human circulating tumor cells in a preclinical animal model. BMC Cancer 2017. [PMID: 28645267 PMCID: PMC5481956 DOI: 10.1186/s12885-017-3419-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background As cancer metastasis is the deadliest aspect of cancer, causing 90% of human deaths, evaluating the molecular mechanisms underlying this process is the major interest to those in the drug development field. Both therapeutic target identification and proof-of-concept experimentation in anti-cancer drug development require appropriate animal models, such as xenograft tumor transplantation in transgenic and knockout mice. In the progression of cancer metastasis, circulating tumor cells (CTCs) are the most critical factor in determining the prognosis of cancer patients. Several studies have demonstrated that measuring CTC-specific markers in a clinical setting (e.g., flow cytometry) can provide a current status of cancer development in patients. However, this useful technique has rarely been applied in the real-time monitoring of CTCs in preclinical animal models. Methods In this study, we designed a rapid and reliable detection method by combining a bioluminescent in vivo imaging system (IVIS) and quantitative polymerase chain reaction (QPCR)-based analysis to measure CTCs in animal blood. Using the IVIS Spectrum CT System with 3D–imaging on orthotropic-developed breast-tumor-bearing mice. Results In this manuscript, we established a quick and reliable method for measuring CTCs in a preclinical animal mode. The key to this technique is the use of specific human and mouse GUS primers on DNA/RNA of mouse peripheral blood under an absolute qPCR system. First, the high sensitivity of cancer cell detection on IVIS was presented by measuring the luciferase carried MDA-MB-231 cells from 5 to 5x1011 cell numbers with great correlation (R2 = 0.999). Next, the MDA-MB-231 cell numbers injected by tail vein and their IVIS radiance signals were strongly corrected with qPCR-calculated copy numbers (R2 > 0.99). Furthermore, by applying an orthotropic implantation animal model, we successfully distinguished xenograft tumor-bearing mice and control mice with a significant difference (p < 0.001), whereas IVIS Spectrum-CT 3D–visualization showed that blood of mice with lung metastasis contained more than twice the CTC numbers than ordinary tumor-bearing mice. We demonstrated a positive correlation between lung metastasis status and CTC numbers in peripheral mouse blood. Conclusion Collectively, the techniques developed for this study resulted in the integration of CTC assessments into preclinical models both in vivo and ex vivo, which will facilitate translational targeted therapy in clinical practice. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3419-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shih-Hsin Tu
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Breast Surgery, Department of Surgery, Cathay General Hospital, Taipei, Taiwan.,Breast Medical Center, Taipei Medical University Hospital, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,Comprehensive Cancer Center of Taipei Medical University, Taipei, Taiwan
| | - Yi-Chen Hsieh
- Comprehensive Cancer Center of Taipei Medical University, Taipei, Taiwan.,PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Li-Chi Huang
- Department of Endocrinology, Cathay General Hospital, Taipei, Taiwan
| | - Chun-Yu Lin
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Kai-Wen Hsu
- Research Center for Tumor Medical Science, China Medical University, Taichung, Taiwan
| | - Wen-Shyang Hsieh
- Department of Laboratory Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wei-Ming Chi
- Department of Laboratory Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chia-Hwa Lee
- Comprehensive Cancer Center of Taipei Medical University, Taipei, Taiwan. .,Department of Laboratory Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan. .,School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
21
|
Minimal residual disease in melanoma: circulating melanoma cells and predictive role of MCAM/MUC18/MelCAM/CD146. Cell Death Discov 2017; 3:17005. [PMID: 28280601 PMCID: PMC5337524 DOI: 10.1038/cddiscovery.2017.5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/20/2016] [Accepted: 01/01/2017] [Indexed: 12/11/2022] Open
Abstract
Circulating tumour cells (CTCs), identified in numerous cancers including melanoma, are unquestionably considered valuable and useful as diagnostic and prognostic markers. They can be detected at all melanoma stages and may persist long after treatment. A crucial step in metastatic processes is the intravascular invasion of neoplastic cells as circulating melanoma cells (CMCs). Only a small percentage of these released cells are efficient and capable of colonizing with a strong metastatic potential. CMCs' ability to survive in circulation express a variety of genes with continuous changes of signal pathways and proteins to escape immune surveillance. This makes it difficult to detect them; therefore, specific isolation, enrichment and characterization of CMC population could be useful to monitor disease status and patient clinical outcome. Overall and disease-free survival have been correlated with the presence of CMCs. Specific melanoma antigens, in particular MCAM (MUC18/MelCAM/CD146), could be a potentially useful tool to isolate CMCs as well as be a prognostic, predictive biomarker. These are the areas reviewed in the article.
Collapse
|
22
|
De Souza LM, Robertson BM, Robertson GP. Future of circulating tumor cells in the melanoma clinical and research laboratory settings. Cancer Lett 2017; 392:60-70. [PMID: 28163189 DOI: 10.1016/j.canlet.2017.01.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/24/2022]
Abstract
Circulating tumor cells (CTC) have become a field of interest for oncologists based on the premise that they constitute the underpinning for metastatic dissemination. The lethal nature of cancer is no longer attributed to solid tumor formation, but rather to the process of metastasis; shifting the focus of current studies towards the isolation and identification of metastatic progenitors, such as CTCs. CTCs originate from primary tumor masses that undergo morphologic and genetic alterations, which involve the release of mesenchymal-like cancer cells into the bloodstream, capable of invading nearby tissues for secondary tumor development. Cancerous cells contained in the primary tumor mass acquire the motile mesenchymal phenotype as a result of the Epithelial-to-Mesenchymal Transition, where substantial variations in protein expression and signaling pathways take place. CTCs that migrate from the primary tumor, intravasate into the systemic vasculature, are transported through the bloodstream, and invade tissues and organs suitable for secondary tumor development. While only a limited number of CTCs are viable in the bloodstream, their ability to elude the immune system, evade apoptosis and successfully metastasize at secondary tumor sites, makes CTCs promising candidates for unraveling the triggers that initiates the metastatic process. In this article, these subjects are explored in greater depth to elucidate the potential use of CTCs in the detection, disease staging and management of metastatic melanoma.
Collapse
Affiliation(s)
- Luisa M De Souza
- The Pennsylvania State University College of Medicine, Departments of Pharmacology, 500 University Drive, Hershey, PA 17033, USA.
| | - Bailey M Robertson
- The Pennsylvania State University College of Medicine, Departments of Pharmacology, 500 University Drive, Hershey, PA 17033, USA
| | - Gavin P Robertson
- The Pennsylvania State University College of Medicine, Departments of Pharmacology, 500 University Drive, Hershey, PA 17033, USA; Pathology, 500 University Drive, Hershey, PA 17033, USA; Dermatology, 500 University Drive, Hershey, PA 17033, USA; Surgery, 500 University Drive, Hershey, PA 17033, USA; The Melanoma and Skin Cancer Center, 500 University Drive, Hershey, PA 17033, USA; The Melanoma Therapeutics Program, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
23
|
Recent insights into the development of nanotechnology to detect circulating tumor cells. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.05.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Huang SK, Hoon DSB. Liquid biopsy utility for the surveillance of cutaneous malignant melanoma patients. Mol Oncol 2016; 10:450-63. [PMID: 26778792 PMCID: PMC5307330 DOI: 10.1016/j.molonc.2015.12.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 01/01/2023] Open
Abstract
Cutaneous melanoma is one of the highest incident-rate cancers with increasing prevalence in Western societies. Despite the advent of new approved therapeutics, the 5-year overall survival rate of stage IV melanoma patients remains below 15%. Current treatments for late stage disease have shown higher efficacy when treated at a lower disease burden. Thus, blood-based biomarkers capable of detecting melanoma prior to clinically evident distant metastasis, will improve the treatment and outcomes for melanoma patients. To that end, effective treatment of melanoma necessitates identification of patients at risk for developing distant metastases. Furthermore, employing blood biomarkers that monitor cancer progression over the course of treatment is a promising solution to post-treatment drug resistance often developed in melanoma patients. Non-invasive blood biomarker assays allow for regular dynamic monitoring of disease. "Liquid Biopsy" of blood, which exploits circulating tumor cells (CTCs), cell-free circulating tumor DNA (ctDNA) and cell-free circulating microRNA (cmiRNA), has been shown to detect prognostic factors for relapse in AJCC stage III and stage IV melanoma patients. Moreover, molecular characterization of CTC and analysis of various forms of ctDNA present promising potential in development of individualized therapy for melanoma patients. New approaches such as massive parallel sequencing (MPS) provide a comprehensive view of the disease progression, allowing for the selection of therapeutic options for individual patients. With advancements of improving molecular assays, liquid biopsy analysis as a powerful, routine clinical assay for melanoma patients, is highly promising prospective.
Collapse
Affiliation(s)
- Sharon K Huang
- Department of Molecular Oncology, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA 90404, United States
| | - Dave S B Hoon
- Department of Molecular Oncology, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA 90404, United States.
| |
Collapse
|
25
|
Akabane H, Sullivan RJ. The Future of Molecular Analysis in Melanoma: Diagnostics to Direct Molecularly Targeted Therapy. Am J Clin Dermatol 2016; 17:1-10. [PMID: 26518880 DOI: 10.1007/s40257-015-0159-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Melanoma is a malignancy of pigment-producing cells that is driven by a variety of genetic mutations and aberrations. In most cases, this leads to upregulation of the mitogen-activated protein kinase (MAPK) pathway through activating mutations of upstream mediators of the pathway including BRAF and NRAS. With the advent of effective MAPK pathway inhibitors, including the US FDA-approved BRAF inhibitors vemurafenib and dabrafenib and MEK inhibitor trametinib, molecular analysis has become an integral part of the care of patients with metastatic melanoma. In this article, the key molecular targets and strategies to inhibit these targets therapeutically are presented, and the techniques of identifying these targets, in both tissue and blood, are discussed.
Collapse
Affiliation(s)
- Hugo Akabane
- Department of Medicine, Metrowest Medical Center, Framingham, MA, USA
| | - Ryan J Sullivan
- Center for Melanoma, Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
26
|
Xu MJ, Dorsey JF, Amaravadi R, Karakousis G, Simone CB, Xu X, Xu W, Carpenter EL, Schuchter L, Kao GD. Circulating Tumor Cells, DNA, and mRNA: Potential for Clinical Utility in Patients With Melanoma. Oncologist 2015; 21:84-94. [PMID: 26614709 DOI: 10.1634/theoncologist.2015-0207] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/08/2015] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED : Circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and messenger RNA (mRNA), collectively termed circulating tumor products (CTPs), represent areas of immense interest from scientists' and clinicians' perspectives. In melanoma, CTP analysis may have clinical utility in many areas, from screening and diagnosis to clinical decision-making aids, as surveillance biomarkers or sources of real-time genetic or molecular characterization. In addition, CTP analysis can be useful in the discovery of new biomarkers, patterns of treatment resistance, and mechanisms of metastasis development. Here, we compare and contrast CTCs, ctDNA, and mRNA, review the extent of translational evidence to date, and discuss how future studies involving both scientists and clinicians can help to further develop this tool for the benefit of melanoma patients. IMPLICATIONS FOR PRACTICE Scientific advancement has enabled the rapid development of tools to analyze circulating tumor cells, tumor DNA, and messenger RNA, collectively termed circulating tumor products (CTPs). A variety of techniques have emerged to detect and characterize melanoma CTPs; however, only a fraction has been applied to human subjects. This review summarizes the available human data that investigate clinical utility of CTP in cancer screening, melanoma diagnosis, prognosis, prediction, and genetic or molecular characterization. It provides a rationale for how CTPs may be useful for future research and discusses how clinicians can be involved in developing this exciting new technology.
Collapse
Affiliation(s)
- Melody J Xu
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jay F Dorsey
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ravi Amaravadi
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Giorgos Karakousis
- Division of Surgical Oncology, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charles B Simone
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiaowei Xu
- Department of Pathology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wei Xu
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erica L Carpenter
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lynn Schuchter
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gary D Kao
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Esfandiary A, Ghafouri-Fard S. MAGE-A3: an immunogenic target used in clinical practice. Immunotherapy 2015; 7:683-704. [PMID: 26100270 DOI: 10.2217/imt.15.29] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Melanoma antigen family A, 3 (MAGE-A3) is a cancer-testis antigen whose expression has been demonstrated in a wide array of malignancies including melanoma, brain, breast, lung and ovarian cancer. In addition, its ability to elicit spontaneous humoral and cellular immune responses has been shown in cancer patients. As antigen-specific immune responses can be stimulated by immunization with MAGE-A3, several clinical trials have used MAGE-A3 vaccines to observe clinical responses. The frequent expressions of this antigen in various tumors and its immunogenicity in cancer patients have led to application of this antigen in cancer immunotherapy. However, the results of recent clinical trials indicate that there is a need for research in the vaccine design, adjuvant selection as well as patient selection criteria.
Collapse
Affiliation(s)
- Ali Esfandiary
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| |
Collapse
|
28
|
Vendittelli F, Paolillo C, Autilio C, Lavieri MM, Silveri SL, Capizzi R, Capoluongo E. Absolute quantitative PCR for detection of molecular biomarkers in melanoma patients: a preliminary report. Clin Chim Acta 2015; 444:242-9. [PMID: 25727516 DOI: 10.1016/j.cca.2015.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/05/2015] [Accepted: 02/05/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND Malignant melanoma is the most malignant tumours of skin and mucous membranes mainly due to its aggressive biological behaviour and tendency to generate early metastases. Unfortunately, the mechanisms underlying the development, progression and the expression of an aggressive melanoma phenotype still remain largely unknown. OBJECTIVES The purpose of this study was to determine whether a multi-panel of molecular transcripts can be predictive for risk of recurrent disease in malignant melanoma patients. RESULTS Peripheral blood was collected from 31 malignant melanoma patients in follow-up for melanoma and from 30 healthy volunteers randomly selected. Each specimen was examined by qRT-PCR analysis for the expression of six markers: PAX3d, TYR, MITFm, MCAM, TGFβ2 and ABCB5. Malignant melanoma patients expressed an important number of markers, with a median value of four markers. Only PAX3d displayed a trend in terms of differences when the levels of gene expression were made in function of Breslow index. Furthermore, PAX3d showed the best diagnostic capacity among the remaining residual markers or in combination with TGFβ2 and MTIF. CONCLUSIONS We demonstrated the usefulness of multimarker qRT-PCR to detect circulating melanoma cells in blood and to potentially assessing patient disease status or progression, especially when PAX3d was used in combination with MTIFm and TGFβ2.
Collapse
Affiliation(s)
- F Vendittelli
- Laboratory of Clinical Molecular and Personalized Diagnostics, Department of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - C Paolillo
- Laboratory of Clinical Molecular and Personalized Diagnostics, Department of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - C Autilio
- Laboratory of Clinical Molecular and Personalized Diagnostics, Department of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - M M Lavieri
- Unit of Dermatology, Cristo Re Hospital, Rome, Italy
| | - S L Silveri
- Department of Dermatology, Catholic University of Rome, Rome, Italy
| | - R Capizzi
- Department of Dermatology, Catholic University of Rome, Rome, Italy
| | - E Capoluongo
- Laboratory of Clinical Molecular and Personalized Diagnostics, Department of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy.
| |
Collapse
|
29
|
Abstract
Melanoma has traditionally been associated with limited treatment options, and as such, biomarkers such as histopathologic staging and serum lactate dehydrogenase focused on prognosis. The development of effective treatment options shifted the search to biomarkers for predicting response and resistance to therapy, an arguably more critical goal. Specific genetic alterations (e.g., BRAFV600 and KIT mutations) predict response to molecularly targeted agents and are routinely used in clinical practice. Other promising biomarkers include T-cell characteristics (the circulating and tumor microenvironment), tumor expression of PD-L1, circulating DNA, circulating tumor cells and miRNAs. In this article, we discuss the status of the currently used and experimental tumor- and blood-based biomarkers for melanoma prognosis and response to targeted and immune therapies.
Collapse
Affiliation(s)
- Douglas B Johnson
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt University Medical Center, 2220 Pierce Avenue, 777 Preston Research building, Nashville, TN 37232, USA.,Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt University Medical Center, 2220 Pierce Avenue, 777 Preston Research building, Nashville, TN 37232, USA
| | - Ryan J Sullivan
- Department of Medicine, Division of Hematology/Oncology Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.,Department of Medicine, Division of Hematology/Oncology Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
30
|
Mumford BS, Robertson GP. Circulating melanoma cells in the diagnosis and monitoring of melanoma: an appraisal of clinical potential. Mol Diagn Ther 2014; 18:175-83. [PMID: 24297151 DOI: 10.1007/s40291-013-0071-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Circulating melanoma cells (CMCs) are thought to be the foundation for metastatic disease, which makes this cancer especially lethal. Cancer cells contained in the primary tumor undergo genotypic and phenotypic changes leading to an epithelial-to-mesenchymal transition, during which numerous changes occur in signaling pathways and proteins in the cells. CMCs are then shed off or migrate from the primary tumor and intravasate the vasculature system. A few CMCs are able to survive in the circulation through expression of a variety of genes and also by evading immune system recognition to establish metastases at distant sites after extravasating from the vessels. The presence of CMCs in the blood of a melanoma patient can be used for disease staging, predicting metastasis development, and evaluating the efficacy of therapeutic agents. Overall survival and disease-free duration can also be correlated with the presence of CMCs. Finally, analysis of CMCs for druggable therapeutic gene targets could lead to the development of personalized treatment regimens to prevent metastasis. Thus, the study of CMCs shows promise for the detection, staging, and monitoring of disease treatment, as well as for determination of prognosis and predicting overall disease-free survival. These are the areas reviewed in this article.
Collapse
Affiliation(s)
- Brigid S Mumford
- Department of Pharmacology, Penn State College of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | | |
Collapse
|
31
|
Wei IH, Healy MA, Wong SL. Surgical Treatment Options for Stage IV Melanoma. Surg Clin North Am 2014; 94:1075-89, ix. [DOI: 10.1016/j.suc.2014.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Weinstein D, Leininger J, Hamby C, Safai B. Diagnostic and prognostic biomarkers in melanoma. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2014; 7:13-24. [PMID: 25013535 PMCID: PMC4086529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Melanoma is a lethal melanocytic neoplasm. Unfortunately, the histological diagnosis can be difficult at times. Distinguishing ambiguous melanocytic neoplasms that are benign nevi from those that represent true melanoma is important both for treatment and prognosis. Diagnostic biomarkers currently used to assist in the diagnosis of melanoma are usually specific only for melanocytic neoplasms and not necessarily for their ability to metastasize. Traditional prognostic biomarkers include depth of invasion and mitotic count. Newer diagnostic and prognostic biomarkers utilize immunohistochemical staining as well as ribonucleic acid, micro-ribonucleic acid, and deoxyribonucleic acid assays and fluorescence in situ hybridization. Improved diagnostic and prognostic biomarkers are of increasing importance in the treatment of melanoma with the development of newer and more targeted therapies. Herein, the authors review many of the common as well as newer diagnostic and prognostic biomarkers used in melanoma.
Collapse
Affiliation(s)
| | | | - Carl Hamby
- Department of Microbiology and Immunology, New York Medical College, New York and Valhalla, New York
| | | |
Collapse
|
33
|
Chiu CG, Nakamura Y, Chong KK, Huang SK, Kawas NP, Triche T, Elashoff D, Kiyohara E, Irie RF, Morton DL, Hoon DSB. Genome-wide characterization of circulating tumor cells identifies novel prognostic genomic alterations in systemic melanoma metastasis. Clin Chem 2014; 60:873-85. [PMID: 24718909 DOI: 10.1373/clinchem.2013.213611] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Circulating tumor cells (CTC) have been found in patients with metastatic melanoma and are associated with advanced melanoma stage and poor patient outcome. We hypothesize that CTC harbor genomic changes critical in the development of distant systemic metastasis. Here, we present the first genome-wide copy-number aberration (CNA) and loss of heterozygosity (LOH)-based characterization of melanoma CTC. METHODS CTC were isolated from peripheral blood monocytes of 13 melanoma patients with regional metastasis stage IIIB/C using antibodies against melanoma-associated cell surface gangliosides. RESULTS We characterized 251 CNA in CTC. Comparative analysis demonstrated >90% concordance in single-nucleotide polymorphism profiles between paired CTC and tumor metastases. In particular, there were notable recurring CNA across patients. In exploratory studies, the presence of several top CTC-associated CNA was verified in distant metastasis (stage IV) from 27 patients, suggesting that certain genomic changes are propagated from regional metastasis to CTC and to distant systemic metastases. Lastly, an exploratory biomarker panel derived from 5 CTC-associated CNA [CSMD2 (CUB and Sushi multiple domains 2), 1p35.1; CNTNAP5 (contactin associated protein-like 5), 2q14.3; NRDE2 (NRDE-2, necessary for RNA interference, domain containing), 14q32.11; ADAM6 (ADAM metallopeptidase domain 6, pseudogene), 14q32.33; and TRPM2 (transient receptor potential cation channel, subfamily m, member 2), 21q22.3] conferred prognostic utility for melanoma recurrence [hazard ratio (HR), 1.14; CI, 1.00-1.44; P = 0.0471] and death (HR, 2.86; CI, 1.23-14.42; P = 0.0014) in 35 patients with stage IIIB/C melanoma, with a 5-year disease-free survival of 13% vs 69% (P = 0.0006) and overall survival of 28% vs 94% between high-risk and low-risk groups defined by the biomarker panel, respectively. CONCLUSIONS This study provides the first detailed CNA-based profile of melanoma CTC and illustrates how CTC may be used as a novel approach for identification of systemic metastasis.
Collapse
Affiliation(s)
- Connie G Chiu
- Department of Molecular Oncology and Division of Surgical Oncology, John Wayne Cancer Institute, Santa Monica, CA
| | | | | | | | | | - Timothy Triche
- Center for Personalized Medicine, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - David Elashoff
- Department of Medicine Statistics Core, UCLA School of Medicine, Los Angeles, CA
| | | | - Reiko F Irie
- Department of Biotechnology, John Wayne Cancer Institute, Santa Monica, CA
| | - Donald L Morton
- Division of Surgical Oncology, John Wayne Cancer Institute, Santa Monica, CA
| | | |
Collapse
|
34
|
Rodic S, Mihalcioiu C, Saleh RR. Detection methods of circulating tumor cells in cutaneous melanoma: a systematic review. Crit Rev Oncol Hematol 2014; 91:74-92. [PMID: 24530125 DOI: 10.1016/j.critrevonc.2014.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/06/2014] [Accepted: 01/14/2014] [Indexed: 12/25/2022] Open
Abstract
The vast majority of melanoma-related deaths are due to disseminated malignancy. Many treated patients who are clinically disease-free will go on to relapse. Therefore, new prognostic tools must be developed to better assess metastatic potential and assist in patient management. Circulating tumor cells are a widely studied metastatic biomarker with promising prognostic utility, as the shedding of cells from the primary tumor into peripheral blood is a necessary step in disease dissemination. An assortment of technologies and techniques has been developed to isolate and detect circulating melanoma cells (CMCs), but a standardized method is yet to be established. It is the aim of this study to systematically review the diverse enrichment and detection methods of circulating tumor cells in cutaneous melanoma. A literature search yielded 351 articles, of which 74 were deemed eligible according to inclusion criteria, the primary requirement being the reporting of patient CMC positivity status stratified by the stage of melanoma. Pertinent studies were used to evaluate the advantages and disadvantages of each method. Additionally, we calculated the sensitivity and specificity of seven common melanoma-associated markers based on the available literature.
Collapse
Affiliation(s)
- Stefan Rodic
- Division of Biology, McGill University, Montreal, Canada
| | - Catalin Mihalcioiu
- Division of Medical Oncology, McGill University Health Centre, Montreal, Canada
| | - Ramy R Saleh
- Division of Medical Oncology, McGill University Health Centre, Montreal, Canada.
| |
Collapse
|
35
|
Kiyohara E, Hata K, Lam S, Hoon DSB. Circulating tumor cells as prognostic biomarkers in cutaneous melanoma patients. Methods Mol Biol 2014; 1102:513-22. [PMID: 24258996 DOI: 10.1007/978-1-62703-727-3_27] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Detection of circulating tumor cells (CTC) in peripheral blood has been investigated for its prognostic ability, and its potential to measure the effectiveness of treatment(s) in patients with melanoma. However, a highly sensitive and specific assay is required to detect CTC in patients' blood. We have developed a multimarker quantitative real-time reverse transcriptase polymerase chain reaction (RT-qPCR) assay for detecting CTC directly from peripheral blood specimens without the need of separating CTC from leukocytes (PBL). We selected and optimized four mRNA biomarkers (MART-1/Melan-A, MAGE-A3, PAX3, and GalNAc-T) for detection and prediction of clinical outcome in melanoma patients. Our protocol has both high sensitivity and specificity for CTC in blood specimens-detecting approximately one to five melanoma cells in 10(7) PBL. We have demonstrated the significance of this assay for serial bleed assessment of CTC in clinical trials and for daily clinical usage.
Collapse
Affiliation(s)
- Eiji Kiyohara
- Department of Molecular Oncology, John Wayne Cancer Institute at Saint John's Health Center, Santa Monica, CA, USA
| | | | | | | |
Collapse
|
36
|
Dye DE, Medic S, Ziman M, Coombe DR. Melanoma biomolecules: independently identified but functionally intertwined. Front Oncol 2013; 3:252. [PMID: 24069584 PMCID: PMC3781348 DOI: 10.3389/fonc.2013.00252] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/09/2013] [Indexed: 01/31/2023] Open
Abstract
The majority of patients diagnosed with melanoma present with thin lesions and generally these patients have a good prognosis. However, 5% of patients with early melanoma (<1 mm thick) will have recurrence and die within 10 years, despite no evidence of local or metastatic spread at the time of diagnosis. Thus, there is a need for additional prognostic markers to help identify those patients that may be at risk of recurrent disease. Many studies and several meta-analyses have compared gene and protein expression in melanocytes, naevi, primary, and metastatic melanoma in an attempt to find informative prognostic markers for these patients. However, although a large number of putative biomarkers have been described, few of these molecules are informative when used in isolation. The best approach is likely to involve a combination of molecules. We believe one approach could be to analyze the expression of a group of interacting proteins that regulate different aspects of the metastatic pathway. This is because a primary lesion expressing proteins involved in multiple stages of metastasis may be more likely to lead to secondary disease than one that does not. This review focuses on five putative biomarkers – melanoma cell adhesion molecule (MCAM), galectin-3 (gal-3), matrix metalloproteinase 2 (MMP-2), chondroitin sulfate proteoglycan 4 (CSPG4), and paired box 3 (PAX3). The goal is to provide context around what is known about the contribution of these biomarkers to melanoma biology and metastasis. Although each of these molecules have been independently identified as likely biomarkers, it is clear from our analyses that each are closely linked with each other, with intertwined roles in melanoma biology.
Collapse
Affiliation(s)
- Danielle E Dye
- School of Biomedical Science & Curtin Health Innovation Research Institute, Faculty of Health, Curtin University , Perth, WA , Australia
| | | | | | | |
Collapse
|
37
|
Ogbah Z, Badenas C, Harland M, Puig-Butille JA, Elliot F, Bonifaci N, Guino E, Randerson-Moor J, Chan M, Iles MM, Glass D, Brown AA, Carrera C, Kolm I, Bataille V, Spector TD, Malvehy J, Newton-Bishop J, Pujana MA, Bishop T, Puig S. Evaluation ofPAX3genetic variants and nevus number. Pigment Cell Melanoma Res 2013; 26:666-76. [DOI: 10.1111/pcmr.12130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 06/07/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Zighereda Ogbah
- Melanoma Unit; Department of Dermatology Hospital Clínic de Barcelona; IDIBAPS; Barcelona University; Barcelona; Spain
| | | | - Mark Harland
- Division of Epidemiology and Biostatistics; Leeds Institute of Molecular Medicine (LIMM); University of Leeds; Leeds; UK
| | | | - Fay Elliot
- Division of Epidemiology and Biostatistics; Leeds Institute of Molecular Medicine (LIMM); University of Leeds; Leeds; UK
| | - Nuria Bonifaci
- Breast Cancer and Systems Biology Unit; Translational Research Laboratory; Catalan Institute of Oncology; Bellvitge Biomedical Research Institute (IDIBELL); L'Hospitalet; Barcelona; Spain
| | - Elisabet Guino
- Biomarkers and Susceptibility Unit; Catalan Institute of Oncology; IDIBELL; L'Hospitalet; Barcelona; Spain
| | - Julie Randerson-Moor
- Division of Epidemiology and Biostatistics; Leeds Institute of Molecular Medicine (LIMM); University of Leeds; Leeds; UK
| | - May Chan
- Division of Epidemiology and Biostatistics; Leeds Institute of Molecular Medicine (LIMM); University of Leeds; Leeds; UK
| | - Mark M. Iles
- Division of Epidemiology and Biostatistics; Leeds Institute of Molecular Medicine (LIMM); University of Leeds; Leeds; UK
| | | | - Andrew A. Brown
- Department of Twin Research & Genetic Epidemiology; Kings College London; St. Thomas’ Hospital Campus; London; UK
| | | | - Isabel Kolm
- Melanoma Unit; Department of Dermatology Hospital Clínic de Barcelona; IDIBAPS; Barcelona University; Barcelona; Spain
| | - Veronique Bataille
- Department of Twin Research & Genetic Epidemiology; Kings College London; St. Thomas’ Hospital Campus; London; UK
| | - Timothy D. Spector
- Department of Twin Research & Genetic Epidemiology; Kings College London; St. Thomas’ Hospital Campus; London; UK
| | | | - Julia Newton-Bishop
- Division of Epidemiology and Biostatistics; Leeds Institute of Molecular Medicine (LIMM); University of Leeds; Leeds; UK
| | - Miquel A. Pujana
- Breast Cancer and Systems Biology Unit; Translational Research Laboratory; Catalan Institute of Oncology; Bellvitge Biomedical Research Institute (IDIBELL); L'Hospitalet; Barcelona; Spain
| | - Tim Bishop
- Division of Epidemiology and Biostatistics; Leeds Institute of Molecular Medicine (LIMM); University of Leeds; Leeds; UK
| | | |
Collapse
|
38
|
Reid AL, Millward M, Pearce R, Lee M, Frank MH, Ireland A, Monshizadeh L, Rai T, Heenan P, Medic S, Kumarasinghe P, Ziman M. Markers of circulating tumour cells in the peripheral blood of patients with melanoma correlate with disease recurrence and progression. Br J Dermatol 2012; 168:85-92. [PMID: 23013138 DOI: 10.1111/bjd.12057] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Multimarker quantitative real-time polymerase chain reaction (qRT-PCR) represents an effective method for detecting circulating tumour cells in the peripheral blood of patients with melanoma. OBJECTIVES To investigate whether the phenotype of circulating melanoma cells represents a useful indicator of disease stage, recurrence and treatment efficacy. METHODS Peripheral blood was collected from 230 patients with melanoma and 152 healthy controls over a period of 3years and 9months. Clinical data and blood samples were collected from patients with primary melanoma (early stages, 0-II, n=154) and metastatic melanoma (late stages, III-IV, n=76). Each specimen was examined by qRT-PCR analysis for the expression of five markers: MLANA, ABCB5, TGFβ2, PAX3d and MCAM. RESULTS In total, 212 of the patients with melanoma (92%) expressed markers in their peripheral blood. Two markers, MLANA and ABCB5, had the greatest prognostic value, and were identified as statistically significant among patients who experienced disease recurrence within our study period, being expressed in 45% (MLANA) and 49% (ABCB5) of patients with recurrence (P=0·001 and P=0·031, respectively). For patients administered nonsurgical treatments, MCAM expression correlated with poor treatment outcome. CONCLUSIONS Circulating tumour cells were detectable at all stages of disease and long after surgical treatment, even when patients were considered disease free. Specifically, expression of ABCB5 and MLANA had significant prognostic value in inferring disease recurrence, while MCAM expression was associated with poor patient outcome after treatment, confirming multimarker qRT-PCR as a potential technique for monitoring disease status.
Collapse
Affiliation(s)
- A L Reid
- School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hoshimoto S, Shingai T, Morton DL, Kuo C, Faries MB, Chong K, Elashoff D, Wang HJ, Elashoff RM, Hoon DS. Association between circulating tumor cells and prognosis in patients with stage III melanoma with sentinel lymph node metastasis in a phase III international multicenter trial. J Clin Oncol 2012; 30:3819-26. [PMID: 23008288 PMCID: PMC3478576 DOI: 10.1200/jco.2011.40.0887] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 07/24/2012] [Indexed: 01/27/2023] Open
Abstract
PURPOSE The outcomes of patients with melanoma who have sentinel lymph node (SLN) metastases can be highly variable, which has precluded establishment of consensus regarding treatment of the group. The detection of high-risk patients from this clinical setting may be helpful for determination of both prognosis and management. We report the utility of multimarker reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) detection of circulating tumor cells (CTCs) in patients with melanoma diagnosed with SLN metastases in a phase III, international, multicenter clinical trial. PATIENTS AND METHODS Blood specimens were collected from patients with melanoma (n = 331) who were clinically disease-free after complete lymphadenectomy (CLND) before entering onto a randomized adjuvant melanoma vaccine plus bacillus Calmette-Guérin (BCG) versus BCG placebo trial from 30 melanoma centers (United States and international). Blood was assessed using a verified multimarker RT-qPCR assay (MART-1, MAGE-A3, and GalNAc-T) of melanoma-associated proteins. Cox regression analyses were used to evaluate the prognostic significance of CTC status for disease recurrence and melanoma-specific survival (MSS). RESULTS Individual CTC biomarker detection ranged from 13.4% to 17.5%. There was no association of CTC status (zero to one positive biomarkers v two or more positive biomarkers) with known clinical or pathologic prognostic variables. However, two or more positive biomarkers was significantly associated with worse distant metastasis disease-free survival (hazard ratio [HR] = 2.13, P = .009) and reduced recurrence-free survival (HR = 1.70, P = .046) and MSS (HR = 1.88, P = .043) in a multivariable analysis. CONCLUSION CTC biomarker status is a prognostic factor for recurrence-free survival, distant metastasis disease-free survival, and MSS after CLND in patients with SLN metastasis. This multimarker RT-qPCR analysis may therefore be useful in discriminating patients who may benefit from aggressive adjuvant therapy or stratifying patients for adjuvant clinical trials.
Collapse
Affiliation(s)
- Sojun Hoshimoto
- Sojun Hoshimoto, Tatsushi Shingai, Donald L. Morton, Christine Kuo, Mark B. Faries, Kelly Chong, and Dave S.B. Hoon, John Wayne Cancer Institute at Saint John's Health Center, Santa Monica; and David Elashoff, He-Jing Wang, and Robert M. Elashoff, University of California, Los Angeles School of Medicine, Los Angeles, CA
| | - Tatsushi Shingai
- Sojun Hoshimoto, Tatsushi Shingai, Donald L. Morton, Christine Kuo, Mark B. Faries, Kelly Chong, and Dave S.B. Hoon, John Wayne Cancer Institute at Saint John's Health Center, Santa Monica; and David Elashoff, He-Jing Wang, and Robert M. Elashoff, University of California, Los Angeles School of Medicine, Los Angeles, CA
| | - Donald L. Morton
- Sojun Hoshimoto, Tatsushi Shingai, Donald L. Morton, Christine Kuo, Mark B. Faries, Kelly Chong, and Dave S.B. Hoon, John Wayne Cancer Institute at Saint John's Health Center, Santa Monica; and David Elashoff, He-Jing Wang, and Robert M. Elashoff, University of California, Los Angeles School of Medicine, Los Angeles, CA
| | - Christine Kuo
- Sojun Hoshimoto, Tatsushi Shingai, Donald L. Morton, Christine Kuo, Mark B. Faries, Kelly Chong, and Dave S.B. Hoon, John Wayne Cancer Institute at Saint John's Health Center, Santa Monica; and David Elashoff, He-Jing Wang, and Robert M. Elashoff, University of California, Los Angeles School of Medicine, Los Angeles, CA
| | - Mark B. Faries
- Sojun Hoshimoto, Tatsushi Shingai, Donald L. Morton, Christine Kuo, Mark B. Faries, Kelly Chong, and Dave S.B. Hoon, John Wayne Cancer Institute at Saint John's Health Center, Santa Monica; and David Elashoff, He-Jing Wang, and Robert M. Elashoff, University of California, Los Angeles School of Medicine, Los Angeles, CA
| | - Kelly Chong
- Sojun Hoshimoto, Tatsushi Shingai, Donald L. Morton, Christine Kuo, Mark B. Faries, Kelly Chong, and Dave S.B. Hoon, John Wayne Cancer Institute at Saint John's Health Center, Santa Monica; and David Elashoff, He-Jing Wang, and Robert M. Elashoff, University of California, Los Angeles School of Medicine, Los Angeles, CA
| | - David Elashoff
- Sojun Hoshimoto, Tatsushi Shingai, Donald L. Morton, Christine Kuo, Mark B. Faries, Kelly Chong, and Dave S.B. Hoon, John Wayne Cancer Institute at Saint John's Health Center, Santa Monica; and David Elashoff, He-Jing Wang, and Robert M. Elashoff, University of California, Los Angeles School of Medicine, Los Angeles, CA
| | - He-Jing Wang
- Sojun Hoshimoto, Tatsushi Shingai, Donald L. Morton, Christine Kuo, Mark B. Faries, Kelly Chong, and Dave S.B. Hoon, John Wayne Cancer Institute at Saint John's Health Center, Santa Monica; and David Elashoff, He-Jing Wang, and Robert M. Elashoff, University of California, Los Angeles School of Medicine, Los Angeles, CA
| | - Robert M. Elashoff
- Sojun Hoshimoto, Tatsushi Shingai, Donald L. Morton, Christine Kuo, Mark B. Faries, Kelly Chong, and Dave S.B. Hoon, John Wayne Cancer Institute at Saint John's Health Center, Santa Monica; and David Elashoff, He-Jing Wang, and Robert M. Elashoff, University of California, Los Angeles School of Medicine, Los Angeles, CA
| | - Dave S.B. Hoon
- Sojun Hoshimoto, Tatsushi Shingai, Donald L. Morton, Christine Kuo, Mark B. Faries, Kelly Chong, and Dave S.B. Hoon, John Wayne Cancer Institute at Saint John's Health Center, Santa Monica; and David Elashoff, He-Jing Wang, and Robert M. Elashoff, University of California, Los Angeles School of Medicine, Los Angeles, CA
| |
Collapse
|
40
|
Protein and non-protein biomarkers in melanoma: a critical update. Amino Acids 2012; 43:2203-30. [DOI: 10.1007/s00726-012-1409-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/24/2012] [Indexed: 12/16/2022]
|
41
|
Freeman JB, Gray ES, Millward M, Pearce R, Ziman M. Evaluation of a multi-marker immunomagnetic enrichment assay for the quantification of circulating melanoma cells. J Transl Med 2012; 10:192. [PMID: 22978632 PMCID: PMC3480925 DOI: 10.1186/1479-5876-10-192] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/10/2012] [Indexed: 01/05/2023] Open
Abstract
Background Circulating melanoma cells (CMCs) are thought to be valuable in improving measures of prognosis in melanoma patients and may be a useful marker of residual disease to identify non-metastatic patients requiring adjuvant therapy. We investigated whether immunomagnetic enrichment targeting multiple markers allows more efficient enrichment of CMCs from patient peripheral blood than targeting a single marker. Furthermore, we aimed to determine whether the number of CMCs in patient blood was associated with disease stage. Methods We captured CMCs by targeting the melanoma associated markers MCSP and MCAM as well as the melanoma stem cell markers ABCB5 and CD271, both individually and in combination, by immunomagnetic enrichment. CMCs were enriched and quantified from the peripheral blood of 10 non-metastatic and 13 metastatic melanoma patients. Results Targeting all markers in combination resulted in the enrichment of more CMCs than when any individual marker was targeted (p < 0.001-0.028). Furthermore, when a combination of markers was targeted, a greater number of CMCs were enriched in metastatic patients compared with non-metastatic patients (p = 0.007). Conclusions Our results demonstrated that a combination of markers should be targeted for optimal isolation of CMCs. In addition, there are significantly more CMCs in metastatic patients compared with non-metastatic patients and therefore quantification of CMCs may prove to be a useful marker of disease progression.
Collapse
Affiliation(s)
- James B Freeman
- School of Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | | | | | | | | |
Collapse
|
42
|
Abstract
Traditionally, distant metastatic melanoma has a poor prognosis owing to lack of efficacious, U.S. Food and Drug Administration-approved systemic therapy and the limited use of surgical resection as a therapeutic option. More recently, new biological therapies such as vemurafenib (Zelboraf) and ipilimumab (Yervoy) have shown strong promise and dramatically improved the landscape of stage IV melanoma therapy. Although there are numerous single-institution studies advocating the role for therapeutic surgical intervention, many remain skeptical of nonpalliative surgery for metastatic melanoma. Surgical resection of advanced melanoma has been proven to be effective as long as all disease is removed (R0). Patient selection is paramount. The combination of newer systemic therapies and surgical resection is currently under investigation. Understanding the tumor biology of melanoma and its mechanism of metastatic spread is essential to developing the most efficacious treatment strategy.
Collapse
|
43
|
Assessment of prognostic circulating tumor cells in a phase III trial of adjuvant immunotherapy after complete resection of stage IV melanoma. Ann Surg 2012; 255:357-62. [PMID: 22202581 DOI: 10.1097/sla.0b013e3182380f56] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To verify circulating tumor cell (CTC) prognostic utility in stage IV resected melanoma patients in a prospective international phase III clinical trial. BACKGROUND Our studies of melanoma patients in phase II clinical trials demonstrated prognostic significance for CTCs in patients with AJCC stage IV melanoma. CTCs were assessed to determine prognostic utility in follow-up of disease-free stage IV patients pre- and during treatment. METHODS After complete metastasectomy, patients were prospectively enrolled in a randomized trial of adjuvant therapy with a whole-cell melanoma vaccine, Canvaxin, plus Bacille Calmette-Guerin (BCG) versus placebo plus BCG. Blood specimens obtained pretreatment (n = 244) and during treatment (n = 214) were evaluated by quantitative real-time reverse-transcriptase polymerase chain reaction (qPCR) for expression of MART-1, MAGE-A3, and PAX3 mRNA biomarkers. Univariate and multivariate Cox analyses examined CTC biomarker expression with respect to clinicopathological variables. RESULTS CTC biomarker(s) (≥ 1) was detected in 54% of patients pretreatment and in 86% of patients over the first 3 months. With a median follow-up of 21.9 months, 71% of patients recurred and 48% expired. CTC levels were not associated with known prognostic factors or treatment arm. In multivariate analysis, pretreatment CTC (> 0 vs. 0 biomarker) status was significantly associated with disease-free survival (DFS; HR 1.64, P = 0.002) and overall survival (OS; HR 1.53, P = 0.028). Serial CTC (>0 vs. 0 biomarker) status was also significantly associated with DFS (HR 1.91, P = 0.02) and OS (HR 2.57, P = 0.012). CONCLUSION CTC assessment can provide prognostic discrimination before and during adjuvant treatment for resected stage IV melanoma patients.
Collapse
|
44
|
Hung HC, Yen LC, Lin SR, Wang JY. Multiple mRNA markers for the detection of circulating tumor cells in breast cancer patients. GENOMIC MEDICINE, BIOMARKERS, AND HEALTH SCIENCES 2012; 4:34-37. [DOI: 10.1016/j.gmbhs.2012.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Sakaizawa K, Goto Y, Kiniwa Y, Uchiyama A, Harada K, Shimada S, Saida T, Ferrone S, Takata M, Uhara H, Okuyama R. Mutation analysis of BRAF and KIT in circulating melanoma cells at the single cell level. Br J Cancer 2012; 106:939-46. [PMID: 22281663 PMCID: PMC3305957 DOI: 10.1038/bjc.2012.12] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: The availability of molecular-targeted therapies for the treatment of melanoma has emphasised the need to identify mutations in target genes such as BRAF and KIT. Circulating tumour cells (CTC) are present in the peripheral blood of a significant proportion of cancer patients. Methods: High molecular weight melanoma-associated antigen (HMW-MAA) was used to isolate melanoma cells from peripheral blood as it is selectively expressed at high levels on melanomas. The HMW-MAA-positive cells were isolated using immunomagnetic beads. After removing CD45+ cells, CTC were identified by staining with MART-1- and gp100-specific antibodies (HMW-MAA+, CD45−, MART-1/gp100+). Single, isolated CTC were then subjected to BRAF and KIT mutational analysis. Results: CTC (HMW-MAA+, CD45−, MART-1/gp100+) were isolated from the blood of 11 patients and BRAF and KIT were sequenced in nine and four patients, respectively. The BRAF sequences identified in the CTC were inconsistent with those identified in autologous melanoma tumours in three patients and the KIT sequences were inconsistent in three patients. In addition, polyclonal BRAF mutations were identified in one patient and concomitant mutations in BRAF and KIT were identified in another patient. Conclusion: Melanoma cells show clonal heterogeneity. Therefore, CTC genotyping may be crucial for successful molecular-targeted therapy.
Collapse
Affiliation(s)
- K Sakaizawa
- Department of Dermatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Palmer SR, Erickson LA, Ichetovkin I, Knauer DJ, Markovic SN. Circulating serologic and molecular biomarkers in malignant melanoma. Mayo Clin Proc 2011; 86:981-90. [PMID: 21964175 PMCID: PMC3184027 DOI: 10.4065/mcp.2011.0287] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The worldwide incidence of malignant melanoma has been increasing during the past decade and is a public health concern because this disease accounts for up to 90% of deaths from cutaneous malignancies. It remains a devastating disease with few therapeutic options once in an advanced stage. Current methods of detection, prognostication, and monitoring of melanoma focus on clinical, morphologic, and histopathologic characteristics of measurable tumor. Although this information provides some insight into disease behavior and outcome, melanoma is still an unpredictable disease. Significant effort has been put into finding an informative serologic biomarker. However, the marker remains elusive, and investigations continue. Using the PubMed database, we reviewed the published literature on serologic melanoma biomarkers and present a synopsis of the extensive investigations that have been performed thus far, provide some insight into why most have failed to become incorporated into routine clinical use, and present an overview of innovative methods currently being explored.
Collapse
|
47
|
Tanaka R, Koyanagi K, Narita N, Kuo C, Hoon DSB. Prognostic molecular biomarkers for cutaneous malignant melanoma. J Surg Oncol 2011; 104:438-46. [PMID: 21557225 PMCID: PMC3673884 DOI: 10.1002/jso.21969] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 04/12/2011] [Indexed: 12/28/2022]
Abstract
Molecular signatures of melanoma have propelled new approaches to early diagnosis, monitoring of treatment response, and targeted therapy. This review discusses messenger RNA (mRNA), genomic, and epigenomic melanoma biomarkers in blood and tissue specimens. The major focus is on tissue-based molecular assays to upstage sentinel lymph nodes (SLNs), and blood-based assays to detect melanoma progression by monitoring levels of circulating tumor cells (CTC) and circulating DNA.
Collapse
Affiliation(s)
- Ryo Tanaka
- Department of Molecular Oncology, John Wayne Cancer Institute at Saint John's Health Center, Santa Monica, California, USA
| | | | | | | | | |
Collapse
|
48
|
Su H, Hu N, Yang HH, Wang C, Takikita M, Wang QH, Giffen C, Clifford R, Hewitt SM, Shou JZ, Goldstein AM, Lee MP, Taylor PR, Kaempgen E, Van Gool SW, Helms W, Keegan P, Pazdur R. Global gene expression profiling and validation in esophageal squamous cell carcinoma and its association with clinical phenotypes. Clin Cancer Res 2011. [PMID: 29950348 DOI: 10.1158/1078-0432] [Citation(s) in RCA: 443] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Esophageal squamous cell carcinoma (ESCC) is an aggressive tumor with poor prognosis. Understanding molecular changes in ESCC will enable identification of molecular subtypes and provide potential targets for early detection and therapy. EXPERIMENTAL DESIGN We followed up a previous array study with additional discovery and confirmatory studies in new ESCC cases by using alternative methods. We profiled global gene expression for discovery and confirmation, and validated selected dysregulated genes with additional RNA and protein studies. RESULTS A total of 159 genes showed differences with extreme statistical significance (P < E-15) and 2-fold differences or more in magnitude (tumor/normal RNA expression ratio, N = 53 cases), including 116 upregulated and 43 downregulated genes. Of 41 genes dysregulated in our prior array study, all but one showed the same fold change directional pattern in new array studies, including 29 with 2-fold changes or more. Alternative RNA expression methods validated array results: more than two thirds of 51 new cases examined by real-time PCR (RT-PCR) showed 2-fold differences or more for all seven genes assessed. Immunohistochemical protein expression results in 275 cases which were concordant with RNA for five of six genes. CONCLUSION We identified an expanded panel of genes dysregulated in ESCC and confirmed previously identified differentially expressed genes. Microarray-based gene expression results were confirmed by RT-PCR and protein expression studies. These dysregulated genes will facilitate molecular categorization of tumor subtypes and identification of their risk factors, and serve as potential targets for early detection, outcome prediction, and therapy.
Collapse
Affiliation(s)
- Hua Su
- Genetic Epidemiology Branch, DCEG, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Whitney Helms
- Office of Hematology and Oncology Products, Office of New Drugs, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Patricia Keegan
- Office of Hematology and Oncology Products, Office of New Drugs, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Richard Pazdur
- Office of Biostatistics, Office of Translational Sciences, U.S. Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
49
|
Hathaway JD, Haque A. Insights into the Role of PAX-3 in the Development of Melanocytes and Melanoma. ACTA ACUST UNITED AC 2011; 4:1-6. [PMID: 24790680 DOI: 10.2174/1874079001104010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melanoma is the deadliest form of skin cancer in the United States with an increasing prevalence. However, the development of melanoma from a melanocyte precursor is still poorly defined. Understanding the molecules responsible for melanoma progression may lead to improved targeted therapy. One potential molecule is the paired box-3 (PAX-3) protein, which has been implicated in the development of melanocytes and malignant melanoma. In melanoma, the expression of PAX-3 is believed to be differentially regulated, and has been linked with malignancies and staging of the disease. The loss of PAX-3 regulation has also been associated with the loss of transforming growth factor-beta (TGF-β) activity, but its effect on PAX-3 in differentiated melanocytes as well as metastatic melanoma remains unclear. Understanding PAX-3 regulation could potentially shift melanoma to a less aggressive and less metastatic disease. This review summarizes our current knowledge on PAX-3 during melanocyte development, its regulation, and its implications in the development of novel chemo-immunotherapeutics against metastatic melanoma.
Collapse
Affiliation(s)
- Jessica Diann Hathaway
- Department of Microbiology and Immunology, Charles Darby Children's Research Institute, and Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Azizul Haque
- Department of Microbiology and Immunology, Charles Darby Children's Research Institute, and Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| |
Collapse
|
50
|
Sciancalepore AG, Polini A, Mele E, Girardo S, Cingolani R, Pisignano D. Rapid nested-PCR for tyrosinase gene detection on chip. Biosens Bioelectron 2011; 26:2711-5. [DOI: 10.1016/j.bios.2010.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/24/2010] [Accepted: 09/05/2010] [Indexed: 10/19/2022]
|