1
|
Prenatal Diagnosis of Uniparental Disomy in Cases of Rare Autosomal Trisomies Detected Using Noninvasive Prenatal Test: A Case of Prader-Willi Syndrome. Diagnostics (Basel) 2023; 13:diagnostics13040580. [PMID: 36832068 PMCID: PMC9955094 DOI: 10.3390/diagnostics13040580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Rare autosomal trisomies (RATs) other than common aneuploidies can be detected using noninvasive prenatal testing (NIPT). However, conventional karyotyping is insufficient for evaluating diploid fetuses with uniparental disomy (UPD) due to trisomy rescue. Using the diagnostic process for Prader-Willi syndrome (PWS), we aim to describe the need for additional prenatal diagnostic testing for confirming UPD in fetuses diagnosed with RATs via NIPT and its clinical implications. NIPT was performed using the massively parallel sequencing (MPS) method, and all pregnant women with RATs underwent amniocentesis. After confirming the normal karyotype, short tandem repeat (STR) analysis, methylation-specific PCR (MS-PCR), and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) were performed to detect UPD. Overall, six cases were diagnosed with RATs. There was a suspicion of trisomies of chromosomes 7, 8, and 15 in two cases each. However, these cases were confirmed to have a normal karyotype using amniocentesis. In one of six cases, PWS caused by maternal UPD 15 was diagnosed using MS-PCR and MS-MLPA. We propose that in cases where RAT is detected by NIPT, UPD should be considered following trisomy rescue. Even if amniocentesis confirms a normal karyotype, UPD testing (such as MS-PCR and MS-MLPA) should be recommended for accurate assessment, as an accurate diagnosis can lead to appropriate genetic counseling and improved overall pregnancy management.
Collapse
|
2
|
Khoshfetrat SM, Seyed Dorraji P, Shayan M, Khatami F, Omidfar K. Smartphone-Based Electrochemiluminescence for Visual Simultaneous Detection of RASSF1A and SLC5A8 Tumor Suppressor Gene Methylation in Thyroid Cancer Patient Plasma. Anal Chem 2022; 94:8005-8013. [PMID: 35616262 DOI: 10.1021/acs.analchem.2c01132] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Visual one-step simultaneous detection of low-abundance methylation is a crucial challenge in early cancer diagnosis in a simple manner. Through the design of a closed split bipolar electrochemistry system (BE), detection of promoter methylation of tumor suppressor genes in papillary thyroid cancer, RASSF1A and SLC5A8, was achieved using electrochemiluminescence. For this purpose, electrochemiluminescence of luminol loaded into the Fe3O4@UiO-66 and gold nanorod-functionalized graphite-like carbon nitride nanosheet (AuNRs@C3N4 NS), separately, on the anodic and cathodic pole bipolar electrodes (BPEs) in two different chambers of a bipolar cell were recorded on a smartphone camera. To provide the same electric potential (ΔEelec) through the BPEs to conduct simultaneous light emission, as well as to achieve higher sensitivity, anodic and cathodic poles BPEs were separately connected to ruthenium nanoparticles electrodeposited on nitrogen-doped graphene-coated Cu foam (fCu/N-GN/RuNPs) to provide a hydrogen evolution reaction (HER) and polycatechol-modified reduced graphene oxide/pencil graphite electrode (PC-rGO/PGE) to provide electrooxidation of hydrazine. Moreover, taking advantages of the strong cathodic ECL activity due to the roles of AuNRs, as well as the high density of capture probes on the UiO-66 and Fe3O4 roles in improving the signal-to-background ratio (S/B) in complicated plasma media, a sensitive visual ECL immunosensor was developed to detect two different genes as model target analytes in patient plasma samples. The ability of discrimination of methylation levels as low as 0.01% and above 90% clinical sensitivity in thyroid cancer patient plasma implies that the present strategy is able to diagnose cancer early, as well as monitor responses of patients to therapeutic agents.
Collapse
Affiliation(s)
- Seyyed Mehdi Khoshfetrat
- Department of Chemistry, Faculty of Basic Science, Ayatollah Boroujerdi University, Boroujerd 6869199-69737, Iran.,Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, P.O. Box 1411713137, Islamic Republic of Iran
| | - Parisa Seyed Dorraji
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran 199389373, Iran
| | - Mohsen Shayan
- Department of Chemistry, Dalhousie University, 6274 Coburg Road B3H 4R2 Halifax, Canada
| | - Fatemeh Khatami
- Urology Research Center, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, P.O. Box 1411713137, Islamic Republic of Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, P.O. Box 1411713137, Iran
| |
Collapse
|
3
|
Seidman MA, Mitchell RN. Fundamental principles in cardiovascular genetics. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00019-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
4
|
Motta FL, Filippelli-Silva R, Kitajima JP, Batista DA, Wohler ES, Sobreira NL, Martin RP, Ferraz Sallum JM. Analysis of an NGS retinopathy panel detects chromosome 1 uniparental isodisomy in a patient with RPE65-related leber congenital amaurosis. Ophthalmic Genet 2021; 42:553-560. [PMID: 34157943 DOI: 10.1080/13816810.2021.1938136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Purpose: This study aims to demonstrate the possibility of detecting segmental uniparental isodisomy (iUPD) using a next-generation sequencing gene panel by reporting a Leber congenital amaurosis (LCA) case caused by a homozygous pathogenic variant in RPE65 (c.1022 T > C:p.Leu341Ser) inherited exclusively from the proband's mother.Methods: Samples from the trio (proband, mother, and father) were sequenced with a next-generation sequencing (NGS) retinopathy gene panel (224 genes) and the VCF file containing all variants was used in order to determine single nucleotide variant (SNV) counts from each sample across all chromosomes.Results: Trio analysis showed that of 81 Chr1 inherited variants 41 were exclusively maternal, including 21 homozygous. The other 40 variants were common to both parents. On remaining autosomal chromosomes (Chr2-22) 645 inherited variants were found, 147 of them were exclusively maternal and 132 exclusively paternal. Based on these NGS data, it was possible to note that the proband's chromosomes 1 are more similar to his mother's chromosome 1 than his father's, suggesting the pathogenic homozygous variant found in this patient was inherited exclusively from the mother due to uniparental maternal isodisomy.Conclusions: This study presents a secondary analysis pipeline to identify responsible variants for a phenotype and the correct inheritance pattern, which is a critical step to the proper and accurate genetic counseling of all family members. In addition, this approach could be used to determine iUPD in different Mendelian disorders if the sequencing panel identifies variants spread throughout the genome.
Collapse
Affiliation(s)
- Fabiana Louise Motta
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | | | | | - Denise A Batista
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth S Wohler
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Nara L Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Renan Paulo Martin
- Department of Biophysics, Universidade Federal de São Paulo, Sao Paulo, Brazil.,McKusick-Nathans Department of Genetic Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Juliana Maria Ferraz Sallum
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil.,Instituto de Genética Ocular, Sao Paulo, Brazil
| |
Collapse
|
5
|
Abstract
Our understanding of genetic disease(s) has increased exponentially since the completion of human genome sequencing and the development of numerous techniques to detect genetic variants. These techniques have not only allowed us to diagnose genetic disease, but in so doing, also provide increased understanding of the pathogenesis of these diseases to aid in developing appropriate therapeutic options. Additionally, the advent of next-generation or massively parallel sequencing (NGS/MPS) is increasingly being used in the clinical setting, as it can detect a number of abnormalities from point mutations to chromosomal rearrangements as well as aberrations within the transcriptome. In this article, we will discuss the use of multiple techniques that are used in genetic diagnosis. © 2020 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Rashmi S Goswami
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Sunnybrook Research Institute, Biological Sciences, Odette Cancer Research Program, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Shuko Harada
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
6
|
Zhou L, Zheng Z, Xu Y, Lv X, Xu C, Xu X. Prenatal diagnosis of 7 cases with uniparental disomy by utilization of single nucleotide polymorphism array. Mol Cytogenet 2021; 14:19. [PMID: 33741026 PMCID: PMC7980353 DOI: 10.1186/s13039-021-00537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/19/2021] [Indexed: 11/10/2022] Open
Abstract
Background The phenotypes of uniparental disomy (UPD) are variable, which may either have no clinical impact, lead to clinical signs and symptoms. Molecular analysis is essential for making a correct diagnosis. This study involved a retrospective analysis of 4512 prenatal diagnosis samples and explored the molecular characteristics and prenatal phenotypes of UPD using a single nucleotide polymorphism (SNP) array. Results Out of the 4512 samples, a total of seven cases of UPD were detected with an overall frequency of 0.16%. Among the seven cases of UPD, two cases are associated with chromosomal aberrations (2/7), four cases (4/7) had abnormal ultrasonographic findings. One case presented with iso-UPD (14), and two case presented with mixed hetero/iso-UPD (15), which were confirmed by Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) as maternal UPD (15) associated with Prader-Willi syndrome (PWS). Four cases had iso-UPD for chromosome 1, 3, 14, and 16, respectively; this is consistent with the monosomy rescue mechanism. Another three cases presented with mixed hetero/isodisomy were consistent with a trisomy rescue mechanism. Conclusion The prenatal phenotypes of UPD are variable and molecular analysis is essential for making a correct diagnosis and genetic counselling of UPD. The SNP array is a useful genetic test in prenatal diagnosis cases with UPD.
Collapse
Affiliation(s)
- Lili Zhou
- Center of Prenatal Diagnosis, Wenzhou Central Hospital, Wenzhou, 325000, People's Republic of China
| | - Zhaoke Zheng
- Center of Prenatal Diagnosis, Wenzhou Central Hospital, Wenzhou, 325000, People's Republic of China
| | - Yunzhi Xu
- Center of Prenatal Diagnosis, Wenzhou Central Hospital, Wenzhou, 325000, People's Republic of China
| | - Xiaoxiao Lv
- Center of Prenatal Diagnosis, Wenzhou Central Hospital, Wenzhou, 325000, People's Republic of China
| | - Chenyang Xu
- Center of Prenatal Diagnosis, Wenzhou Central Hospital, Wenzhou, 325000, People's Republic of China
| | - Xueqin Xu
- Center of Prenatal Diagnosis, Wenzhou Central Hospital, Wenzhou, 325000, People's Republic of China.
| |
Collapse
|
7
|
Chung MS, Langouët M, Chamberlain SJ, Carmichael GG. Prader-Willi syndrome: reflections on seminal studies and future therapies. Open Biol 2020; 10:200195. [PMID: 32961075 PMCID: PMC7536080 DOI: 10.1098/rsob.200195] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
Prader-Willi syndrome (PWS) is caused by the loss of function of the paternally inherited 15q11-q13 locus. This region is governed by genomic imprinting, a phenomenon in which genes are expressed exclusively from one parental allele. The genomic imprinting of the 15q11-q13 locus is established in the germline and is largely controlled by a bipartite imprinting centre. One part, termed the Prader-Willi syndrome imprinting center (PWS-IC), comprises a CpG island that is unmethylated on the paternal allele and methylated on the maternal allele. The second part, termed the Angelman syndrome imprinting centre, is required to silence the PWS_IC in the maternal germline. The loss of the paternal contribution of the imprinted 15q11-q13 locus most frequently occurs owing to a large deletion of the entire imprinted region but can also occur through maternal uniparental disomy or an imprinting defect. While PWS is considered a contiguous gene syndrome based on large-deletion and uniparental disomy patients, the lack of expression of only non-coding RNA transcripts from the SNURF-SNRPN/SNHG14 may be the primary cause of PWS. Patients with small atypical deletions of the paternal SNORD116 cluster alone appear to have most of the PWS related clinical phenotypes. The loss of the maternal contribution of the 15q11-q13 locus causes a separate and distinct condition called Angelman syndrome. Importantly, while much has been learned about the regulation and expression of genes and transcripts deriving from the 15q11-q13 locus, there remains much to be learned about how these genes and transcripts contribute at the molecular level to the clinical traits and developmental aspects of PWS that have been observed.
Collapse
Affiliation(s)
| | | | | | - Gordon G. Carmichael
- Department of Genetics and Genome Sciences, UCONN Health, 400 Farmington Avenue, Farmington, CT 06030, USA
| |
Collapse
|
8
|
DNA methylation analysis for screening and diagnostic testing in neurodevelopmental disorders. Essays Biochem 2020; 63:785-795. [PMID: 31696914 DOI: 10.1042/ebc20190056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
DNA methylation (mDNA) plays an important role in the pathogenesis of neurodevelopmental disorders (NDDs), however its use in diagnostic testing has been largely restricted to a handful of methods for locus-specific analysis in monogenic syndromes. Recent studies employing genome-wide methylation analysis (GWMA) have explored utility of a single array-based test to detect methylation changes in probands negative by exome sequencing, and to diagnose different monogenic NDDs with defined epigenetic signatures. While this may be a more efficient approach, several significant barriers remain. These include non-uniform and low coverage of regulatory regions that may have CG-rich sequences, and lower analytical sensitivity as compared with locus-specific analyses that may result in methylation mosaicism not being detected. A major challenge associated with the above technologies, regardless of whether the analysis is locus specific or genome wide, is the technical bias introduced by indirect analysis of methylation. This review summarizes evidence from the most recent studies in this field and discusses future directions, including direct analysis of methylation using long-read technologies and detection of 5-methylcytosine (5-mC or total mDNA) and 5-hydroxymethylacytosine (5-hmC) as biomarkers of NDDs.
Collapse
|
9
|
Kim BY, Lee JS, Kim YO, Koo SK, Park MH. Generation of induced pluripotent stem cells (KSCBi009-A) from a patient with Prader-Willi syndrome (PWS) featuring deletion of the paternal chromosome region 15q11.2-q13. Stem Cell Res 2020; 46:101847. [PMID: 32474395 DOI: 10.1016/j.scr.2020.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/21/2020] [Accepted: 05/11/2020] [Indexed: 11/25/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder caused by the loss of paternally expressed genes in an imprinted region of chromosome 15q11.2-q13. We generated a human-induced pluripotent stem cell line, designated KSCBi009-A, from peripheral blood mononuclear cells of a 13-year-old male PWS patient exhibiting deletion of the paternal chromosome 15q11.2-q13 region. The deletion was confirmed via methylation-specific multiplex ligation probe amplification assay (MS-MLPA) of genomic DNA. The hiPSC line expressed pluripotency markers and differentiated into three germ layers. The cell line may serve as a valuable model of an imprinting PWS disorder useful in terms of drug discovery and development.
Collapse
Affiliation(s)
- Bo-Young Kim
- Division of Intractable Diseases, National Center for Stem Cell and Regenerative Medicine, Center for Biomedical Sciences, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, South Korea
| | - Jin-Sung Lee
- Division of Clinical Genetics, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, South Korea
| | - Yong-Ou Kim
- Division of Intractable Diseases, National Center for Stem Cell and Regenerative Medicine, Center for Biomedical Sciences, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, South Korea
| | - Soo Kyung Koo
- Division of Intractable Diseases, National Center for Stem Cell and Regenerative Medicine, Center for Biomedical Sciences, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, South Korea.
| | - Mi-Hyun Park
- Division of Intractable Diseases, National Center for Stem Cell and Regenerative Medicine, Center for Biomedical Sciences, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, South Korea.
| |
Collapse
|
10
|
Kim BY, Lee JS, Kim YO, Park MH, Koo SK. Generation of patient-specific induced pluripotent stem cells (KSCBi007-A) derived from a patient with Prader–Willi syndrome retain maternal uniparental disomy (UPD). Stem Cell Res 2019; 41:101647. [DOI: 10.1016/j.scr.2019.101647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/21/2019] [Accepted: 10/31/2019] [Indexed: 11/24/2022] Open
|
11
|
Monteagudo-Sánchez A, Garin I, de Nanclares GP, Monk D. The Use of Methylation-Sensitive Multiplex Ligation-Dependent Probe Amplification for Quantification of Imprinted Methylation. Methods Mol Biol 2019; 1766:109-121. [PMID: 29605849 DOI: 10.1007/978-1-4939-7768-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Imprinting disorders are a group of congenital diseases that can result from multiple mechanisms affecting imprinted gene dosage including cytogenetic aberration and epigenetic anomalies. Quantification of CpG methylation and correct copy-number calling is required for molecular diagnosis. Methylation-sensitive multiplex ligation-dependent probe amplification (MS-MLPA) is a multiplex method that accurately measures both parameters in a single assay. This technique relies upon the ligation of MLPA probe oligonucleotides and digestion of the genomic DNA-probe hybrid complexes with the Hha1 methylation-sensitive restriction endonuclease prior to fluorescent PCR amplification with a single primer pair. Since each targeted probe contains stuffer sequence of varying length, each interrogated position is visualized as an amplicon of different size upon capillary electrophoresis.
Collapse
Affiliation(s)
- Ana Monteagudo-Sánchez
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program (PEBC), Bellvitge Institute for Biomedical Research (IDIBELL), Hospital Duran and Reynals, Barcelona, Spain
| | - Intza Garin
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, OSI Araba-Txagorritxu, Vitoria-Gasteiz, Spain
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, OSI Araba-Txagorritxu, Vitoria-Gasteiz, Spain
| | - David Monk
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program (PEBC), Bellvitge Institute for Biomedical Research (IDIBELL), Hospital Duran and Reynals, Barcelona, Spain.
| |
Collapse
|
12
|
Ribeiro Ferreira I, Darleans Dos Santos Cunha W, Henrique Ferreira Gomes L, Azevedo Cintra H, Lopes Cabral Guimarães Fonseca L, Ferreira Bastos E, Clinton Llerena J, Farias Meira de Vasconcelos Z, da Cunha Guida L. A rapid and accurate methylation-sensitive high-resolution melting analysis assay for the diagnosis of Prader Willi and Angelman patients. Mol Genet Genomic Med 2019; 7:e637. [PMID: 31033246 PMCID: PMC6565559 DOI: 10.1002/mgg3.637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 12/26/2022] Open
Abstract
Background Prader Willi (PWS) and Angelman (AS) syndromes are rare genetic disorders characterized by deletions, uniparental disomy, and imprinting defects at chromosome 15. The loss of function of specific genes caused by genetic alterations in paternal allele causes PWS while the absence in maternal allele results AS. The laboratory diagnosis of PWS and AS is complex and demands molecular biology and cytogenetics techniques to identify the genetic mechanism related to the development of the disease. The DNA methylation analysis in chromosome 15 at the SNURF‐SNRPN locus through MS‐PCR confirms the diagnosis and distinguishes between PWS and AS. Our study aimed to establish the MS‐PCR technique associated with High‐Resolution Melting (MS‐HRM) in PWS and AS diagnostic with a single pair of primers. Methods We collected blood samples from 43 suspected patients to a cytogenetic and methylation analysis. The extracted DNA was treated with bisulfite to perform comparative methylation analysis. Results MS‐HRM and MS‐PCR agreed in 100% of cases, identifying 19(44%) PWS, 3(7%) AS, and 21(49%) Normal. FISH analysis detected four cases of PWS caused by deletions in chromosome 15. Conclusion The MS‐HRM showed good performance with a unique pair of primers, dispensing electrophoresis gel analysis, offering a quick and reproducible diagnostic.
Collapse
Affiliation(s)
- Igor Ribeiro Ferreira
- Laboratório de Alta Complexidade, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Wilton Darleans Dos Santos Cunha
- Laboratório de Alta Complexidade, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Leonardo Henrique Ferreira Gomes
- Laboratório de Alta Complexidade, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Hiago Azevedo Cintra
- Laboratório de Alta Complexidade, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | | | - Elenice Ferreira Bastos
- Departamento de Genética, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Juan Clinton Llerena
- Departamento de Genética, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Zilton Farias Meira de Vasconcelos
- Laboratório de Alta Complexidade, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | - Letícia da Cunha Guida
- Laboratório de Alta Complexidade, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Hartin SN, Hossain WA, Francis D, Godler DE, Barkataki S, Butler MG. Analysis of the Prader-Willi syndrome imprinting center using droplet digital PCR and next-generation whole-exome sequencing. Mol Genet Genomic Med 2019; 7:e00575. [PMID: 30793526 PMCID: PMC6465664 DOI: 10.1002/mgg3.575] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/13/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Detailed analysis of imprinting center (IC) defects in individuals with Prader-Willi syndrome (PWS) is not readily available beyond chromosomal microarray (MA) analysis, and such testing is important for a more accurate diagnosis and recurrence risks. This is the first feasibility study of newly developed droplet digital polymerase chain reaction (ddPCR) examining DNA copy number differences in the PWS IC region of those with IC defects. METHODS The study cohort included 17 individuals without 15q11-q13 deletions or maternal disomy but with IC defects as determined by genotype analysis showing biparental inheritance. Seven sets of parents and two healthy, unrelated controls were also analyzed. RESULTS Copy number differences were distinguished by comparing the number of positive droplets detected by IC probes to those from a chromosome 15 reference probe, GABRβ3. The ddPCR findings were compared to results from other methods including MA, and whole-exome sequencing (WES) with 100% concordance. The study also estimated the frequency of IC microdeletions and identified gene variants by WES that may impact phenotypes including CPT2 and NTRK1 genes. CONCLUSION Droplet digital polymerase chain reaction is a cost-effective method that can be used to confirm the presence of microdeletions in PWS with impact on genetic counseling and recurrence risks for families.
Collapse
Affiliation(s)
- Samantha N. Hartin
- Departments of Psychiatry & Behavioral Sciences and PediatricsUniversity of Kansas Medical CenterKansas CityKansas
| | - Waheeda A. Hossain
- Departments of Psychiatry & Behavioral Sciences and PediatricsUniversity of Kansas Medical CenterKansas CityKansas
| | - David Francis
- Cyto‐molecular Diagnostic Research LaboratoryRoyal Children's Hospital, Victorian Clinical Genetics Services and Murdoch Children's Research InstituteMelbourneVictoriaAustralia
| | - David E. Godler
- Cyto‐molecular Diagnostic Research LaboratoryRoyal Children's Hospital, Victorian Clinical Genetics Services and Murdoch Children's Research InstituteMelbourneVictoriaAustralia
| | | | - Merlin G. Butler
- Departments of Psychiatry & Behavioral Sciences and PediatricsUniversity of Kansas Medical CenterKansas CityKansas
| |
Collapse
|
14
|
Abstract
The development of rapid parallel sequencing in the last 20 years has begun a revolution in the field of genetics that is changing nearly all disciplines within biology and medicine. Genomic sequencing has become crucial to the diagnosis and clinical management of patients with constitutional diseases and cancer and has quickly become an integral part of the new era of personalized and precision medicine. The precision medicine initiative, released by the NIH in 2015, has catapulted genomic technologies to the forefront of the practice of medicine and biomedical research.This chapter focuses on the core technologies driving the genomic revolution from first generation (Sanger) sequencing to microarray-based technologies, to second, commonly referred to as next-generation sequencing (NGS) methods, and finally to the emerging third generation technologies capable of performing single-molecule and long-read sequencing. The goal of the chapter is to provide a broad overview of these methods of DNA analysis and highlight their strengths and weaknesses. Furthermore, with a knowledge of the different mutation types, we seek to provide the basis for understanding how these technologies work, and can be adopted, to explore other type of nucleic acids and epigenetic changes.
Collapse
Affiliation(s)
- Valerie A Arboleda
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Rena R Xian
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
15
|
Patterns of homozygosity in patients with uniparental disomy: detection rate and suggested reporting thresholds for SNP microarrays. Genet Med 2018; 20:1522-1527. [PMID: 29565418 DOI: 10.1038/gim.2018.24] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/18/2018] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Single-nucleotide polymorphism (SNP) microarrays can easily identify whole-chromosome isodisomy but are unable to detect whole-chromosome heterodisomy. However, most cases of uniparental disomy (UPD) involve combinations of heterodisomy and isodisomy, visualized on SNP microarrays as long continuous stretches of homozygosity (LCSH). LCSH raise suspicion for, but are not diagnostic of, UPD, and reporting necessitates confirmatory testing. The goal of this study was to define optimal LCSH reporting standards. METHODS Eighty-nine individuals with known UPD were analyzed using chromosomal microarray. The LCSH patterns were compared with those in a phenotypically normal population to predict the clinical impact of various reporting thresholds. False-positive and -negative rates were calculated at various LCSH thresholds. RESULTS Twenty-seven of 84 cases with UPD had no significant LCSH on the involved chromosome. Fifty UPD-positive samples had LCSH of varying sizes: the average size of terminal LCSH was 11.0 megabases while the average size of interstitial LCSH was 24.1 megabases. LCSH in the normal population tended to be much smaller (average 4.3 megabases) and almost exclusively interstitial; however, overlap between the populations was noted. CONCLUSION We hope that this work will aid clinical laboratories in the recognition and reporting of LCSH.
Collapse
|
16
|
Manzardo AM, Weisensel N, Ayala S, Hossain W, Butler MG. Prader-Willi syndrome genetic subtypes and clinical neuropsychiatric diagnoses in residential care adults. Clin Genet 2018; 93:622-631. [PMID: 28984907 DOI: 10.1111/cge.13142] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 12/21/2022]
Abstract
The historical diagnosis of Prader-Willi syndrome (PWS), a complex genetic disorder, in adults is often achieved by clinical presentation rather than by genetic testing and thus limited genetic subtype-specific psychometric investigations and treatment options. Genetic testing and clinical psychiatric evaluation using Diagnostic and Statistical Manual (DSM)-IV-TR criteria were undertaken on 72 adult residents (34 M; 38 F) from the Prader-Willi Homes of Oconomowoc (PWHO), a specialty PWS group home system. Methylation specific-multiplex ligation probe amplification and high-resolution microarrays were analyzed for methylation status, 15q11-q13 deletions and maternal uniparental disomy 15 (mUPD15). Seventy (33M; 37F) of 72 residents were genetically confirmed and 36 (51%) had Type I or Type II deletions; 29 (42%) with mUPD15 and 5 (7%) with imprinting defects from three separate families. Psychiatric comorbidities were classified as anxiety disorder (38%), excoriation (skin picking) (33%), intermittent explosive disorder ([30%-predominantly among males at 45% compared with females at 16% [OR = 4.3, 95%CI 1.4-13.1, P < 0.008]) and psychotic features (23%). Psychiatric diagnoses did not differ between mUPD15 vs deletion, but a greater number of psychiatric diagnoses were observed for the larger Type I (4.3) vs smaller Type II (3.6) deletions when age was controlled (F = 5.0, P < 0.04). Adults with PWS presented with uniformly higher rates of psychiatric comorbidities which differed by genetic subtype with gender-specific trends.
Collapse
Affiliation(s)
- A M Manzardo
- Department of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| | - N Weisensel
- Prader-Willi Homes of Oconomowoc (PWHO), Oconomowoc, Wisconsin.,Marian University, Fond du Lac, Wisconsin
| | - S Ayala
- Marian University, Fond du Lac, Wisconsin
| | - W Hossain
- Department of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| | - M G Butler
- Department of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
17
|
Abstract
This chapter describes a method for the rapid assessment of promoter hypermethylation levels or methylation of imprinted regions in human genomic DNA extracted from various sources using methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). Multiplex ligation-dependent probe amplification (MLPA) is a powerful and easy-to-perform PCR-based technique that can identify gains, amplifications, losses, deletions, methylation and mutations of up to 55 targets in a single reaction, while requiring only minute quantities of DNA (about 50 ng) extracted from blood, fresh frozen or formalin-fixed paraffin-embedded materials. Methylation-specific MLPA (MS-MLPA) is a variant of MLPA, which does not require sodium bisulfite conversion of unmethylated cytosine residues, but instead makes use of the methylation-sensitive endonuclease HhaI. MS-MLPA probes are designed to contain a HhaI recognition site (GCGC) and thus target one CpG dinucleotide within a CpG island. If the HhaI recognition site is not methylated, HhaI will cut the probe-sample DNA hybrid and no PCR product will be formed. If the target DNA is methylated, HhaI is not able to cut, and the fragment will be amplified during subsequent PCR. For data analysis, MS-MLPA peak patterns of the HhaI-treated and -untreated reactions are compared, leading to calculation of a methylation percentage. The methylation profile of a test sample is assessed by comparing the probe methylation percentages obtained on the test sample to the percentages of the reference samples. MS-MLPA can be combined with copy number and point mutation detection in the same reaction.
Collapse
|
18
|
Xu Y, Gao X, Zhang L, Chen D, Dai Z, Zou X. Simultaneous detection of double gene-specific methylation loci based on hairpin probes tagged with electrochemical quantum dots barcodes. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.06.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Butler MG. Benefits and limitations of prenatal screening for Prader-Willi syndrome. Prenat Diagn 2016; 37:81-94. [PMID: 27537837 DOI: 10.1002/pd.4914] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/15/2022]
Abstract
This review summarizes the status of genetic laboratory testing in Prader-Willi syndrome (PWS) with different genetic subtypes, most often a paternally derived 15q11-q13 deletion and discusses benefits and limitations related to prenatal screening. Medical literature was searched for prenatal screening and genetic laboratory testing methods in use or under development and discussed in relationship to PWS. Genetic testing includes six established laboratory diagnostic approaches for PWS with direct application to prenatal screening. Ultrasonographic, obstetric and cytogenetic reports were summarized in relationship to the cause of PWS and identification of specific genetic subtypes including maternal disomy 15. Advances in genetic technology were described for diagnosing PWS specifically DNA methylation and high-resolution chromosomal SNP microarrays as current tools for genetic screening and incorporating next generation DNA sequencing for noninvasive prenatal testing (NIPT) using cell-free fetal DNA. Positive experiences are reported with NIPT for detection of numerical chromosomal problems (aneuploidies) but not for structural problems (microdeletions). These reports will be discussed along with future directions for genetic screening of PWS. In summary, this review describes and discusses the status of established and ongoing genetic testing options for PWS applicable in prenatal screening including NIPT and future directions for early diagnosis in PWS. © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Merlin G Butler
- Departments of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
20
|
Prader-Willi Syndrome: The Disease that Opened up Epigenomic-Based Preemptive Medicine. Diseases 2016; 4:diseases4010015. [PMID: 28933395 PMCID: PMC5456307 DOI: 10.3390/diseases4010015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 01/20/2023] Open
Abstract
Prader-Willi syndrome (PWS) is a congenital neurodevelopmental disorder caused by loss of function of paternally expressed genes on chromosome 15 due to paternal deletion of 15q11–q13, maternal uniparental disomy for chromosome 15, or an imprinting mutation. We previously developed a DNA methylation-based PCR assay to identify each of these three genetic causes of PWS. The assay enables straightforward and rapid diagnosis during infancy and therefore allows early intervention such as nutritional management, physical therapy, or growth hormone treatment to prevent PWS patients from complications such as obesity and type 2 diabetes. It is known that various environmental factors induce epigenomic changes during the perinatal period, which increase the risk of adult diseases such as type 2 diabetes and intellectual disabilities. Therefore, a similar preemptive approach as used in PWS would also be applicable to acquired disorders and would make use of environmentally-introduced “epigenomic signatures” to aid development of early intervention strategies that take advantage of “epigenomic reversibility”.
Collapse
|
21
|
Seidman M, Mitchell R. Fundamental Principles in Cardiovascular Genetics. Cardiovasc Pathol 2016. [DOI: 10.1016/b978-0-12-420219-1.00006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
22
|
Wang Q, Wu W, Xu Z, Luo F, Zhou Q, Li P, Xie J. Copy number changes and methylation patterns in an isodicentric and a ring chromosome of 15q11-q13: report of two cases and review of literature. Mol Cytogenet 2015; 8:97. [PMID: 26697114 PMCID: PMC4687147 DOI: 10.1186/s13039-015-0198-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/10/2015] [Indexed: 01/27/2023] Open
Abstract
Background The low copy repeats (LCRs) in chromosome 15q11-q13 have been recognized as breakpoints (BP) for not only intrachromosomal deletions and duplications but also small supernumerary marker chromosomes 15, sSMC(15)s, in the forms of isodicentric chromosome or small ring chromosome. Further characterization of copy number changes and methylation patterns in these sSMC(15)s could lead to better understanding of their phenotypic consequences. Methods Routine G-band karyotyping, fluorescence in situ hybridization (FISH), array comparative genomic hybridization (aCGH) analysis and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) assay were performed on two Chinese patients with a sSMC(15). Results Patient 1 showed an isodicentric 15, idic(15)(q13), containing symmetrically two copies of a 7.7 Mb segment of the 15q11-q13 region by a BP3::BP3 fusion. Patient 2 showed a ring chromosome 15, r(15)(q13), with alternative one-copy and two-copy segments spanning a 12.3 Mb region. The defined methylation pattern indicated that the idic(15)(q13) and the r(15)(q13) were maternally derived. Conclusions Results from these two cases and other reported cases from literature indicated that combined karyotyping, aCGH and MS-MLPA analyses are effective to define the copy number changes and methylation patterns for sSMC(15)s in a clinical setting. The characterized genomic structure and epigenetic pattern of sSMC(15)s could lead to further gene expression profiling for better phenotype correlation.
Collapse
Affiliation(s)
- Qin Wang
- Shenzhen Maternity and Child Healthcare Hospital, 3012 Fuqiang Road, Shenzhen, Guangdong China
| | - Weiqing Wu
- Shenzhen Maternity and Child Healthcare Hospital, 3012 Fuqiang Road, Shenzhen, Guangdong China ; Department of Genetics, Yale School of Medicine, New Haven, CT USA
| | - Zhiyong Xu
- Shenzhen Maternity and Child Healthcare Hospital, 3012 Fuqiang Road, Shenzhen, Guangdong China
| | - Fuwei Luo
- Shenzhen Maternity and Child Healthcare Hospital, 3012 Fuqiang Road, Shenzhen, Guangdong China
| | - Qinghua Zhou
- Department of Genetics, Yale School of Medicine, New Haven, CT USA ; First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong China
| | - Peining Li
- Department of Genetics, Yale School of Medicine, New Haven, CT USA
| | - Jiansheng Xie
- Shenzhen Maternity and Child Healthcare Hospital, 3012 Fuqiang Road, Shenzhen, Guangdong China
| |
Collapse
|
23
|
Krefft M, Frydecka D, Adamowski T, Misiak B. From Prader-Willi syndrome to psychosis: translating parent-of-origin effects into schizophrenia research. Epigenomics 2015; 6:677-88. [PMID: 25531260 DOI: 10.2217/epi.14.52] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a relatively rare disorder that originates from paternally inherited deletions and maternal disomy (mUPD) within the 15q11-q13 region or alterations in the PWS imprinting center. Evidence is accumulating that mUPD underlies high prevalence of psychosis among PWS patients. Several genes involved in differentiation and survival of neurons as well as neurotransmission known to act in the development of PWS have been also implicated in schizophrenia. In this article, we provide an overview of genetic and epigenetic underpinnings of psychosis in PWS indicating overlapping points in the molecular background of PWS and schizophrenia. Simultaneously, we highlight the need for studies investigating genetic and epigenetic makeup of the 15q11-q13 in schizophrenia indicating promising candidate genes.
Collapse
Affiliation(s)
- Maja Krefft
- Department of Psychiatry, 10 Pasteur Street, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | | | | | | |
Collapse
|
24
|
Abstract
In this review we summarize the clinical and genetic aspects of Angelman syndrome (AS), its molecular and cellular underpinnings, and current treatment strategies. AS is a neurodevelopmental disorder characterized by severe cognitive disability, motor dysfunction, speech impairment, hyperactivity, and frequent seizures. AS is caused by disruption of the maternally expressed and paternally imprinted UBE3A, which encodes an E3 ubiquitin ligase. Four mechanisms that render the maternally inherited UBE3A nonfunctional are recognized, the most common of which is deletion of the maternal chromosomal region 15q11-q13. Remarkably, duplication of the same chromosomal region is one of the few characterized persistent genetic abnormalities associated with autistic spectrum disorder, occurring in >1-2% of all cases of autism spectrum disorder. While the overall morphology of the brain and connectivity of neural projections appear largely normal in AS mouse models, major functional defects are detected at the level of context-dependent learning, as well as impaired maturation of hippocampal and neocortical circuits. While these findings demonstrate a crucial role for ubiquitin protein ligase E3A in synaptic development, the mechanisms by which deficiency of ubiquitin protein ligase E3A leads to AS pathophysiology in humans remain poorly understood. However, recent efforts have shown promise in restoring functions disrupted in AS mice, renewing hope that an effective treatment strategy can be found.
Collapse
Affiliation(s)
- Seth S Margolis
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD, 21205, USA,
| | | | | | | |
Collapse
|
25
|
PWS/AS MS-MLPA Confirms Maternal Origin of 15q11.2 Microduplication. Case Rep Genet 2015; 2015:474097. [PMID: 26064710 PMCID: PMC4439467 DOI: 10.1155/2015/474097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/21/2015] [Indexed: 11/17/2022] Open
Abstract
The proximal region of the long arm of chromosome 15q11.2-q13 is associated with various neurodevelopmental disorders, including Prader-Willi (PWS) and Angelman (AS) syndromes, autism, and other developmental abnormalities resulting from deletions and duplications. In addition, this region encompasses imprinted genes that cause PWS or AS, depending on the parent-of-origin. This imprinting allows for diagnosis of PWS or AS based on methylation status using methylation sensitive (MS) multiplex ligation dependent probe amplification (MLPA). Maternally derived microduplications at 15q11.2-q13 have been associated with autism and other neuropsychiatric disorders. Multiple methods have been used to determine the parent-of-origin for 15q11.2-q13 microdeletions and microduplications. In the present study, a four-year-old nondysmorphic female patient with developmental delay was found to have a de novo ~5 Mb duplication within 15q11.2 by oligonucleotide genomic array. In order to determine the significance of this microduplication to the clinical phenotype, the parent-of-origin needed to be identified. The PWS/AS MS-MLPA assay is generally used to distinguish between deletion and uniparental disomy (UPD) of 15q11.2-q13, resulting in either PWS or AS. However, our study shows that PWS/AS MS-MLPA can also efficiently distinguish the parental origin of duplications of 15q11.2-q13.
Collapse
|
26
|
Yingjun X, Yi Z, Jianzhu W, Yunxia S, Yongzhen C, Liangying Z, Xiangyi J, Qun F. Prader-Willi syndrome with a long-contiguous stretch of homozygosity not covering the critical region. J Child Neurol 2015; 30:371-7. [PMID: 24859787 DOI: 10.1177/0883073814535492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Prader-Willi syndrome is a common and complex disorder affecting multiple systems. Its main manifestations are infantile hypotonia with a poor sucking reflex, a characteristic facial appearance, mild mental retardation, hypogonadism and early-onset obesity. Prader-Willi syndrome is due to the absence of paternally expressed imprinted genes at 15q11.2-13, and 3 main mechanisms are known to be involved in its pathogenesis: paternal microdeletions, maternal uniparental disomy events, and imprinting defects. DNA methylation analysis can detect almost all individuals with Prader-Willi syndrome but is unable to distinguish between the molecular classes of the disease. Thus, additional methods are necessary to identify the molecular classes. Here, we employed chromosomal microarray analysis-single nucleotide polymorphism for diagnosis and detected a long-contiguous stretch of homozygosity on chromosome 15, which is highly predictive of maternal uniparental disomy on chromosome 15. Other methods, including fluorescence in situ hybridization, chromosomal microarray analysis-comparative genomic hybridization, genotyping and family linkage analysis, were performed for further validation. In conclusion, our study highlights the use of long-contiguous stretch of homozygosity detection for the diagnosis of Prader-Willi syndrome.
Collapse
Affiliation(s)
- Xie Yingjun
- Fetal Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhou Yi
- Fetal Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wu Jianzhu
- Fetal Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sun Yunxia
- Department of Neonatology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chen Yongzhen
- Fetal Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhong Liangying
- Department of Laboratory Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Xiangyi
- Department of Medical Genetics, Zhongshan School of Medicine and Center for Genome Research, Sun Yat-Sen University, Guangzhou, China
| | - Fang Qun
- Fetal Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
False deletion of the D15S986 maternal allele in a suspected case of Angelman syndrome. Clin Chim Acta 2015; 439:191-4. [DOI: 10.1016/j.cca.2014.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/09/2014] [Accepted: 10/12/2014] [Indexed: 12/14/2022]
|
28
|
Kuroda Y, Ohashi I, Saito T, Nagai JI, Ida K, Naruto T, Wada T, Kurosawa K. Deletion ofUBE3Ain brothers with Angelman syndrome at the breakpoint with an inversion at 15q11.2. Am J Med Genet A 2014; 164A:2873-8. [DOI: 10.1002/ajmg.a.36704] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 06/27/2014] [Indexed: 01/18/2023]
Affiliation(s)
- Yukiko Kuroda
- Division of Medical Genetics; Kanagawa Children's Medical Center; Yokohama Japan
| | - Ikuko Ohashi
- Division of Medical Genetics; Kanagawa Children's Medical Center; Yokohama Japan
| | - Toshiyuki Saito
- Department of Clinical Laboratory; Kanagawa Children's Medical Center; Yokohama Japan
| | - Jun-Ichi Nagai
- Department of Clinical Laboratory; Kanagawa Children's Medical Center; Yokohama Japan
| | - Kazumi Ida
- Division of Medical Genetics; Kanagawa Children's Medical Center; Yokohama Japan
| | - Takuya Naruto
- Division of Medical Genetics; Kanagawa Children's Medical Center; Yokohama Japan
| | - Takahito Wada
- Division of Pediatric Neurology; Kanagawa Children's Medical Center; Yokohama Japan
| | - Kenji Kurosawa
- Division of Medical Genetics; Kanagawa Children's Medical Center; Yokohama Japan
| |
Collapse
|
29
|
Abstract
Epigenetics has undergone an explosion in the past decade. DNA methylation, consisting of the addition of a methyl group at the fifth position of cytosine (5-methylcytosine, 5-mC) in a CpG dinucleotide, is a well-recognized epigenetic mark with important functions in cellular development and pathogenesis. Numerous studies have focused on the characterization of DNA methylation marks associated with disease development as they may serve as useful biomarkers for diagnosis, prognosis, and prediction of response to therapy. Recently, novel cytosine modifications with potential regulatory roles such as 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-foC), and 5-carboxylcytosine (5-caC) have been discovered. Study of the functions of 5-mC and its oxidation derivatives promotes the understanding of the mechanism underlying association of epigenetic modifications with disease biology. In this respect, much has been accomplished in the development of methods for the discovery, detection, and location analysis of 5-mC and its oxidation derivatives. In this review, we focus on the recent advances for the global detection and location study of 5-mC and its oxidation derivatives 5-hmC, 5-foC, and 5-caC.
Collapse
|
30
|
|
31
|
Dai Z, Cai T, Zhu W, Gao X, Zou X. Simultaneous profiling of multiple gene-methylation loci by electrochemical methylation-specific ligase detection reaction. Chem Commun (Camb) 2013; 49:1939-41. [PMID: 23364409 DOI: 10.1039/c3cc38942a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel method of electrochemical methylation-specific ligation detection reaction is first presented for simultaneous evaluation of multiple gene-methylation loci in a single-tube experiment without PCR amplification or restriction enzyme reaction.
Collapse
Affiliation(s)
- Zong Dai
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | | | | | | | | |
Collapse
|
32
|
The proportion of uniparental disomy is increased in Prader-Willi syndrome due to an advanced maternal childbearing age in Korea. J Hum Genet 2013; 58:150-4. [PMID: 23303386 DOI: 10.1038/jhg.2012.148] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prader-Willi syndrome (PWS) is a genetic disorder caused by the absence of expression of the paternal copy of maternally imprinted genes in chromosome region 15q11-13. The genetic subtypes of PWS are classified into deletion (~70%), maternal uniparental disomy (mUPD; 25-30%), imprinting center defects (3-5%) and rare unbalanced translocations. Recently, Matsubara et al. reported a significantly higher maternal age in a trisomy rescue (TR) or gamete complementation (GC) by nondisjunction at maternal meiosis 1 (M1) group than in a deletion group. In the present study, we try to confirm their findings in an ethnically different population. A total of 97 Korean PWS patients were classified into deletional type (n=66), TR/GC (M1) (n=15), TR/GC by nondisjunction at maternal meiosis 2 (n=2), monosomy rescue or postfertilization mitotic nondisjunction (n=4) and epimutation (n=2). Maternal ages at birth showed a significant difference between the deletion group (median age of 29, interquartile range (IQR)=(27,31)) and the TR/GC (M1) group (median age of 35, IQR=(31,38)) (P<0.0001). The relative birth frequency of the TR/GC (M1) group has substantially increased since 2006 when compared with the period before 2005. These findings support the hypothesis that the advanced maternal age at childbirth is a predisposing factor for the development of mUPD because of increased M1 errors.
Collapse
|
33
|
Egger G, Wielscher M, Pulverer W, Kriegner A, Weinhäusel A. DNA methylation testing and marker validation using PCR: diagnostic applications. Expert Rev Mol Diagn 2012; 12:75-92. [PMID: 22133121 DOI: 10.1586/erm.11.90] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA methylation provides a fundamental epigenetic mechanism to establish and promote cell-specific gene-expression patterns, which are inherited by subsequent cell generations. Thus, the epigenome determines the differentiation into a cell lineage but can also program cells to become abnormal or malignant. In humans, different germline and somatic diseases have been linked to faulty DNA methylation. In this article, we will discuss the available PCR-based technologies to assess differences in DNA methylation levels mainly affecting 5-methylcytosine in the CpG dinucleotide context in hereditary syndromal and somatic pathological conditions. We will discuss some of the current diagnostic applications and provide an outlook on how DNA methylation-based biomarkers might provide novel tools for diagnosis, prognosis or patient stratification for diseases such as cancer.
Collapse
Affiliation(s)
- Gerda Egger
- Clinical Institute of Pathology, Medical University of Vienna, Austria
| | | | | | | | | |
Collapse
|
34
|
Stuppia L, Antonucci I, Palka G, Gatta V. Use of the MLPA assay in the molecular diagnosis of gene copy number alterations in human genetic diseases. Int J Mol Sci 2012; 13:3245-3276. [PMID: 22489151 PMCID: PMC3317712 DOI: 10.3390/ijms13033245] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 11/16/2022] Open
Abstract
Multiplex Ligation-dependent Probe Amplification (MLPA) assay is a recently developed technique able to evidence variations in the copy number of several human genes. Due to this ability, MLPA can be used in the molecular diagnosis of several genetic diseases whose pathogenesis is related to the presence of deletions or duplications of specific genes. Moreover, MLPA assay can also be used in the molecular diagnosis of genetic diseases characterized by the presence of abnormal DNA methylation. Due to the large number of genes that can be analyzed by a single technique, MLPA assay represents the gold standard for molecular analysis of all pathologies derived from the presence of gene copy number variation. In this review, the main applications of the MLPA technique for the molecular diagnosis of human diseases are described.
Collapse
Affiliation(s)
- Liborio Stuppia
- Department of Oral Sciences, Nano and Biotechnologies, “G. d’Annunzio” University, Via dei Vestini 31, 66013 Chieti, Italy; E-Mails: (I.A.); (G.P.); (V.G.)
| | - Ivana Antonucci
- Department of Oral Sciences, Nano and Biotechnologies, “G. d’Annunzio” University, Via dei Vestini 31, 66013 Chieti, Italy; E-Mails: (I.A.); (G.P.); (V.G.)
| | - Giandomenico Palka
- Department of Oral Sciences, Nano and Biotechnologies, “G. d’Annunzio” University, Via dei Vestini 31, 66013 Chieti, Italy; E-Mails: (I.A.); (G.P.); (V.G.)
| | - Valentina Gatta
- Department of Oral Sciences, Nano and Biotechnologies, “G. d’Annunzio” University, Via dei Vestini 31, 66013 Chieti, Italy; E-Mails: (I.A.); (G.P.); (V.G.)
| |
Collapse
|
35
|
Unique and atypical deletions in Prader-Willi syndrome reveal distinct phenotypes. Eur J Hum Genet 2011; 20:283-90. [PMID: 22045295 DOI: 10.1038/ejhg.2011.187] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a multisystem, contiguous gene disorder caused by an absence of paternally expressed genes within the 15q11.2-q13 region via one of the three main genetic mechanisms: deletion of the paternally inherited 15q11.2-q13 region, maternal uniparental disomy and imprinting defect. The deletion class is typically subdivided into Type 1 and Type 2 based on their proximal breakpoints (BP1-BP3 and BP2-BP3, respectively). Despite PWS being a well-characterized genetic disorder the role of the specific genes contributing to various aspects of the phenotype are not well understood. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) is a recently developed technique that detects copy number changes and aberrant DNA methylation. In this study, we initially applied MS-MLPA to elucidate the deletion subtypes of 88 subjects. In our cohort, 32 had a Type 1 and 49 had a Type 2 deletion. The remaining seven subjects had unique or atypical deletions that were either smaller (n=5) or larger (n=2) than typically described and were further characterized by array-based comparative genome hybridization. In two subjects both the PWS region (15q11.2) and the newly described 15q13.3 microdeletion syndrome region were deleted. The subjects with a unique or an atypical deletion revealed distinct phenotypic features. In conclusion, unique or atypical deletions were found in ∼8% of the deletion subjects with PWS in our cohort. These novel deletions provide further insight into the potential role of several of the genes within the 15q11.2 and the 15q13.3 regions.
Collapse
|
36
|
Cataletto M, Angulo M, Hertz G, Whitman B. Prader-Willi syndrome: A primer for clinicians. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2011; 2011:12. [PMID: 22008714 PMCID: PMC3217845 DOI: 10.1186/1687-9856-2011-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 10/18/2011] [Indexed: 01/25/2023]
Abstract
The advent of sensitive genetic testing modalities for the diagnosis of Prader-Willi syndrome has helped to define not only the phenotypic features of the syndrome associated with the various genotypes but also to anticipate clinical and psychological problems that occur at each stage during the life span. With advances in hormone replacement therapy, particularly growth hormone children born in circumstances where therapy is available are expected to have an improved quality of life as compared to those born prior to growth hormone. This manuscript was prepared as a primer for clinicians-to serve as a resource for those of you who care for children and adults with Prader-Willi syndrome on a daily basis in your practices. Appropriate and anticipatory interventions can make a difference.
Collapse
Affiliation(s)
- Mary Cataletto
- The Prader-Willi Syndrome Center at Winthrop University Hospital, 120 Mineola Blvd,-Suite 210, Mineola, N,Y, 11501, USA.
| | | | | | | |
Collapse
|
37
|
Henkhaus RS, Kim SJ, Kimonis VE, Gold JA, Dykens EM, Driscoll DJ, Butler MG. Methylation-specific multiplex ligation-dependent probe amplification and identification of deletion genetic subtypes in Prader-Willi syndrome. Genet Test Mol Biomarkers 2011; 16:178-86. [PMID: 21977908 DOI: 10.1089/gtmb.2011.0115] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are complex neurodevelopmental disorders caused by loss of expression of imprinted genes from the 15q11-q13 region depending on the parent of origin. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) kits from MRC-Holland (Amsterdam, The Netherlands) were used to detect PWS and AS deletion subtypes. We report our experience with two versions of the MS-MLPA-PWS/AS kit (original A1 and newer B1) in determining methylation status and deletion subtypes in individuals with PWS. METHODS MS-MLPA analysis was performed on DNA isolated from a large cohort of PWS subjects with the MS-MLPA-PWS/AS-A1 and -B1 probe sets. RESULTS Both MS-MLPA kits will identify deletions in the 15q11-q13 region but the original MS-MLPA-A1 kit has a higher density of probes at the telomeric end of the 15q11-q13 region, which is more useful for identifying individuals with atypical deletions. The newer B1 kit contains more probes in the imprinting center (IC) and adjoining small noncoding RNAs useful in identifying small microdeletions. CONCLUSION The A1 kit identified the typical deletions and smaller atypical deletions, whereas the B1 kit was more informative for identifying microdeletions including the IC and SNORD116 regions. Both kits should be made available for accurate characterization of PWS/AS deletion subtypes as well as evaluating for IC and SNORD116 microdeletions.
Collapse
Affiliation(s)
- Rebecca S Henkhaus
- Department of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
To determine the frequency of subtelomeric abnormalities in children with idiopathic mental retardation. Med J Armed Forces India 2011; 67:326-8. [PMID: 27365840 DOI: 10.1016/s0377-1237(11)60077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 07/29/2011] [Indexed: 12/08/2022] Open
Abstract
BACKGROUND Cross-sectional study was carried out to determine the frequency of subtelomeric abnormalities in children with idiopathic mental retardation (MR). METHOD Multiplex ligation-dependant probe amplification technique was used to detect subtelomeric abnormalities. RESULTS Out of 35 children, 21 (60%) were males. Family history of MR was present in 23%. Main clinical features included speech delay in all motor delay cases (83%) and non-specific dysmorphic features (77%). CONCLUSION Associated clinical features were more in children with intelligence quotient (IQ) < 50 (P < 0.05). Subtelomeric deletion (4q35) was observed in one child.
Collapse
|
39
|
Abstract
Prader-Willi syndrome is characterized by severe infantile hypotonia with poor suck and failure to thrive; hypogonadism causing genital hypoplasia and pubertal insufficiency; characteristic facial features; early-childhood onset obesity and hyperphagia; developmental delay/mild intellectual disability; short stature; and a distinctive behavioral phenotype. Sleep abnormalities and scoliosis are common. Growth hormone insufficiency is frequent, and replacement therapy provides improvement in growth, body composition, and physical attributes. Management is otherwise largely supportive. Consensus clinical diagnostic criteria exist, but diagnosis should be confirmed through genetic testing. Prader-Willi syndrome is due to absence of paternally expressed imprinted genes at 15q11.2-q13 through paternal deletion of this region (65-75% of individuals), maternal uniparental disomy 15 (20-30%), or an imprinting defect (1-3%). Parent-specific DNA methylation analysis will detect >99% of individuals. However, additional genetic studies are necessary to identify the molecular class. There are multiple imprinted genes in this region, the loss of which contribute to the complete phenotype of Prader-Willi syndrome. However, absence of a small nucleolar organizing RNA gene, SNORD116, seems to reproduce many of the clinical features. Sibling recurrence risk is typically <1%, but higher risks may pertain in certain cases. Prenatal diagnosis is available.
Collapse
|
40
|
Xu H, Zhao Y, Liu Z, Zhu W, Zhou Y, Zhao Z. Bisulfite genomic sequencing of DNA from dried blood spot microvolume samples. Forensic Sci Int Genet 2011; 6:306-9. [PMID: 21737370 DOI: 10.1016/j.fsigen.2011.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 04/16/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
Abstract
DNA methylation is an important event in epigenetic changes in cells, and a fundamental regulator of gene transcription. Bisulfite genomic sequencing is a powerful technique used in studies of DNA methylation. However, the established procedures often require relatively large amounts of DNA. In everyday practice, samples submitted for analysis might contain very small amounts of poor quality material, as is often the case with forensic stain samples. In this study, we assess a modified, more efficient method of bisulfite genomic sequencing. Genomic DNA extracted from 3-mm dried blood spots using QIAamp micro kit was treated with sodium bisulfite (using EpiTect kit). Subsequent methylation-specific PCR (MSP) followed by DNA sequencing displayed the differentially methylated region of imprinted gene SNRPN. Our results show that this new combination of efficient DNA extraction and bisulfite treatment provides high quality conversion of unmethylated cytosine to uracil for bisulfite genomic sequencing analysis. This reliable method substantially improves the DNA methylation analysis of forensic stain samples.
Collapse
Affiliation(s)
- Hongmei Xu
- Department of Forensic Medicine, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
41
|
Establishment of the first WHO international genetic reference panel for Prader Willi and Angelman syndromes. Eur J Hum Genet 2011; 19:857-64. [PMID: 21587322 DOI: 10.1038/ejhg.2011.59] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Prader Willi and Angelman syndromes are clinically distinct genetic disorders both mapping to chromosome region 15q11-q13, which are caused by a loss of function of paternally or maternally inherited genes in the region, respectively. With clinical diagnosis often being difficult, particularly in infancy, confirmatory genetic diagnosis is essential to enable clinical intervention. However, the latter is challenged by the complex genetics behind both disorders and the unmet need for characterised reference materials to aid accurate molecular diagnosis. With this in mind, a panel of six genotyping reference materials for Prader Willi and Angelman syndromes was developed, which should be stable for many years and available to all diagnostic laboratories. The panel comprises three Prader Willi syndrome materials (two with different paternal deletions, and one with maternal uniparental disomy (UPD)) and three Angelman syndrome materials (one with a maternal deletion, one with paternal UPD or an epigenetic imprinting centre defect, and one with a UBE3A point mutation). Genomic DNA was bulk-extracted from Epstein-Barr virus-transformed lymphoblastoid cell lines established from consenting patients, and freeze-dried as aliquots in glass ampoules. In total, 37 laboratories from 26 countries participated in a collaborative study to assess the suitability of the panel. Participants evaluated the blinded, triplicate materials using their routine diagnostic methods against in-house controls or externally sourced uncertified reference materials. The panel was established by the Expert Committee on Biological Standardization of the World Health Organization as the first International Genetic Reference Panel for Prader Willi and Angelman syndromes.
Collapse
|
42
|
Eijk-Van Os PGC, Schouten JP. Multiplex Ligation-dependent Probe Amplification (MLPA®) for the detection of copy number variation in genomic sequences. Methods Mol Biol 2011; 688:97-126. [PMID: 20938835 DOI: 10.1007/978-1-60761-947-5_8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Multiplex Ligation-dependent Probe Amplification (MLPA®) is a high-throughput method developed to determine the copy number of up to 50 genomic DNA sequences in a single multiplex PCR-based reaction. MLPA is easy to perform, requires only 20 ng of sample DNA and can distinguish sequences differing in only a single nucleotide. The MLPA reaction results in a mixture of amplification fragments ranging between 100 and 500 nt in length which can be separated and quantified by capillary electrophoresis. The equipment necessary for MLPA is identical to that for performing standard sequencing reactions: a thermocycler and a fluorescent capillary electrophoresis system. Comparison of the peak pattern obtained on a DNA sample to that of a reference sample indicates which sequences show aberrant copy numbers.Fundamental for the MLPA technique is that it is not the sample DNA that is amplified during the PCR reaction, but MLPA probes that hybridise to the sample DNA. Each MLPA probe consists of two probe oligonucleotides, which should hybridise adjacent to the target DNA for a successful ligation. Only ligated probes can be exponentially amplified by PCR. In contrast to standard multiplex PCR, only one pair of PCR primers is used for the MLPA PCR reaction, resulting in a more robust system. This way, the relative number of fragments present after the PCR reaction depends on the relative amount of the target sequence present in a DNA sample.
Collapse
|
43
|
Moelans CB, de Weger RA, van Diest PJ. Amplification testing in breast cancer by multiplex ligation-dependent probe amplification of microdissected tissue. Methods Mol Biol 2011; 755:107-18. [PMID: 21761298 DOI: 10.1007/978-1-61779-163-5_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This chapter describes a method for the rapid assessment of gene copy numbers in laser-microdissected materials using multiplex ligation-dependent probe amplification (MLPA). An MLPA is a powerful multiplex PCR technique that can identify gains, amplification, or losses of up to 50 genes in a single experiment, thereby requiring only minute quantities of DNA extracted from frozen or paraffin-embedded materials. A previous study in breast cancer has shown that MLPA can detect amplifications in cases with a tumor percentage lower than 10%, but still a low tumor percentage in the tissue tested could obscure low levels of amplification due to dilution of the tumor cell population by normal cells. Laser capture microdissection allows enrichment of tumor cells by eliminating background noise from normal and preinvasive cells, thereby increasing specificity and sensitivity.This chapter describes a method for MLPA analysis using invasive breast tumor cells acquired by laser capture microdissection. This protocol can also be applied to MLPA analysis of preinvasive lesions and metastases.
Collapse
Affiliation(s)
- Cathy B Moelans
- Department of Pathology, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | | | | |
Collapse
|
44
|
Hermsen M, Coffa J, Ylstra B, Meijer G, Morreau H, van Eijk R, Oosting J, van Wezel T. High‐Resolution Analysis of Genomic Copy Number Changes. Genomics 2010. [DOI: 10.1002/9780470711675.ch1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Abstract
Angelman syndrome is characterized by severe developmental delay, speech impairment, gait ataxia and/or tremulousness of the limbs, and a unique behavioral phenotype that includes happy demeanor and excessive laughter. Microcephaly and seizures are common. Developmental delays are first noted at 3 to 6 months age, but the unique clinical features of the syndrome do not become manifest until after age 1 year. Management includes treatment of gastrointestinal symptoms, use of antiepileptic drugs for seizures, and provision of physical, occupational, and speech therapy with an emphasis on nonverbal methods of communication. The diagnosis rests on a combination of clinical criteria and molecular and/or cytogenetic testing. Analysis of parent-specific DNA methylation imprints in the 15q11.2-q13 chromosome region detects approximately 78% of individuals with lack of maternal contribution. Less than 1% of individuals have a visible chromosome rearrangement. UBE3A sequence analysis detects mutations in an additional 11% of individuals. The remaining 10% of individuals with classic phenotypic features of Angelman syndrome have a presently unidentified genetic mechanism and thus are not amenable to diagnostic testing. The risk to sibs of a proband depends on the genetic mechanism of the loss of the maternally contributed Angelman syndrome/Prader-Willi syndrome region: typically <1% for probands with a deletion or uniparental disomy; as high as 50% for probands with an imprinting defect or a mutation of UBE3A. Members of the mother's extended family are also at increased risk when an imprinting defect or a UBE3A mutation is present. Chromosome rearrangements may be inherited or de novo. Prenatal testing is possible for certain genetic mechanisms.
Collapse
|
46
|
|
47
|
Hoppman-Chaney NL, Dawson DB, Nguyen L, Sengupta S, Reynolds K, McPherson E, Velagaleti G. Partial hexasomy for the Prader-Willi-Angelman syndrome critical region due to a maternally inherited large supernumerary marker chromosome. Am J Med Genet A 2010; 152A:2034-8. [PMID: 20602489 DOI: 10.1002/ajmg.a.33483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Extra copies of the Prader-Willi-Angelman syndrome critical region (PWASCR) have been shown to have detrimental phenotypic effects depending on the parent of origin. Hexasomy for the PWASCR is rare; only 6 cases have been described to date. We report on a 15-year-old girl referred for developmental delay and seizures with a mosaic tricentric small marker chromosome (SMC) 15 identified by routine G-banding chromosome studies. C-banding and FISH confirmed the presence of three chromosome 15 centromeres as well as four copies of the PWASCR on the SMC in approximately 60% of interphase cells. Microsatellite genotyping documented maternal inheritance of the SMC, and methylation-sensitive multiplex ligation-dependent PCR amplification (MS-MLPA) showed that the extra copies of the PWASCR contained on the marker chromosome bear a methylation pattern similar to a normal maternal chromosome, implying maternal inheritance. These findings are consistent with the patient's phenotype as paternal inheritance of such a marker chromosome is thought to be benign. However, this patient's phenotype is the mildest described to date and may be a result of mosaicism for the SMC.
Collapse
|
48
|
Mao R, Chou LS. Methylation Analysis by Restriction Endonuclease Digestion and Real-Time PCR. Clin Chem 2010; 56:1050-2. [DOI: 10.1373/clinchem.2010.146654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rong Mao
- Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, UT
- ARUP Laboratories, Salt Lake City, UT
- Department of Pathology, University of Utah Health Science Center, Salt Lake City, UT
| | - Lan-Szu Chou
- Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, UT
| |
Collapse
|
49
|
von Kanel T, Gerber D, Schaller A, Baumer A, Wey E, Jackson CB, Gisler FM, Heinimann K, Gallati S. Quantitative 1-Step DNA Methylation Analysis with Native Genomic DNA as Template. Clin Chem 2010; 56:1098-106. [PMID: 20472822 DOI: 10.1373/clinchem.2009.142828] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: DNA methylation analysis currently requires complex multistep procedures based on bisulfite conversion of unmethylated cytosines or on methylation-sensitive endonucleases. To facilitate DNA methylation analysis, we have developed a quantitative 1-step assay for DNA methylation analysis.
Methods: The assay is based on combining methylation-sensitive FastDigest® endonuclease digestion and quantitative real-time PCR (qPCR) in a single reaction. The first step consists of DNA digestion, followed by endonuclease inactivation and qPCR. The degree of DNA methylation is evaluated by comparing the quantification cycles of a reaction containing a methylation-sensitive endonuclease with the reaction of a sham mixture containing no endonuclease. Control reactions interrogating an unmethylated locus allow the detection and correction of artifacts caused by endonuclease inhibitors, while simultaneously permitting copy number assessment of the locus of interest.
Results: With our novel approach, we correctly diagnosed the imprinting disorders Prader–Willi syndrome and Angelman syndrome in 35 individuals by measuring methylation levels and copy numbers for the SNRPN (small nuclear ribonucleoprotein polypeptide N) promoter. We also demonstrated that the proposed correction model significantly (P < 0.05) increases the assay’s accuracy with low-quality DNA, allowing analysis of DNA samples with decreased digestibility, as is often the case in retrospective studies.
Conclusions: Our novel DNA methylation assay reduces both the hands-on time and errors caused by handling and pipetting and allows methylation analyses to be completed within 90 min after DNA extraction. Combined with its precision and reliability, these features make the assay well suited for diagnostic procedures as well as high-throughput analyses.
Collapse
Affiliation(s)
- Thomas von Kanel
- Division of Human Genetics, Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Dominik Gerber
- Division of Human Genetics, Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - André Schaller
- Division of Human Genetics, Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Alessandra Baumer
- Institute for Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Eva Wey
- Institute for Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Christopher B Jackson
- Division of Human Genetics, Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Franziska M Gisler
- Division of Human Genetics, Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Karl Heinimann
- Division of Medical Genetics, University Children’s Hospital and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sabina Gallati
- Division of Human Genetics, Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
50
|
Alsum Z, Safieh LA, Nygren AO, Al-Hamed MA, Alkuraya FS. Methylation-Specific Multiplex-Ligation-Dependent Probe Amplification as a Rapid Molecular Diagnostic Tool for Pseudohypoparathyroidism Type 1b. Genet Test Mol Biomarkers 2010; 14:135-9. [DOI: 10.1089/gtmb.2009.0092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Zobaida Alsum
- Department of Pediatrics, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Leen Abu Safieh
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Mohammed A. Al-Hamed
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S. Alkuraya
- Department of Pediatrics, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|