1
|
Wang J, Lin F, Zhou Y, Cong Y, Yang S, Wang S, Guan X. Chemopreventive effect of modified zeng-sheng-ping on oral squamous cell carcinoma by regulating tumor associated macrophages through targeting tnf alpha induced protein 6. BMC Complement Med Ther 2024; 24:287. [PMID: 39068492 PMCID: PMC11283705 DOI: 10.1186/s12906-024-04593-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the most common malignancy of the head and neck. Zeng-Sheng-Ping, composed of Sophora tonkinensis Gagnep., Bistorta officinalis Delarbre, Sonchus arvensis L., Prunella vulgaris L., Dioscorea bulbifera L., and Dictamnus dasycarpus Turcz., was regarded as an anti-cancer drug with significant clinical efficacy, but was discontinued due to liver toxicity. Our research group developed a modified Zeng-Sheng-Ping (ZSP-M) based on original Zeng-Sheng-Ping that exhibited high efficiency and low toxicity in preliminary investigations, although its pharmacodynamic mechanism is still unclear. Here, we aimed to elucidate the pharmacodynamic material basis of ZSP-M and investigate its chemopreventive effect on OSCC by modulating tumor associated macrophages (TAMs). METHODS Components of ZSP-M were characterized using ultra-performance liquid chromatography-mass spectrometry. Chemopreventive effect induced by ZSP-M against experimental oral cancer was investigated using the 4-nitroquinoline N-oxide precancerous lesion mouse model. RNA sequencing analysis was used to gain a global transcriptional view of the effect of ZSP-M treatment. A cell co-culture model was used to study the targeted effect of ZSP-M on TAMs and the biological properties of OSCC cells and to detect changes in TAM phenotypes. The binding of ZSP-M active compounds to TNF alpha induced protein 6 (TNFAIP6) protein was analyzed by molecular docking and dynamic simulation. RESULTS Forty main components of ZSP-M were identified, the most abundant of which were flavonoids. ZSP-M inhibited the degree of epithelial dysplasia in precancerous lesions by inhibiting the expression of the TNFAIP6 and CD163 proteins in the precancerous lesions of the tongue. ZSP-M inhibited proliferation, colony formation, migration and invasion of SCC7 cells by targeting TAMs. ZSP-M reduced the expression of CD163+ cells, inhibited the expression of TNFAIP6 protein, Arg1 mRNA and Il10 mRNA in TAMs, and reduced IL-10 cytokine release in the co-culture environment. This effect was maintained after the addition of recombinant TNFAIP6 protein. Computer simulations showed that trifolirhizin and maackiain are well-connected to TNFAIP6. CONCLUSIONS ZSP-M counteracts the immunosuppressive action of TAMs by specific targeting of TNFAIP6, thereby exerting chemopreventive activity of OSCC.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Feiran Lin
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Yongxiang Zhou
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Yuyi Cong
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Sen Yang
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Sujuan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiaobing Guan
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
2
|
Li C, Wang Y, Gao S, Hu M, You M. The Chemoprevention Effects of Two Herbal Mixtures on Chemically Induced Lung Tumorigenesis in Mice. Pharmaceuticals (Basel) 2023; 16:1666. [PMID: 38139793 PMCID: PMC10748223 DOI: 10.3390/ph16121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/31/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Ruan Hua Tang (RHT) and Ruan Hua Fang (RHF) are two Chinese herbal mixtures that have been used in clinical cancer treatment for decades. This study validated our hypothesis that RHT and RHF can inhibit lung tumor development in the mouse model of Benzo(a)pyrene-induced lung tumorigenesis. An RHT oral solution was diluted to 9% and 18% in water. RHF was mixed into the diet at 15% and 30% of total food in the final doses. Two weeks after injecting BP into mice, we administered RHT and RHF for eighteen weeks. We found that 9% and 18% RHT reduced tumor multiplicity by 36.05% and 38.81% (both p < 0.05) and the tumor load by 27.13% and 55.94% (p < 0.05); 15% and 30% RHF inhibited tumor multiplicity by 12.75% and 39.84% (p < 0.01) and the tumor load by 18.38% and 61.68% (p < 0.05). Ki67 expressions in the 9% and 18% RHT groups were 19.55% and 11.51%, significantly lower than in the control (33.64%). The Ki67 levels in the 15% and 30% RHF groups were 15.56% and 14.04%, significantly lower than in the control (27.86%). Caspase 3 expressions in the 9% and 18% RHT groups were 5.24% and 7.32%, significantly higher than in the control (2.39%). Caspase 3 levels in the 15% and 30% RHF groups were 6.53% and 4.74%, significantly higher than in the control (2.07%). The bio-absorption was confirmed via a pharmacokinetic test. This study showed that RHT and RHF are safe and can inhibit lung tumor development, with anti-proliferative and pro-apoptotic effects.
Collapse
Affiliation(s)
- Chunjie Li
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Yian Wang
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Weill Cornell College of Medicine, Houston, TX 77030, USA;
| | - Song Gao
- Department of Pharmaceutical Science, College of Pharmacy and Health Science, Texas Southern University, Houston, TX 77004, USA
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| | - Ming You
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Weill Cornell College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
3
|
Koyande NP, Srivastava R, Padmakumar A, Rengan AK. Advances in Nanotechnology for Cancer Immunoprevention and Immunotherapy: A Review. Vaccines (Basel) 2022; 10:1727. [PMID: 36298592 PMCID: PMC9610880 DOI: 10.3390/vaccines10101727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 01/24/2023] Open
Abstract
One of the most effective cancer therapies, cancer immunotherapy has produced outstanding outcomes in the field of cancer treatment. However, the cost is excessive, which limits its applicability. A smart way to address this issue would be to apply the knowledge gained through immunotherapy to develop strategies for the immunoprevention of cancer. The use of cancer vaccines is one of the most popular methods of immunoprevention. This paper reviews the technologies and processes that support the advantages of cancer immunoprevention over traditional cancer immunotherapies. Nanoparticle drug delivery systems and nanoparticle-based nano-vaccines have been employed in the past for cancer immunotherapy. This paper outlines numerous immunoprevention strategies and how nanotechnology can be applied in immunoprevention. To comprehend the non-clinical and clinical evaluation of these cancer vaccines through clinical studies is essential for acceptance of the vaccines.
Collapse
Affiliation(s)
| | | | | | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| |
Collapse
|
4
|
Kobets T, Smith BPC, Williams GM. Food-Borne Chemical Carcinogens and the Evidence for Human Cancer Risk. Foods 2022; 11:2828. [PMID: 36140952 PMCID: PMC9497933 DOI: 10.3390/foods11182828] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Commonly consumed foods and beverages can contain chemicals with reported carcinogenic activity in rodent models. Moreover, exposures to some of these substances have been associated with increased cancer risks in humans. Food-borne carcinogens span a range of chemical classes and can arise from natural or anthropogenic sources, as well as form endogenously. Important considerations include the mechanism(s) of action (MoA), their relevance to human biology, and the level of exposure in diet. The MoAs of carcinogens have been classified as either DNA-reactive (genotoxic), involving covalent reaction with nuclear DNA, or epigenetic, involving molecular and cellular effects other than DNA reactivity. Carcinogens are generally present in food at low levels, resulting in low daily intakes, although there are some exceptions. Carcinogens of the DNA-reactive type produce effects at lower dosages than epigenetic carcinogens. Several food-related DNA-reactive carcinogens, including aflatoxins, aristolochic acid, benzene, benzo[a]pyrene and ethylene oxide, are recognized by the International Agency for Research on Cancer (IARC) as causes of human cancer. Of the epigenetic type, the only carcinogen considered to be associated with increased cancer in humans, although not from low-level food exposure, is dioxin (TCDD). Thus, DNA-reactive carcinogens in food represent a much greater risk than epigenetic carcinogens.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Benjamin P. C. Smith
- Future Ready Food Safety Hub, Nanyang Technological University, Singapore 639798, Singapore
| | - Gary M. Williams
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
5
|
Afroze N, Pramodh S, Shafarin J, Bajbouj K, Hamad M, Sundaram MK, Haque S, Hussain A. Fisetin Deters Cell Proliferation, Induces Apoptosis, Alleviates Oxidative Stress and Inflammation in Human Cancer Cells, HeLa. Int J Mol Sci 2022; 23:ijms23031707. [PMID: 35163629 PMCID: PMC8835995 DOI: 10.3390/ijms23031707] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Fisetin, a flavonol profusely found in vegetables and fruits, exhibited a myriad of properties in preclinical studies to impede cancer growth. Purpose: This study was proposed to delineate molecular mechanisms through analysing the modulated expression of various molecular targets in HeLa cells involved in proliferation, apoptosis and inflammation. Methods: MTT assay, flow cytometry, nuclear morphology, DNA fragmentation and Annexin–Pi were performed to evaluate the anti-cancer potential of fisetin. Furthermore, qPCR and proteome profiler were performed to analyse the expression of variety of gene related to cell death, cell proliferation, oxidative stress and inflammation and cancer pathways. Results: Fisetin demonstrated apoptotic inducing ability in HeLa cells, which was quite evident through nuclear morphology, DNA ladder pattern, decreased TMRE fluorescent intensity, cell cycle arrest at G2/M and increased early and late apoptosis. Furthermore, fisetin treatment modulated pro-apoptotic genes such as APAF1, Bad, Bax, Bid and BIK at both transcript and protein levels and anti-apoptotic gene Bcl-2, BIRC8, MCL-1, XIAP/BIRC4, Livin/BIRC7, clap-2/BIRC3, etc. at protein levels to mitigate cell proliferation and induce apoptosis. Interestingly, the aforementioned alterations consequently led to an elevated level of Caspase-3, Caspase-8 and Caspase-9, which was found to be consistent with the transcript and protein level expression. Moreover, fisetin downregulated the expression of AKT and MAPK pathways to avert proliferation and enhance apoptosis of cancer cells. Fisetin treatment also improves oxidative stress and alleviates inflammation by regulating JAK-STAT/NF-kB pathways. Conclusion: Together, these studies established that fisetin deters human cervical cancer cell proliferation, enhances apoptosis and ameliorates inflammation through regulating various signalling pathways that may be used as a therapeutic regime for better cancer management.
Collapse
Affiliation(s)
- Nazia Afroze
- School of Life Sciences, Manipal Academy of Higher Education-Dubai Campus, Dubai P.O. Box 345050, United Arab Emirates; (N.A.); (M.K.S.)
| | - Sreepoorna Pramodh
- Department of Life and Environmental Sciences, College of Natural and Health Science, Zayed University, Dubai P.O. Box 19282, United Arab Emirates;
| | - Jasmin Shafarin
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (J.S.); (K.B.); (M.H.)
| | - Khuloud Bajbouj
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (J.S.); (K.B.); (M.H.)
| | - Mawieh Hamad
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (J.S.); (K.B.); (M.H.)
| | - Madhumitha Kedhari Sundaram
- School of Life Sciences, Manipal Academy of Higher Education-Dubai Campus, Dubai P.O. Box 345050, United Arab Emirates; (N.A.); (M.K.S.)
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan P.O. Box 114, Saudi Arabia;
- Faculty of Medicine, Görükle Campus, Bursa Uludağ University, Nilüfer 16059, Turkey
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education-Dubai Campus, Dubai P.O. Box 345050, United Arab Emirates; (N.A.); (M.K.S.)
- Correspondence:
| |
Collapse
|
6
|
Pimiento JM, Kraemer WJ. Dudrick Research Symposium: Expanding the boundaries of cancer care through nutrition support. JPEN J Parenter Enteral Nutr 2021; 45:1683-1689. [PMID: 34633094 DOI: 10.1002/jpen.2275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The 2020 Dudrick Research Symposium, entitled "Expanding the Boundaries of Cancer Care Through Nutritional Support," was held on March 30, at the American Society for Parenteral and Enteral Nutrition (ASPEN), Nutrition Science & Practice Conference. It was scheduled to take place in Tampa, Florida, but had to be held virtually. The Dudrick Symposium honors the many pivotal and innovative contributions made by the late Dr Stanley J. Dudrick, physician scientist, academic leader, and a founding member of ASPEN. This year, in addition to honoring his legacy, we honored his life. As the 2019 recipient of the Dudrick Research Scholar Award, Dr Pimiento chaired the symposium. The presentations focused on discussing the history, the present and future frontiers in the overlapping fields of nutrition support and cancer care. The late Dr John Daly opened the presentation with a moving tribute to Dr Dudrick's life and then spoke about the impact of nutrition support on surgical care and outcomes for cancer patients. Dr Pimiento discussed the role of nutraceuticals for cancer chemoprevention, and the level 1 clinical evidence surrounding this topic. Dr Kraemer explored the role of exercise physiology for optimal nutrient utilization and the overlap between targeted physical activity and nutrition support to obtain better outcomes on the cancer population. The symposium was closed by Dr Stephen Hursting, who discussed the impact of obesity in the soaring cancer rates and its relationship with clinical outcomes. In this article, we cover the presentations by Drs Pimiento and Kraemer.
Collapse
Affiliation(s)
- Jose M Pimiento
- Gastrointestinal Oncology Program, Moffitt Cancer Center, Tampa, Florida, USA
| | - William J Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
7
|
George BP, Chandran R, Abrahamse H. Role of Phytochemicals in Cancer Chemoprevention: Insights. Antioxidants (Basel) 2021; 10:antiox10091455. [PMID: 34573087 PMCID: PMC8466984 DOI: 10.3390/antiox10091455] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer is a condition where the body cells multiply in an uncontrollable manner. Chemoprevention of cancer is a broad term that describes the involvement of external agents to slow down or suppress cancer growth. Synthetic and natural compounds are found useful in cancer chemoprevention. The occurrence of global cancer type varies, depending on many factors such as environmental, lifestyle, genetic etc. Cancer is often preventable in developed countries with advanced treatment modalities, whereas it is a painful death sentence in developing and low-income countries due to the lack of modern therapies and awareness. One best practice to identify cancer control measures is to study the origin and risk factors associated with common types. Based on these factors and the health status of patients, stage, and severity of cancer, type of treatment is decided. Even though there are well-established therapies, cancer still stands as one of the major causes of death and a public health burden globally. Research shows that most cancers can be prevented, treated, or the incidence can be delayed. Phytochemicals from various medicinal plants were reported to reduce various risk factors associated with different types of cancer through their chemopreventive role. This review highlights the role of bioactive compounds or natural products from plants in the chemoprevention of cancer. There are many plant based dietary factors involved in the chemoprevention process. The review discusses the process of carcinogenesis and chemoprevention using plants and phytocompounds, with special reference to five major chemopreventive phytocompounds. The article also summarizes the important chemopreventive mechanisms and signaling molecules involved in the process. Since the role of antioxidants in chemoprevention is inevitable, an insight into plant-based antioxidant compounds that fight against this dreadful disease at various stages of carcinogenesis and disease progression is discussed. This will fill the research gap in search of chemopreventive natural compounds and encourage scientists in clinical trials of anticancer agents from plants.
Collapse
|
8
|
Elmore LW, Greer SF, Daniels EC, Saxe CC, Melner MH, Krawiec GM, Cance WG, Phelps WC. Blueprint for cancer research: Critical gaps and opportunities. CA Cancer J Clin 2021; 71:107-139. [PMID: 33326126 DOI: 10.3322/caac.21652] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
We are experiencing a revolution in cancer. Advances in screening, targeted and immune therapies, big data, computational methodologies, and significant new knowledge of cancer biology are transforming the ways in which we prevent, detect, diagnose, treat, and survive cancer. These advances are enabling durable progress in the goal to achieve personalized cancer care. Despite these gains, more work is needed to develop better tools and strategies to limit cancer as a major health concern. One persistent gap is the inconsistent coordination among researchers and caregivers to implement evidence-based programs that rely on a fuller understanding of the molecular, cellular, and systems biology mechanisms underpinning different types of cancer. Here, the authors integrate conversations with over 90 leading cancer experts to highlight current challenges, encourage a robust and diverse national research portfolio, and capture timely opportunities to advance evidence-based approaches for all patients with cancer and for all communities.
Collapse
Affiliation(s)
- Lynne W Elmore
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Susanna F Greer
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Elvan C Daniels
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Charles C Saxe
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Michael H Melner
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Ginger M Krawiec
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - William G Cance
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - William C Phelps
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| |
Collapse
|
9
|
Raina R, Pramodh S, Rais N, Haque S, Shafarin J, Bajbouj K, Hamad M, Hussain A. Luteolin inhibits proliferation, triggers apoptosis and modulates Akt/mTOR and MAP kinase pathways in HeLa cells. Oncol Lett 2021; 21:192. [PMID: 33574931 PMCID: PMC7816384 DOI: 10.3892/ol.2021.12452] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Flavonoids, a subclass of polyphenols, have been shown to be effective against several types of cancer, by decreasing proliferation and inducing apoptosis. Therefore, the aim of the present study was to assess the anti-carcinogenic potential of luteolin on HeLa human cervical cancer cells, through the use of a cell viability assay, DNA fragmentation assay, mitochondrial membrane potential assay, cell cycle analysis using Annexin/PI staining and flow cytometry, gene expression analysis and a protein profiling array. Luteolin treatment exhibited cytotoxicity towards HeLa cells in a dose- and time-dependent manner, and its anti-proliferative properties were confirmed by accumulation of luteolin-treated cells in sub-G1 phases. Cytotoxicity induced by luteolin treatment resulted in apoptosis, which was mediated through depolarization of the mitochondrial membrane potential and DNA fragmentation. Furthermore, luteolin treatment increased the expression of various proapoptotic genes, including APAF1, BAX, BAD, BID, BOK, BAK1, TRADD, FADD, FAS, and Caspases 3 and 9, whereas the expression of anti-apoptotic genes, including NAIP, MCL-1 and BCL-2, was decreased. Cell cycle regulatory genes, including CCND1, 2 and 3, CCNE2, CDKN1A, CDKN2B, CDK4 and CDK2, were decreased following treatment. Expression of TRAILR2/DR5, TRAILR1/DR4, Fas/TNFRSF6/CD95 and TNFR1/TNFRSF1A, as well as pro-apoptotic proteins, including BAD, BAX and Cytochrome C were consistently increased, and the expression of antiapoptotic proteins, HIF1α, BCL-X, MCL1 and BCL2, were found to be decreased following treatment. Expression of AKT1 and 2, ELK1, PIK3C2A, PIK3C2B, MAPK14, MAP3K5, MAPK3 and MAPK1 was significantly decreased at the transcriptional level. Expression of GSK3b (p-ser9), PRAS 40 (p-Ther246), BAD (p-ser112), PTEN (p-ser380), AKT (p-ser473), ERK2 (p-Y185/Y187), RISK2 (p-ser386), P70S6k (p-Thr421/ser424), PDK1(p-ser241), ERK1 (p-T202/Y204) and MTOR (p-ser2448) was downregulated and expression of P53 (p-ser241) and P27(p-Thr198) was upregulated by luteolin in a dose-dependent manner, indicating its anti-proliferative and apoptosis enabling properties, and this may have been mediated via inhibition of the AKT and the MAPK pathways.
Collapse
Affiliation(s)
- Ritu Raina
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Sreepoorna Pramodh
- Department of Life and Environmental Sciences, College of Natural and Health Science, Zayed University, Dubai, United Arab Emirates
| | - Naushad Rais
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Jasmin Shafarin
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| |
Collapse
|
10
|
Di Sotto A, Mancinelli R, Gullì M, Eufemi M, Mammola CL, Mazzanti G, Di Giacomo S. Chemopreventive Potential of Caryophyllane Sesquiterpenes: An Overview of Preliminary Evidence. Cancers (Basel) 2020; 12:E3034. [PMID: 33081075 PMCID: PMC7603190 DOI: 10.3390/cancers12103034] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Chemoprevention is referred to as a strategy to inhibit, suppress, or reverse tumor development and progression in healthy people along with high-risk subjects and oncologic patients through using pharmacological or natural substances. Numerous phytochemicals have been widely described in the literature to possess chemopreventive properties, although their clinical usefulness remains to be defined. Among them, caryophyllane sesquiterpenes are natural compounds widely occurring in nature kingdoms, especially in plants, fungi, and marine environments. Several structures, characterized by a common caryophyllane skeleton with further rearrangements, have been identified, but those isolated from plant essential oils, including β-caryophyllene, β-caryophyllene oxide, α-humulene, and isocaryophyllene, have attracted the greatest pharmacological attention. Emerging evidence has outlined a complex polypharmacological profile of caryophyllane sesquiterpenes characterized by blocking, suppressing, chemosensitizing, and cytoprotective properties, which suggests a possible usefulness of these natural substances in cancer chemoprevention for both preventive and adjuvant purposes. In the present review, the scientific knowledge about the chemopreventive properties of caryophyllane sesquiterpenes and the mechanisms involved have been collected and discussed; moreover, possible structure-activity relationships have been highlighted. Although further high-quality studies are required, the promising preclinical findings and the safe pharmacological profile encourage further studies to define a clinical usefulness of caryophyllane sesquiterpenes in primary, secondary, or tertiary chemoprevention.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (M.G.); (S.D.G.)
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (R.M.); (C.L.M.)
| | - Marco Gullì
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (M.G.); (S.D.G.)
| | - Margherita Eufemi
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Caterina Loredana Mammola
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (R.M.); (C.L.M.)
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (M.G.); (S.D.G.)
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (M.G.); (S.D.G.)
| |
Collapse
|
11
|
Soori M, Platz EA, Kanarek N. Inclusion of Evidence-Based Breast Cancer Control Recommendations and Guidelines in State Comprehensive Cancer Control Plans. Prev Chronic Dis 2020; 17:E129. [PMID: 33059794 PMCID: PMC7587302 DOI: 10.5888/pcd17.200046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Each US state, territory, and tribe/tribal organization is supported by the Centers for Disease Control and Prevention to develop and implement a comprehensive cancer control (CCC) plan. The objective of this study was to inform areas for improvement of those plans. METHODS To show how CCC plans can be improved, we used the example of breast cancer, which has a long public health history and an established, broad spectrum of prevention and control activities. We evaluated the inclusion of evidence-based breast cancer prevention topics as provided by guidelines from the Centers for Disease Control and Prevention (CDC) and recommendations of the US Preventive Services Task Force (USPSTF) in each state's CCC plan. From January through March 2019, we downloaded CCC plans from each state and the District of Columbia and abstracted and quantified the content of plans for 1) discussion of data on breast cancer mortality, breast cancer incidence, uptake of mammography; 2) statement of objective to reduce the burden of breast cancer; and 3) review of CDC guidelines and USPSTF recommendations. RESULTS The discussion of breast cancer-relevant topics and specification of objectives was incomplete. Of 51 plans, data on breast cancer mortality and incidence and uptake of mammography were reported in 53% (n = 27) to 76% (n = 39) of plans. CDC and USPSTF recommendations for breast cancer-specific interventions were discussed in only 6% (n = 3) to 37% (n = 19) of plans. Discussion of general cancer prevention topics relevant to breast cancer ranged from 10% (n = 5) to 61% (n = 31) of plans. CONCLUSION Our findings inform areas for quality improvement of state CCC plans and may contribute to other areas of public health planning.
Collapse
Affiliation(s)
- Mehrnoosh Soori
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Norma Kanarek
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- 615 North Wolf St, Baltimore, MD 21205.
| |
Collapse
|
12
|
Rezvani V, Pourianfar HR, Mohammadnejad S, Madjid Ansari A, Farahmand L. Anticancer potentiality and mode of action of low-carbohydrate proteins and peptides from mushrooms. Appl Microbiol Biotechnol 2020; 104:6855-6871. [PMID: 32556413 DOI: 10.1007/s00253-020-10707-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/20/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023]
Abstract
Severe side effects of chemotherapy as well as drug resistance highlight the ongoing need to discover novel natural bioactive compounds with anticancer potentiality. Mushroom-derived proteins are among the naturally occurring compounds that have been the subject of a body of research on their potentiality in cancer therapy. The greatest attention in relevant review articles has been paid to well-known mushroom-derived glycoproteins such as lectins and protein-bound polysaccharide complexes such as polysaccharide-K (PSK) or krestin and polysaccharopeptide (PSP), which contain substantial amounts of carbohydrates (50-90%). These complex compounds exert their anticancer activity mainly by binding to cell membranes leading to extrinsic (death receptor) apoptosis or intrinsic (mitochondrial) apoptotic pathways. However, several other research studies have reported pure, well-characterized, proteins or peptides from mushrooms, which are carbohydrate-free or have very low amounts of carbohydrate. These proteins may fall into four categories including fungal immunomodulatory proteins, ubiquitin-like proteins, enzymes, and unclassified proteins. Well-defined chemical structure, elucidated full amino acid or N-terminal sequences, purity, and having some distinct and specific pathways compared to glycoproteins have made these low-carbohydrate proteins attractive for cancer research. The aim of this review was therefore to improve the current understanding of mushroom-derived low-carbohydrate proteins and to consolidate the existing knowledge of the most promising mushroom species from which low-carbohydrate proteins have been derived, characterized, and examined for their anticancer activity. In addition, molecular targets and mechanisms of action of these proteins have been discussed. Key points • Mushroom-derived low-carbohydrate proteins lack or have low carbohydrate. • Low-carbohydrate proteins show potent anticancer activities in vitro and in vivo. • There are specific pathways for low-carbohydrate proteins to inhibit cancer cells.
Collapse
Affiliation(s)
- Vala Rezvani
- Industrial Fungi Biotechnology Research Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, P.O. Box 91775-1376, Mashhad, Iran
| | - Hamid R Pourianfar
- Industrial Fungi Biotechnology Research Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, P.O. Box 91775-1376, Mashhad, Iran.
| | - Safoora Mohammadnejad
- Industrial Fungi Biotechnology Research Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, P.O. Box 91775-1376, Mashhad, Iran
| | - Alireza Madjid Ansari
- Integrative Oncology Department, Breast Cancer Research Center, Moatamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Moatamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
13
|
Koklesova L, Liskova A, Samec M, Qaradakhi T, Zulli A, Smejkal K, Kajo K, Jakubikova J, Behzadi P, Pec M, Zubor P, Biringer K, Kwon TK, Büsselberg D, Sarria GR, Giordano FA, Golubnitschaja O, Kubatka P. Genoprotective activities of plant natural substances in cancer and chemopreventive strategies in the context of 3P medicine. EPMA J 2020; 11:261-287. [PMID: 32547652 PMCID: PMC7272522 DOI: 10.1007/s13167-020-00210-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022]
Abstract
Severe durable changes may occur to the DNA structure caused by exogenous and endogenous risk factors initiating the process of carcinogenesis. By evidence, a large portion of malignancies have been demonstrated as being preventable. Moreover, the targeted prevention of cancer onset is possible, due to unique properties of plant bioactive compounds. Although genoprotective effects of phytochemicals have been well documented, there is an evident lack of articles which would systematically present the spectrum of anticancer effects by phytochemicals, plant extracts, and plant-derived diet applicable to stratified patient groups at the level of targeted primary (cancer development) and secondary (cancer progression and metastatic disease) prevention. Consequently, clinical implementation of knowledge accumulated in the area is still highly restricted. To stimulate coherent co-development of the dedicated plant bioactive compound investigation on one hand and comprehensive cancer preventive strategies on the other hand, the current paper highlights and deeply analyses relevant evidence available in the area. Key molecular mechanisms are presented to detail genoprotective and anticancer activities of plants and phytochemicals. Clinical implementation is discussed. Based on the presented evidence, advanced chemopreventive strategies in the context of 3P medicine are considered.
Collapse
Affiliation(s)
- Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Tawar Qaradakhi
- Institute for Health and Sport, Victoria University, Melbourne, VIC Australia
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC Australia
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, 612 42 Brno, Czech Republic
| | - Karol Kajo
- Department of Pathology, St. Elisabeth Oncology Institute, 812 50 Bratislava, Slovakia
- Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Jana Jakubikova
- Biomedical Research Center SAS, Cancer Research Institute, Bratislava, Slovakia
| | - Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Pavol Zubor
- Department of Gynecologic Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- OBGY Health & Care, Ltd., 01001 Zilina, Slovakia
| | - Kamil Biringer
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Taeg Kyu Kwon
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu, 42601 Korea
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar
| | - Gustavo R. Sarria
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
14
|
Desai P, Thumma NJ, Wagh PR, Zhan S, Ann D, Wang J, Prabhu S. Cancer Chemoprevention Using Nanotechnology-Based Approaches. Front Pharmacol 2020; 11:323. [PMID: 32317961 PMCID: PMC7146461 DOI: 10.3389/fphar.2020.00323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/05/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer research in pursuit of better diagnostic and treatment modalities has seen great advances in recent years. However, the incidence rate of cancer is still very high. Almost 40% of women and men are diagnosed with cancer during their lifetime. Such high incidence has not only resulted in high mortality but also severely compromised patient lifestyles, and added a great socioeconomic burden. In view of this, chemoprevention has gained wide attention as a method to reduce cancer incidence and its relapse after treatment. Among various stems of chemoprevention research, nanotechnology-based chemoprevention approaches have established their potential to offer better efficacy and safety. This review summarizes recent advances in nanotechnology-based chemoprevention strategies for various cancers with emphasis on lung and bronchial cancer, colorectal, pancreatic, and breast cancer and highlights the unmet needs in this developing field towards successful clinical translation.
Collapse
Affiliation(s)
- Preshita Desai
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Naga Jyothi Thumma
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Pushkaraj Rajendra Wagh
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Shuyu Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China
| | - David Ann
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Jeffrey Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - Sunil Prabhu
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
15
|
Desai P, Thakkar A, Ann D, Wang J, Prabhu S. Loratadine self-microemulsifying drug delivery systems (SMEDDS) in combination with sulforaphane for the synergistic chemoprevention of pancreatic cancer. Drug Deliv Transl Res 2019; 9:641-651. [PMID: 30706304 PMCID: PMC6827432 DOI: 10.1007/s13346-019-00619-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pancreatic cancer (PC), currently the third leading cause of cancer-related deaths in the USA, is projected to become the second leading cause, behind lung cancer, by 2020. The increasing incidence, low survival rate, and limited treatment opportunities necessitate the use of alternative approaches such as chemoprevention, to tackle PC. In this study, we report significant synergistic chemoprevention efficacy for the first time from a low-dose combination of a classical antihistaminic drug, Loratadine (LOR) and a neutraceutical compound, Sulforaphane (SFN) using a self-microemulsifying drug delivery system (SMEDDS) formulation. The formulation was developed using Quality by Design approach (globule size, 95.13 ± 7.9 nm; PDI, 0.17 ± 0.04) and revealed significant (p < 0.05) enhancement in the in vitro dissolution profile confirming the enhanced solubility of BCS class II drug LOR with SMEDDS formulation. The LOR-SFN combination revealed ~ 40-fold reduction in IC50 concentration compared to LOR alone in MIA PaCa-2 and Panc-1 cell lines respectively, confirming the synergistic enhancement in chemoprevention. Further, the nanoformulation resulted in ~ 7-fold and ~ 11-fold reduction in IC50 values compared to LOR-SFN combination. Hence, our studies successfully demonstrate that a unique low-dose combination of LOR encapsulated within SMEDDs with SFN shows significantly enhanced chemopreventive efficacy of PC.
Collapse
Affiliation(s)
- Preshita Desai
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Arvind Thakkar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME, 04103, USA
| | - David Ann
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Jeffrey Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Sunil Prabhu
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, 91766, USA.
| |
Collapse
|
16
|
Rigby C, Deep G, Jain A, Orlicky DJ, Agarwal C, Agarwal R. Silibinin inhibits ultraviolet B radiation-induced mast cells recruitment and bone morphogenetic protein 2 expression in the skin at early stages in Ptch(+/-) mouse model of basal cell carcinoma. Mol Carcinog 2019; 58:1260-1271. [PMID: 30912211 DOI: 10.1002/mc.23008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/14/2022]
Abstract
Around 80% of nonmelanoma skin cancers (NMSCs) are basal cell carcinoma (BCC), still studies evaluating the efficacy of chemopreventive agents during early stage/s of BCC development are lacking. Accordingly, utilizing the well-established patched (Ptch)+/- mouse model of ultraviolet B (UVB) radiation-induced BCC formation, we excised skin samples from UVB exposed Ptch+/- and Ptch+/+ mice before tumor formation to study the promotion/progression of BCC and to determine the efficacy and target/s of silibinin, a well-known skin cancer chemopreventive agent. UVB exposure for 1 month increased the number of mast cells in Ptch+/- mice by ~48% (P < 0.05), which was completely inhibited by silibinin. Polymerase chain reaction profiler array analysis of skin samples showed strong molecular differences between Ptch+/+ and Ptch+/- mice which were either unexposed or UVB irradiated+/- silibinin treatment. Most notably, silibinin treatment significant decreased the expression of BMP-2, Bbc3, PUMA, and Ccnd1 in Ptch+/- mice irradiated with silibinin + UVB. Additional studies showed that silibinin targets UVB-induced expression of bone morphogenetic protein 2 (BMP-2) in Ptch+/- mouse skin. Last, our studies found that silibinin strongly attenuates UVB-induced BMP-2 expression and DNA damage in Ptch+/- mouse skin ex vivo only after single UVB exposure. Together, our results suggest a possible role of mast cell recruitment and BMP-2 activation in the early stages of BCC development; these are strongly inhibited by silibinin suggesting its possible chemopreventive efficacy against BCC formation in long-term UVB exposure regimen.
Collapse
Affiliation(s)
- Cindy Rigby
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Anil Jain
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - David J Orlicky
- Department of Pathology, University of Colorado Cancer Center and University of Colorado Denver, Aurora, Colorado
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado.,University of Colorado Cancer Center and University of Colorado Denver, Aurora, Colorado
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado.,University of Colorado Cancer Center and University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
17
|
de Melo FHM, Oliveira JS, Sartorelli VOB, Montor WR. Cancer Chemoprevention: Classic and Epigenetic Mechanisms Inhibiting Tumorigenesis. What Have We Learned So Far? Front Oncol 2018; 8:644. [PMID: 30627525 PMCID: PMC6309127 DOI: 10.3389/fonc.2018.00644] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/07/2018] [Indexed: 12/21/2022] Open
Abstract
Cancers derive from step by step processes which are differentiated by the progressively accumulated mutations. For some tumors there is a clear progressive advancement from benign lesions to malignancy and for these, preventive screening programs exist. In such cases having those benign lesions are a clear indicator of predisposition while for some other cases, familial patterns of cancer incidence and the identification of mutations are the main indicators of higher risk for having the disease. For patients identified as having predisposition, chemoprevention is a goal and in some cases a possibility. Chemoprevention is the use of any compound, either natural or synthetic that abrogates carcinogenesis or tumor progression, through different mechanisms, some of which have already been described. For example, the classic mechanisms may involve activation of free radical scavenging enzymes, control of chronic inflammation, and downregulation of specific signaling pathways. More recently, epigenetics allowed further understanding of the chemopreventive potential of several agents, such as sulforaphane, green tea derived compounds, resveratrol, isoflavones, and others which we exploit in this review article. Throughout the text we discuss the properties compounds should have in order to be classified as chemopreventive ones and the challenges in translational research in this area, as lots of the success achieved in vitro cannot be translated into the clinical settings, due to several different drawbacks, which include toxicity, cost, dose definition, patient adherence, and regimen of use.
Collapse
Affiliation(s)
| | - Julia Salles Oliveira
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), São Paulo, Brazil
| | | | - Wagner Ricardo Montor
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), São Paulo, Brazil
| |
Collapse
|
18
|
Rezaeian S, Pourianfar HR. A comparative study on cytotoxicity and antiproliferative activities of crude extracts and fractions from Iranian wild-growing and cultivated Agaricus spp. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9854-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Axelrod DE, Bravo R. Chemoprevention of colon cancer: advantage of intermittent pulse treatment schedules quantified by computer simulation of human colon crypts. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [DOI: 10.1088/2057-1739/aa82e6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Todd DW, Philip RC, Niihori M, Ringle RA, Coyle KR, Zehri SF, Zabala L, Mudery JA, Francis RH, Rodriguez JJ, Jacob A. A Fully Automated High-Throughput Zebrafish Behavioral Ototoxicity Assay. Zebrafish 2017; 14:331-342. [PMID: 28520533 DOI: 10.1089/zeb.2016.1412] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Zebrafish animal models lend themselves to behavioral assays that can facilitate rapid screening of ototoxic, otoprotective, and otoregenerative drugs. Structurally similar to human inner ear hair cells, the mechanosensory hair cells on their lateral line allow the zebrafish to sense water flow and orient head-to-current in a behavior called rheotaxis. This rheotaxis behavior deteriorates in a dose-dependent manner with increased exposure to the ototoxin cisplatin, thereby establishing itself as an excellent biomarker for anatomic damage to lateral line hair cells. Building on work by our group and others, we have built a new, fully automated high-throughput behavioral assay system that uses automated image analysis techniques to quantify rheotaxis behavior. This novel system consists of a custom-designed swimming apparatus and imaging system consisting of network-controlled Raspberry Pi microcomputers capturing infrared video. Automated analysis techniques detect individual zebrafish, compute their orientation, and quantify the rheotaxis behavior of a zebrafish test population, producing a powerful, high-throughput behavioral assay. Using our fully automated biological assay to test a standardized ototoxic dose of cisplatin against varying doses of compounds that protect or regenerate hair cells may facilitate rapid translation of candidate drugs into preclinical mammalian models of hearing loss.
Collapse
Affiliation(s)
- Douglas W Todd
- 1 Department of Electrical and Computer Engineering, The University of Arizona , Tucson, Arizona
| | - Rohit C Philip
- 1 Department of Electrical and Computer Engineering, The University of Arizona , Tucson, Arizona
| | - Maki Niihori
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona.,3 The University of Arizona Cancer Center , Tucson, Arizona
| | - Ryan A Ringle
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona
| | - Kelsey R Coyle
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona
| | - Sobia F Zehri
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona
| | - Leanne Zabala
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona.,4 College of Medicine, The University of Arizona , Tucson, Arizona
| | - Jordan A Mudery
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona.,4 College of Medicine, The University of Arizona , Tucson, Arizona
| | - Ross H Francis
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona.,4 College of Medicine, The University of Arizona , Tucson, Arizona
| | - Jeffrey J Rodriguez
- 1 Department of Electrical and Computer Engineering, The University of Arizona , Tucson, Arizona
| | - Abraham Jacob
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona.,3 The University of Arizona Cancer Center , Tucson, Arizona.,5 BIO5 Institute, The University of Arizona , Tucson, Arizona.,6 Ear & Hearing, Center for Neurosciences , Tucson, Arizona
| |
Collapse
|
21
|
Cai H, Scott E, Kholghi A, Andreadi C, Rufini A, Karmokar A, Britton RG, Horner-Glister E, Greaves P, Jawad D, James M, Howells L, Ognibene T, Malfatti M, Goldring C, Kitteringham N, Walsh J, Viskaduraki M, West K, Miller A, Hemingway D, Steward WP, Gescher AJ, Brown K. Cancer chemoprevention: Evidence of a nonlinear dose response for the protective effects of resveratrol in humans and mice. Sci Transl Med 2016. [PMID: 26223300 DOI: 10.1126/scitranslmed.aaa7619] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Resveratrol is widely promoted as a potential cancer chemopreventive agent, but a lack of information on the optimal dose prohibits rationally designed trials to assess efficacy. To challenge the assumption that "more is better," we compared the pharmacokinetics and activity of a dietary dose with an intake 200 times higher. The dose-response relationship for concentrations generated and the metabolite profile of [(14)C]-resveratrol in colorectal tissue of cancer patients helped us to define clinically achievable levels. In Apc(Min) mice (a model of colorectal carcinogenesis) that received a high-fat diet, the low resveratrol dose suppressed intestinal adenoma development more potently than did the higher dose. Efficacy correlated with activation of adenosine monophosphate-activated protein kinase (AMPK) and increased expression of the senescence marker p21. Nonlinear dose responses were observed for AMPK and mechanistic target of rapamycin (mTOR) signaling in mouse adenoma cells, culminating in autophagy and senescence. In human colorectal tissues exposed to low dietary concentrations of resveratrol ex vivo, we measured enhanced AMPK phosphorylation and autophagy. The expression of the cytoprotective NAD(P)H dehydrogenase, quinone 1 (NQO1) enzyme was also increased in tissues from cancer patients participating in our [(14)C]-resveratrol trial. These findings warrant a revision of developmental strategies for diet-derived agents designed to achieve cancer chemoprevention.
Collapse
Affiliation(s)
- Hong Cai
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Edwina Scott
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Abeer Kholghi
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Catherine Andreadi
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Alessandro Rufini
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Ankur Karmokar
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Robert G Britton
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Emma Horner-Glister
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Peter Greaves
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Dhafer Jawad
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Mark James
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Lynne Howells
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Ted Ognibene
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94551, USA
| | - Michael Malfatti
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94551, USA
| | - Christopher Goldring
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, UK
| | - Neil Kitteringham
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, UK
| | - Joanne Walsh
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, UK
| | - Maria Viskaduraki
- Bioinformatics and Biostatistics Support Hub, University of Leicester, Maurice Shock Building, Leicester LE1 9HN, UK
| | - Kevin West
- University Hospitals of Leicester NHS Trust, Leicester LE1 5WW, UK
| | - Andrew Miller
- University Hospitals of Leicester NHS Trust, Leicester LE1 5WW, UK
| | - David Hemingway
- University Hospitals of Leicester NHS Trust, Leicester LE1 5WW, UK
| | - William P Steward
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Andreas J Gescher
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Karen Brown
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK.
| |
Collapse
|
22
|
Evidence supporting the conceptual framework of cancer chemoprevention in canines. Sci Rep 2016; 6:26500. [PMID: 27216246 PMCID: PMC4877707 DOI: 10.1038/srep26500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/05/2016] [Indexed: 11/08/2022] Open
Abstract
As with human beings, dogs suffer from the consequences of cancer. We investigated the potential of a formulation comprised of resveratrol, ellagic acid, genistein, curcumin and quercetin to modulate biomarkers indicative of disease prevention. Dog biscuits were evaluated for palatability and ability to deliver the chemopreventive agents. The extent of endogenous DNA damage in peripheral blood lymphocytes from dogs given the dietary supplement or placebo showed no change. However, H2O2-inducible DNA damage was significantly decreased after consumption of the supplement. The expression of 11 of 84 genes related to oxidative stress was altered. Hematological parameters remained in the reference range. The concept of chemoprevention for the explicit benefit of the canine is compelling since dogs are an important part of our culture. Our results establish a proof-of-principle and provide a framework for improving the health and well-being of “man’s best friend”.
Collapse
|
23
|
Khoogar R, Kim BC, Morris J, Wargovich MJ. Chemoprevention in gastrointestinal physiology and disease. Targeting the progression of cancer with natural products: a focus on gastrointestinal cancer. Am J Physiol Gastrointest Liver Physiol 2016; 310:G629-44. [PMID: 26893159 PMCID: PMC4867331 DOI: 10.1152/ajpgi.00201.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 02/11/2016] [Indexed: 01/31/2023]
Abstract
The last decade has witnessed remarkable progress in the utilization of natural products for the prevention and treatment of human cancer. Many agents now in the pipeline for clinical trial testing have evolved from our understanding of how human nutritional patterns account for widespread differences in cancer risk. In this review, we have focused on many of these promising agents arguing that they may provide a new strategy for cancer control: natural products once thought to be only preventive in their mode of action now are being explored for efficacy in tandem with cancer therapeutics. Natural products may reduce off-target toxicity of therapeutics while making cancers more amenable to therapy. On the horizon is the use of certain natural products, in their own right, as mitigants of late-stage cancer, a new frontier for small-molecule natural product drug discovery.
Collapse
Affiliation(s)
- Roxane Khoogar
- 1Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| | - Byung-Chang Kim
- 2Center for Colorectal Center, Center for Cancer Prevention and Detection, Research Institute and Hospital, National Cancer Center, Ilsan-ro, Illsandong-gu, Goyang-si Gyeonggi-do, Republic of Korea
| | - Jay Morris
- 1Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| | - Michael J. Wargovich
- 1Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| |
Collapse
|
24
|
Maru GB, Hudlikar RR, Kumar G, Gandhi K, Mahimkar MB. Understanding the molecular mechanisms of cancer prevention by dietary phytochemicals: From experimental models to clinical trials. World J Biol Chem 2016; 7:88-99. [PMID: 26981198 PMCID: PMC4768127 DOI: 10.4331/wjbc.v7.i1.88] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/04/2015] [Accepted: 11/25/2015] [Indexed: 02/05/2023] Open
Abstract
Chemoprevention is one of the cancer prevention approaches wherein natural/synthetic agent(s) are prescribed with the aim to delay or disrupt multiple pathways and processes involved at multiple steps, i.e., initiation, promotion, and progression of cancer. Amongst environmental chemopreventive compounds, diet/beverage-derived components are under evaluation, because of their long history of exposure to humans, high tolerability, low toxicity, and reported biological activities. This compilation briefly covers and compares the available evidence on chemopreventive efficacy and probable mechanism of chemoprevention by selected dietary phytochemicals (capsaicin, curcumin, diallyl sulphide, genistein, green/black tea polyphenols, indoles, lycopene, phenethyl isocyanate, resveratrol, retinoids and tocopherols) in experimental systems and clinical trials. All the dietary phytochemicals covered in this review have demonstrated chemopreventive efficacy against spontaneous or carcinogen-induced experimental tumors and/or associated biomarkers and processes in rodents at several organ sites. The observed anti-initiating, anti-promoting and anti-progression activity of dietary phytochemicals in carcinogen-induced experimental models involve phytochemical-mediated redox changes, modulation of enzymes and signaling kinases resulting to effects on multiple genes and cell signaling pathways. Results from clinical trials using these compounds have not shown them to be chemopreventive. This may be due to our: (1) inability to reproduce the exposure conditions, i.e., levels, complexity, other host and lifestyle factors; and (2) lack of understanding about the mechanisms of action and agent-mediated toxicity in several organs and physiological processes in the host. Current research efforts in addressing the issues of exposure conditions, bioavailability, toxicity and the mode of action of dietary phytochemicals may help address the reason for observed mismatch that may ultimately lead to identification of new chemopreventive agents for protection against broad spectrum of exposures.
Collapse
|
25
|
Morris J, Fang Y, De Mukhopdhyay K, Wargovich MJ. Natural Agents Used in Chemoprevention of Aerodigestive and GI Cancers. ACTA ACUST UNITED AC 2016; 2:11-20. [PMID: 27134816 DOI: 10.1007/s40495-016-0047-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aerodigestive cancers are on an increasing level in both occurrence and mortality. A major cause in many of these cancers is disruption of the inflammatory pathway, leading to increased cell proliferation, and epigenetic silencing of normal regulatory genes. Here we review the research on several natural products: silibinin, silymarin, quercetin, neem & nimbolide, gingerol, epigallatecatechin-3- gallate, curcumin, genistein and resveratrol conducted on aerodigestive cancers. These types of cancers are primarily those from oral cavity, esophagus/windpipe, stomach, small and large intestine, colon/rectum and bile/pancreas tissues. We report on the utilization in vivo and in vitro systems to research these dose effects on the inflammatory and epigenetic pathway components within the aerodigestive cancer. To follow up on the basic research we will discuss remaining research questions and future directions involving these natural products as putative stand alone or in combination with clinical agents.
Collapse
Affiliation(s)
- Jay Morris
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Yuan Fang
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Keya De Mukhopdhyay
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Michael J Wargovich
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| |
Collapse
|
26
|
Roeser JC, Leach SD, McAllister F. Emerging strategies for cancer immunoprevention. Oncogene 2015; 34:6029-39. [PMID: 26364615 PMCID: PMC11073473 DOI: 10.1038/onc.2015.98] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 12/13/2022]
Abstract
The crucial role of the immune system in the formation and progression of tumors has been widely accepted. On one hand, the surveillance role of the immune system plays an important role in endogenous tumor prevention, but on the other hand, in some special circumstances such as in chronic inflammation, the immune system can actually contribute to the formation and progression of tumors. In recent years, there has been an explosion of novel targeted immunotherapies for advanced cancers. In the present manuscript, we explore known and potential various types of cancer prevention strategies and focus on nonvaccine-based cancer preventive strategies targeting the immune system at the early stages of tumorigenesis.
Collapse
Affiliation(s)
| | - Steven D. Leach
- The David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Florencia McAllister
- Department of Clinical Cancer Prevention. The University of Texas MD Anderson Cancer Center. Houston, TX
| |
Collapse
|
27
|
Friis S, Kesminiene A, Espina C, Auvinen A, Straif K, Schüz J. European Code against Cancer 4th Edition: Medical exposures, including hormone therapy, and cancer. Cancer Epidemiol 2015; 39 Suppl 1:S107-19. [PMID: 26390952 DOI: 10.1016/j.canep.2015.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/27/2015] [Accepted: 08/06/2015] [Indexed: 12/13/2022]
Abstract
The 4th edition of the European Code against Cancer recommends limiting - or avoiding when possible - the use of hormone replacement therapy (HRT) because of the increased risk of cancer, nevertheless acknowledging that prescription of HRT may be indicated under certain medical conditions. Current evidence shows that HRT, generally prescribed as menopausal hormone therapy, is associated with an increased risk of cancers of the breast, endometrium, and ovary, with the risk pattern depending on factors such as the type of therapy (oestrogen-only or combined oestrogen-progestogen), duration of treatment, and initiation according to the time of menopause. Carcinogenicity has also been established for anti-neoplastic agents used in cancer therapy, immunosuppressants, oestrogen-progestogen contraceptives, and tamoxifen. Medical use of ionising radiation, an established carcinogen, can provide major health benefits; however, prudent practices need to be in place, with procedures and techniques providing the needed diagnostic information or therapeutic gain with the lowest possible radiation exposure. For pharmaceutical drugs and medical radiation exposure with convincing evidence on their carcinogenicity, health benefits have to be balanced against the risks; potential increases in long-term cancer risk should be considered in the context of the often substantial and immediate health benefits from diagnosis and/or treatment. Thus, apart from HRT, no general recommendations on reducing cancer risk were given for carcinogenic drugs and medical radiation in the 4th edition of European Code against Cancer. It is crucial that the application of these measures relies on medical expertise and thorough benefit-risk evaluation. This also pertains to cancer-preventive drugs, and self-medication with aspirin or other potential chemopreventive drugs is strongly discouraged because of the possibility of serious, potentially lethal, adverse events.
Collapse
Affiliation(s)
- Søren Friis
- Danish Cancer Society Research Center, Danish Cancer Society, Strandboulevarden 49, 2100 Copenhagen, Denmark; Department of Public Health, University of Copenhagen, 2100 Copenhagen, and Department of Clinical Epidemiology, Faculty of Health, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Ausrele Kesminiene
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France
| | - Carolina Espina
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France
| | - Anssi Auvinen
- School of Health Sciences, University of Tampere, FI-33014 Tampere, Finland; STUK-Radiation and Nuclear Safety Authority, Research and Environmental Surveillance, FI-00881 Helsinki, Finland
| | - Kurt Straif
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France
| | - Joachim Schüz
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon, France.
| |
Collapse
|
28
|
Brown K, Rufini A. New concepts and challenges in the clinical translation of cancer preventive therapies: the role of pharmacodynamic biomarkers. Ecancermedicalscience 2015; 9:601. [PMID: 26635905 PMCID: PMC4664507 DOI: 10.3332/ecancer.2015.601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Indexed: 02/06/2023] Open
Abstract
Implementation of therapeutic cancer prevention strategies has enormous potential for reducing cancer incidence and related mortality. Trials of drugs including tamoxifen and aspirin have led the way in demonstrating proof-of-principle that prevention of breast and colorectal cancer is feasible. Many other compounds ranging from drugs in widespread use for various indications, including metformin, bisphosphonates, and vitamin D, to dietary agents such as the phytochemicals resveratrol and curcumin, show preventive activity against several cancers in preclinical models. Notwithstanding the wealth of opportunities, major challenges have hindered the development process and only a handful of therapies are currently approved for cancer risk reduction. One of the major obstacles to successful clinical translation of promising preventive agents is a lack of pharmacodynamic biomarkers to provide an early read out of biological activity in humans and for optimising doses to take into large scale randomised clinical trials. A further confounding factor is a lack of consideration of clinical pharmacokinetics in the design of preclinical experiments, meaning results are frequently reported from studies that use irrelevant or unachievable concentrations. This article focuses on recent findings from investigations with dietary-derived agents to illustrate how a thorough understanding of the mechanisms of action, using models that mimic the clinical scenario, together with the development of compound-specific accompanying pharmacodynamic biomarkers could accelerate the developmental pipeline for preventive agents and maximise the chances of success in future clinical trials. Moreover, the concept of a bell-shaped dose-response curve for therapeutic cancer prevention is discussed, along with the need to rethink the traditional ‘more is better’ approach for dose selection.
Collapse
Affiliation(s)
- Karen Brown
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Alessandro Rufini
- Cancer Chemoprevention Group, Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| |
Collapse
|
29
|
Lai CS, Wu JC, Ho CT, Pan MH. Disease chemopreventive effects and molecular mechanisms of hydroxylated polymethoxyflavones. Biofactors 2015; 41:301-13. [PMID: 26453173 DOI: 10.1002/biof.1236] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/01/2015] [Indexed: 01/12/2023]
Abstract
Recent increasing attention in research of polymethoxyflavones (PMFs) from Citrus genus because of their wide range of biological properties has been reported in various studies. Hydroxylated PMFs are unique flavones and recognized as the methoxy group of PMFs that is substituted for hydroxyl one. Hydroxylated PMFs are naturally existed in citrus peel and other plants as well as occurred as metabolites of their PMFs counterparts. Several in vitro and in vivo studies have documented the chemopreventive effects of hydroxylated PMFs including anti-cancer, anti-inflammation, anti-atherosclerosis, and neuroprotection. They function to regulate cell death, proliferation, differentiation, repair, and metabolism through acting on modulation of signaling cascade, gene transcription, and protein function and enzyme activity. The mechanisms of action of hydroxylated PMFs in disease chemoprevention depend on their structure, the number, and position of hydroxyl group. Although the efficacy of hydroxylated PMFs in chemoprevention and the oral bioavailability requires further investigation, they still provide great promise for improving human health. This review highlights the recent published data of hydroxylated PMFs with chemopreventive potential and the underlying mechanism involved.
Collapse
Affiliation(s)
- Ching-Shu Lai
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Jia-Ching Wu
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
30
|
Papanagnou P, Baltopoulos P, Tsironi M. Marketed nonsteroidal anti-inflammatory agents, antihypertensives, and human immunodeficiency virus protease inhibitors: as-yet-unused weapons of the oncologists' arsenal. Ther Clin Risk Manag 2015; 11:807-19. [PMID: 26056460 PMCID: PMC4445694 DOI: 10.2147/tcrm.s82049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Experimental data indicate that several pharmacological agents that have long been used for the management of various diseases unrelated to cancer exhibit profound in vitro and in vivo anticancer activity. This is of major clinical importance, since it would possibly aid in reassessing the therapeutic use of currently used agents for which clinicians already have experience. Further, this would obviate the time-consuming process required for the development and the approval of novel antineoplastic drugs. Herein, both pre-clinical and clinical data concerning the antineoplastic function of distinct commercially available pharmacological agents that are not currently used in the field of oncology, ie, nonsteroidal anti-inflammatory drugs, antihypertensive agents, and anti-human immunodeficiency virus agents inhibiting viral protease, are reviewed. The aim is to provide integrated information regarding not only the molecular basis of the antitumor function of these agents but also the applicability of the reevaluation of their therapeutic range in the clinical setting.
Collapse
Affiliation(s)
- Panagiota Papanagnou
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Panagiotis Baltopoulos
- Department of Sports Medicine and Biology of Physical Activity, Faculty of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Tsironi
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| |
Collapse
|
31
|
Colbert Maresso K, Vilar E, Hawk ET. Urinary PGE-M in colorectal cancer: predicting more than risk? Cancer Prev Res (Phila) 2014; 7:969-72. [PMID: 25070664 DOI: 10.1158/1940-6207.capr-14-0215] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Progress in cancer chemoprevention has been hindered by a lack of validated biomarkers of risk and interventive response. The identification of accurate, reliable, and easily measurable risk and response biomarkers within the field of cancer prevention could dramatically alter our approach to the disease. Colorectal cancer is associated with substantial morbidity and a limited 5-year survival rate for late-stage disease. The identification of biomarkers to predict (i) those most at risk of clinically significant colorectal neoplasia in conjunction with or building upon current risk models and/or (ii) those most likely to respond to potential colorectal chemopreventive agents, such as aspirin and NSAIDs, would significantly advance colorectal cancer risk management. Urinary PGE-M is an established indicator of systemic prostaglandin E2 production and has previously been demonstrated to predict risk of advanced colorectal neoplasia in a handful of studies. In the July 2014 issue, Bezawada and colleagues confirmed those earlier risk associations and demonstrated that PGE-M can also predict responsiveness to aspirin/NSAIDs in a small subset of women undergoing lower endoscopy in the Nurse's Health Study. PGE-M has the potential to define subsets of the population that may derive greater chemopreventive benefit from NSAIDs, as well as the potential to optimize the use of expensive and/or invasive screening tests. Additional larger and more diverse prospective studies meeting the criteria for phase IV biomarker studies are needed to advance the development of PGE-M as a noninvasive biomarker of both risk and chemopreventive response in populations at risk for colorectal cancer.
Collapse
Affiliation(s)
- Karen Colbert Maresso
- Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ernest T Hawk
- Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
32
|
Design, synthesis and experimental validation of novel potential chemopreventive agents using random forest and support vector machine binary classifiers. J Comput Aided Mol Des 2014; 28:631-46. [PMID: 24840854 DOI: 10.1007/s10822-014-9748-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
Abstract
Compared to the current knowledge on cancer chemotherapeutic agents, only limited information is available on the ability of organic compounds, such as drugs and/or natural products, to prevent or delay the onset of cancer. In order to evaluate chemical chemopreventive potentials and design novel chemopreventive agents with low to no toxicity, we developed predictive computational models for chemopreventive agents in this study. First, we curated a database containing over 400 organic compounds with known chemoprevention activities. Based on this database, various random forest and support vector machine binary classifiers were developed. All of the resulting models were validated by cross validation procedures. Then, the validated models were applied to virtually screen a chemical library containing around 23,000 natural products and derivatives. We selected a list of 148 novel chemopreventive compounds based on the consensus prediction of all validated models. We further analyzed the predicted active compounds by their ease of organic synthesis. Finally, 18 compounds were synthesized and experimentally validated for their chemopreventive activity. The experimental validation results paralleled the cross validation results, demonstrating the utility of the developed models. The predictive models developed in this study can be applied to virtually screen other chemical libraries to identify novel lead compounds for the chemoprevention of cancers.
Collapse
|
33
|
Bevers TB, Brown PH, Maresso KC, Hawk ET. Cancer Prevention, Screening, and Early Detection. ABELOFF'S CLINICAL ONCOLOGY 2014:322-359.e12. [DOI: 10.1016/b978-1-4557-2865-7.00023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
34
|
Silva G, Fachin AL, Beleboni RO, França SC, Marins M. In vitro action of flavonoids in the canine malignant histiocytic cell line DH82. Molecules 2013; 18:15448-63. [PMID: 24352006 PMCID: PMC6270055 DOI: 10.3390/molecules181215448] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 01/20/2023] Open
Abstract
Cancer is commonly diagnosed in dogs over the age of 10 and is a leading cause of death due to the lack of effective drugs. Flavonoids possess antioxidant, anti-inflammatory and anticarcinogenic properties and have been studied as chemopreventive agents in human cancer therapy. However, the literature on dogs is sparse. In this study, we analyzed the effect of nine flavonoids on cell viability, DNA damage and topoisomerase IIa/IIb gene expression in a canine tumor cell line (DH82). Apigenin, luteolin, trans-chalcone and 4-methoxychalcone showed the highest degree of cytotoxicity in the absence of considerable DNA damage, whereas genistein exhibited low cytotoxicity but induced a high level of DNA damage. These five flavonoids inhibited topoisomerase IIa and IIb gene expression to variable extents and with variable specificity. Genistein exerted a lower inhibitory effect on the two topoisomerases than luteolin and apigenin. trans-Chalcone and 4-methoxychalcone exerted greater inhibition of topoisomerase IIa expression than topoisomerase IIb. The differences in the effects between genistein and luteolin and apigenin might be explained by the position of ring B, whereas the more specific effect of chalcones on topoisomerase IIa might be due to their open chain structure.
Collapse
Affiliation(s)
| | | | | | | | - Mozart Marins
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto 14096-900, SP, Brazil.
| |
Collapse
|
35
|
Zhang J, Gao G, Chen L, Deng X, Li J, Yu Y, Zhang D, Li F, Zhang M, Zhao Q, Huang C. Cheliensisin A inhibits EGF-induced cell transformation with stabilization of p53 protein via a hydrogen peroxide/Chk1-dependent axis. Cancer Prev Res (Phila) 2013; 6:949-958. [PMID: 23852422 DOI: 10.1158/1940-6207.capr-13-0097] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cheliensisin A (Chel A), a novel styryl-lactone isolated from Goniothalamus cheliensis Hu, has been shown to induce apoptosis in human promyelocytic leukemia HL-60 cells with Bcl-2 downregulation. Yet, the potential chemopreventive effect of Chel A has not been explored. Here, we showed that Chel A treatment with various concentrations (0.5, 1.0, 2.0, and 4.0 μmol/L) for 3 weeks could dramatically inhibit EGF-induced cell transformation in Cl41 cells (IC50 ∼2.0 μmol/L). Also, coincubation of Cl41 cells with Chel A (2.0 and 4.0 μmol/L) for 48 hours could induce cell apoptosis in a caspase-3-dependent manner. Mechanically, Chel A treatment could result in increased p53 phosphorylation at Ser15 and elevated p53 total protein expression. Moreover, we found that p53 induction by Chel A was regulated at the protein degradation level, but not at either the transcription or the mRNA level. Further studies showed that p53 stabilization by Chel A was mediated via induction of phosphorylation and activation of Chk1 protein at Ser345. This notion was substantiated by the results that transfection of dominant negative mutant of Chk1 (GFP-Chk1 D130A) significantly attenuated the p53 protein expression, cell apoptosis, and inhibition of cell transformation by Chel A. Finally, increased hydrogen peroxide was found to mediate Chk1 phosphorylation at Ser345, p53 protein induction, cell apoptotic induction, and transformation inhibition following Chel A treatment. Taken together, our studies identify Chel A as a chemopreventive agent with the understanding of the molecular mechanisms involved.
Collapse
Affiliation(s)
- Jingjie Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo, NY 10987, USA
| | - Guangxun Gao
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo, NY 10987, USA
| | - Liang Chen
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo, NY 10987, USA
| | | | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo, NY 10987, USA
| | - Yonghui Yu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo, NY 10987, USA
| | - Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo, NY 10987, USA
| | - Fei Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo, NY 10987, USA
| | - Min Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo, NY 10987, USA
| | | | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo, NY 10987, USA
| |
Collapse
|