1
|
Zhang X, Chen J. HIV Reservoir: How to Measure It? Curr HIV/AIDS Rep 2023; 20:29-41. [PMID: 37004676 DOI: 10.1007/s11904-023-00653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 04/04/2023]
Abstract
PURPOSEOF REVIEW In the current quest for a complete cure for HIV/AIDS, the persistence of a long-lived reservoir of cells carrying replication-competent proviruses is the major challenge. Here, we describe the main elements and characteristics of several widely used assays of HIV latent reservoir detection. RECENT FINDINGS To date, researchers have developed several different HIV latent reservoir detection assays. Among them, the in vitro quantitative viral outgrowth assay (QVOA) has been the gold standard for assessing latent HIV-1 viral load. The intact proviral DNA assay (IPDA) based on PCR also demonstrated the predominance of defective viruses. However, these assays all have some drawbacks and may still be inadequate in detecting the presence of ultralow levels of latent virus in many patients who were initially thought to have been cured, but eventually showed viral rebound. An accurate and precise measurement of the HIV reservoir is therefore needed to evaluate curative strategies, aimed to functional cure or sterilizing cure.
Collapse
Affiliation(s)
- Xinyu Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Chen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Ta TM, Malik S, Anderson EM, Jones AD, Perchik J, Freylikh M, Sardo L, Klase ZA, Izumi T. Insights Into Persistent HIV-1 Infection and Functional Cure: Novel Capabilities and Strategies. Front Microbiol 2022; 13:862270. [PMID: 35572626 PMCID: PMC9093714 DOI: 10.3389/fmicb.2022.862270] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022] Open
Abstract
Although HIV-1 replication can be efficiently suppressed to undetectable levels in peripheral blood by combination antiretroviral therapy (cART), lifelong medication is still required in people living with HIV (PLWH). Life expectancies have been extended by cART, but age-related comorbidities have increased which are associated with heavy physiological and economic burdens on PLWH. The obstacle to a functional HIV cure can be ascribed to the formation of latent reservoir establishment at the time of acute infection that persists during cART. Recent studies suggest that some HIV reservoirs are established in the early acute stages of HIV infection within multiple immune cells that are gradually shaped by various host and viral mechanisms and may undergo clonal expansion. Early cART initiation has been shown to reduce the reservoir size in HIV-infected individuals. Memory CD4+ T cell subsets are regarded as the predominant cellular compartment of the HIV reservoir, but monocytes and derivative macrophages or dendritic cells also play a role in the persistent virus infection. HIV latency is regulated at multiple molecular levels in transcriptional and post-transcriptional processes. Epigenetic regulation of the proviral promoter can profoundly regulate the viral transcription. In addition, transcriptional elongation, RNA splicing, and nuclear export pathways are also involved in maintaining HIV latency. Although most proviruses contain large internal deletions, some defective proviruses may induce immune activation by expressing viral proteins or producing replication-defective viral-like particles. In this review article, we discuss the state of the art on mechanisms of virus persistence in the periphery and tissue and summarize interdisciplinary approaches toward a functional HIV cure, including novel capabilities and strategies to measure and eliminate the infected reservoirs and induce immune control.
Collapse
Affiliation(s)
- Tram M. Ta
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Sajjaf Malik
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Elizabeth M. Anderson
- Office of the Assistant Secretary for Health, Region 3, U.S. Department of Health and Human Services, Washington, DC, United States
| | - Amber D. Jones
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States,Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jocelyn Perchik
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Maryann Freylikh
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Luca Sardo
- Department of Infectious Disease and Vaccines, Merck & Co., Inc., Kenilworth, NJ, United States
| | - Zackary A. Klase
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States,Center for Neuroimmunology and CNS Therapeutics, Institute of Molecular Medicine and Infectious Diseases, Drexel University of Medicine, Philadelphia, PA, United States
| | - Taisuke Izumi
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States,*Correspondence: Taisuke Izumi,
| |
Collapse
|
3
|
External quality assessment of HIV-1 DNA quantification assays used in the clinical setting in Italy. Sci Rep 2022; 12:3291. [PMID: 35228581 PMCID: PMC8885833 DOI: 10.1038/s41598-022-07196-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/14/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractTotal cell-associated HIV-1 DNA is a surrogate marker of the HIV-1 reservoir, however, certified systems for its quantification are not available. The Italian HIV DNA Network was launched to validate HIV-1 DNA quantification methods in use at University and Hospital labs. A quality control panel including HIV-1 DNA standards, reconstructed blood samples (RBSs) and DNA from different HIV-1 subtypes was blindly tested by 12 participating labs by quantitative real-time PCR (n = 6), droplet digital PCR (n = 3) or both (n = 3). The median 95% hit rate was 4.6 (3.7–5.5) copies per test and linearity in the tested range was excellent (R2 = 1.000 [1.000–1.000]). The median values obtained across labs were 3,370 (2,287–4,245), 445 (299–498), 59 (40–81) and 7 (6–11) HIV-1 DNA copies, for the 3,584, 448, 56 and 7-copy standards, respectively. With RBSs, measured values were within twofold with respect to the median in two thirds of cases. HIV-1 subtypes were missed (CRF01_AE by 3 labs) or underestimated by > 1 log (subtypes A, C, D, F by one lab; CRF01_AE by one lab; CRF02_AG by one lab). The overall performance was excellent with HIV-1 DNA standards, however detection of different HIV-1 subtypes must be improved.
Collapse
|
4
|
Ghassemi S, Durgin JS, Nunez-Cruz S, Patel J, Leferovich J, Pinzone M, Shen F, Cummins KD, Plesa G, Cantu VA, Reddy S, Bushman FD, Gill SI, O'Doherty U, O'Connor RS, Milone MC. Rapid manufacturing of non-activated potent CAR T cells. Nat Biomed Eng 2022; 6:118-128. [PMID: 35190680 PMCID: PMC8860360 DOI: 10.1038/s41551-021-00842-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022]
Abstract
Chimaeric antigen receptor (CAR) T cells can generate durable clinical responses in B-cell haematologic malignancies. The manufacturing of these T cells typically involves their activation, followed by viral transduction and expansion ex vivo for at least 6 days. However, the activation and expansion of CAR T cells leads to their progressive differentiation and the associated loss of anti-leukaemic activity. Here we show that functional CAR T cells can be generated within 24 hours from T cells derived from peripheral blood without the need for T-cell activation or ex vivo expansion, and that the efficiency of viral transduction in this process is substantially influenced by the formulation of the medium and the surface area-to-volume ratio of the culture vessel. In mouse xenograft models of human leukaemias, the rapidly generated non-activated CAR T cells exhibited higher anti-leukaemic in vivo activity per cell than the corresponding activated CAR T cells produced using the standard protocol. The rapid manufacturing of CAR T cells may reduce production costs and broaden their applicability.
Collapse
Affiliation(s)
- Saba Ghassemi
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Joseph S Durgin
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Selene Nunez-Cruz
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jai Patel
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Leferovich
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marilia Pinzone
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Feng Shen
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine D Cummins
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriela Plesa
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vito Adrian Cantu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shantan Reddy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Saar I Gill
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roddy S O'Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael C Milone
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Development of Droplet Digital PCR-Based Assays to Quantify HIV Proviral and Integrated DNA in Brain Tissues from Viremic Individuals with Encephalitis and Virally Suppressed Aviremic Individuals. Microbiol Spectr 2022; 10:e0085321. [PMID: 35019681 PMCID: PMC8754137 DOI: 10.1128/spectrum.00853-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Although combination antiretroviral therapy (cART) can suppress the replication of HIV, the virus persists and rebounds when treatment is stopped. To find a cure that can eradicate latent reservoir, a method should be able to quantify the lingering HIV. Unlike other digital PCR technologies, droplet digital PCR (ddPCR), provides absolute quantification of target DNA molecules using fluorescent dually labeled probes by massively partitioning the sample into droplets. ddPCR enables exquisitely sensitive detection and quantification of viral DNA from very limiting clinical samples, including brain tissues. We developed and optimized duplex ddPCR assays for the detection and quantification of HIV proviral DNA and integrated DNA in the brain of HIV-1-infected patients. We have applied these approaches to successfully analyze 77 human brain tissues obtained from 27 HIV-1-infected individuals, either fully virally suppressed or with encephalitis, and were able to quantify low levels of viral DNA. Further developments and advancement of digital PCR technology is promising to aid in accurate quantification and characterization of the persistent HIV reservoir. IMPORTANCE We developed ddPCR assays to quantitatively measure HIV DNA and used this ddPCR assays to detect and quantitatively measure HIV DNA in the archived brain tissues from HIV patients. The tissue viral loads assessed by ddPCR was highly correlative with those assessed by qPCR. HIV DNA in the brain was detected more frequently by ddPCR than by qPCR. ddPCR also showed higher sensitivity than qPCR since ddPCR detected HIV DNA signals in some tissues from virally suppressed individuals while qPCR could not.
Collapse
|
6
|
Quantification of Total HIV DNA as a Marker to Measure Viral Reservoir: Methods and Potential Implications for Clinical Practice. Diagnostics (Basel) 2021; 12:diagnostics12010039. [PMID: 35054206 PMCID: PMC8774405 DOI: 10.3390/diagnostics12010039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
The focus of this review is to examine the importance of quantifying total HIV DNA to target the HIV reservoir and the clinical implications and challenges involved in its future application in clinical practice. Despite intrinsic limitations, the quantification of total HIV DNA is currently the most widely used marker for exploring the HIV reservoir. As it allows estimating all forms of HIV DNA in the infected cells, total HIV DNA load is the biomarker of the HIV reservoir that provides most of the insights into HIV pathogenesis. The clinical role of total HIV-DNA in both untreated and treated patients is extensively supported by important lines of evidence. Thus, predictive models that include total HIV DNA load together with other variables could constitute a prognostic tool for use in clinical practice. To date, however, this marker has been primarily used in experimental evaluations. The main challenge is technical. Although the implementation of droplet digital PCR could improve analytical performance over real-time PCR, the lack of standardization has made cross-comparisons of the data difficult. An effort by investigators to compare protocols is needed. Furthermore, the main effort now should be to involve the biomedical industry in the development of certified assays for in vitro diagnostics use.
Collapse
|
7
|
Malatinkova E, Thomas J, De Spiegelaere W, Rutsaert S, Geretti AM, Pollakis G, Paxton WA, Vandekerckhove L, Ruggiero A. Measuring Proviral HIV-1 DNA: Hurdles and Improvements to an Assay Monitoring Integration Events Utilising Human Alu Repeat Sequences. Life (Basel) 2021; 11:life11121410. [PMID: 34947941 PMCID: PMC8706387 DOI: 10.3390/life11121410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022] Open
Abstract
Integrated HIV-1 DNA persists despite antiretroviral therapy and can fuel viral rebound following treatment interruption. Hence, methods to specifically measure the integrated HIV-1 DNA portion only are important to monitor the reservoir in eradication trials. Here, we provide an up-to-date overview of the literature on the different approaches used to measure integrated HIV-1 DNA. Further, we propose an implemented standard-curve free assay to quantify integrated HIV-1 DNA, so-called Alu-5LTR PCR, which utilises novel primer combinations. We tested the Alu-5LTR PCR in 20 individuals on suppressive ART for a median of nine years; the results were compared to those produced with the standard-free Alu-gag assay. The numbers of median integrated HIV-1 DNA copies were 5 (range: 1–12) and 14 (5–26) with the Alu-gag and Alu-5LTR, respectively. The ratios between Alu-gag vs Alu-5LTR results were distributed within the cohort as follows: most patients (12/20, 60%) provided ratios between 2–5, with 3/20 (15%) and 5/20 (25%) being below or above this range, respectively. Alu-5LTR assay sensitivity was also determined using an “integrated standard”; the data confirmed the increased sensitivity of the assay, i.e., equal to 0.25 proviruses in 10,000 genomes. This work represents an improvement in the field of measuring proviral HIV-1 DNA that could be employed in future HIV-1 persistence and eradication studies.
Collapse
Affiliation(s)
- Eva Malatinkova
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium; (E.M.); (S.R.); (L.V.)
| | - Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (J.T.); (G.P.); (W.A.P.)
| | - Ward De Spiegelaere
- Laboratory of Veterinary Morphology, Faculty of Veterinary Sciences, Ghent University, B-9820 Ghent, Belgium;
| | - Sofie Rutsaert
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium; (E.M.); (S.R.); (L.V.)
| | - Anna Maria Geretti
- Fondazione PTV and Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
- School of Immunology & Microbial Sciences, King’s College London, London WC2R 2LS, UK
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (J.T.); (G.P.); (W.A.P.)
| | - William A. Paxton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (J.T.); (G.P.); (W.A.P.)
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium; (E.M.); (S.R.); (L.V.)
| | - Alessandra Ruggiero
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (J.T.); (G.P.); (W.A.P.)
- Department Neurosciences, Biomedicine and Movement Sciences, School of Medicine-University of Verona, 37129 Verona, Italy
- Correspondence: ; Tel.: +39-045-802-7190
| |
Collapse
|
8
|
Pinzone MR, Weissman S, Pasternak AO, Zurakowski R, Migueles S, O'Doherty U. Naive infection predicts reservoir diversity and is a formidable hurdle to HIV eradication. JCI Insight 2021; 6:e150794. [PMID: 34228640 PMCID: PMC8409977 DOI: 10.1172/jci.insight.150794] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/30/2021] [Indexed: 12/16/2022] Open
Abstract
Historically, naive cells have been considered inconsequential to HIV persistence. Here, we compared the contributions of naive and memory cells to the reservoirs of individuals with a spectrum of reservoir sizes and variable immunological control. We performed proviral sequencing of approximately 6000 proviruses from cellular subsets of 5 elite controllers (ECs) off antiretroviral therapy (ART) and 5 chronic progressors (CPs) on ART. The levels of naive infection were barely detectable in ECs and approximately 300-fold lower compared with those in CPs. Moreover, the ratio of infected naive to memory cells was significantly lower in ECs. Overall, the naive infection level increased as reservoir size increased, such that naive cells were a major contributor to the intact reservoir of CPs, whose reservoirs were generally very diverse. In contrast, the reservoirs of ECs were dominated by proviral clones. Critically, the fraction of proviral clones increased with cell differentiation, with naive infection predicting reservoir diversity. Longitudinal sequencing revealed that the reservoir of ECs was less dynamic compared with that of CPs. Naive cells play a critical role in HIV persistence. Their infection level predicts reservoir size and diversity. Moreover, the diminishing diversity of the reservoir as cellular subsets mature suggests that naive T cells repopulate the memory compartment and that direct infection of naive T cells occurs in vivo.
Collapse
Affiliation(s)
- Marilia R Pinzone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sam Weissman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alexander O Pasternak
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Laboratory of Experimental Virology, Amsterdam, Netherlands
| | - Ryan Zurakowski
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Stephen Migueles
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Ziani W, Shao J, Fang A, Connolly PJ, Wang X, Veazey RS, Xu H. Mucosal integrin α4β7 blockade fails to reduce the seeding and size of viral reservoirs in SIV-infected rhesus macaques. FASEB J 2021; 35:e21282. [PMID: 33484474 PMCID: PMC7839271 DOI: 10.1096/fj.202002235r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/04/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
Cellular viral reservoirs are rapidly established in tissues upon HIV‐1/SIV infection, which persist throughout viral infection, even under long‐term antiretroviral therapy (ART). Specific integrins are involved in the homing of cells to gut‐associated lymphoid tissues (GALT) and inflamed tissues, which may promote the seeding and dissemination of HIV‐1/SIV to these tissue sites. In this study, we investigated the efficacy of prophylactic integrin blockade (α4β7 antibody or α4β7/α4β1 dual antagonist TR‐14035) on viral infection, as well as dissemination and seeding of viral reservoirs in systemic and lymphoid compartments post‐SIV inoculation. The results showed that blockade of α4β7/α4β1 did not decrease viral infection, replication, or reduce viral reservoir size in tissues of rhesus macaques after SIV infection, as indicated by equivalent levels of plasma viremia and cell‐associated SIV RNA/DNA to controls. Surprisingly, TR‐14035 administration in acute SIV infection resulted in consistently higher viremia and more rapid disease progression. These findings suggest that integrin blockade alone fails to effectively control viral infection, replication, dissemination, and reservoir establishment in HIV‐1/SIV infection. The use of integrin blockade for prevention or/and therapeutic strategies requires further investigation.
Collapse
Affiliation(s)
- Widade Ziani
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Jiasheng Shao
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Angela Fang
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Patrick J Connolly
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| |
Collapse
|
10
|
De Scheerder MA, Van Hecke C, Zetterberg H, Fuchs D, De Langhe N, Rutsaert S, Vrancken B, Trypsteen W, Noppe Y, Van Der Gucht B, Pelgrom J, Van Wanzeele F, Palmer S, Lemey P, Gisslén M, Vandekerckhove L. Evaluating predictive markers for viral rebound and safety assessment in blood and lumbar fluid during HIV-1 treatment interruption. J Antimicrob Chemother 2021; 75:1311-1320. [PMID: 32053203 DOI: 10.1093/jac/dkaa003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Validated biomarkers to evaluate HIV-1 cure strategies are currently lacking, therefore requiring analytical treatment interruption (ATI) in study participants. Little is known about the safety of ATI and its long-term impact on patient health. OBJECTIVES ATI safety was assessed and potential biomarkers predicting viral rebound were evaluated. METHODS PBMCs, plasma and CSF were collected from 11 HIV-1-positive individuals at four different timepoints during ATI (NCT02641756). Total and integrated HIV-1 DNA, cell-associated (CA) HIV-1 RNA transcripts and restriction factor (RF) expression were measured by PCR-based assays. Markers of neuroinflammation and neuronal injury [neurofilament light chain (NFL) and YKL-40 protein] were measured in CSF. Additionally, neopterin, tryptophan and kynurenine were measured, both in plasma and CSF, as markers of immune activation. RESULTS Total HIV-1 DNA, integrated HIV-1 DNA and CA viral RNA transcripts did not differ pre- and post-ATI. Similarly, no significant NFL or YKL-40 increases in CSF were observed between baseline and viral rebound. Furthermore, markers of immune activation did not increase during ATI. Interestingly, the RFs SLFN11 and APOBEC3G increased after ATI before viral rebound. Similarly, Tat-Rev transcripts were increased preceding viral rebound after interruption. CONCLUSIONS ATI did not increase viral reservoir size and it did not reveal signs of increased neuronal injury or inflammation, suggesting that these well-monitored ATIs are safe. Elevation of Tat-Rev transcription and induced expression of the RFs SLFN11 and APOBEC3G after ATI, prior to viral rebound, indicates that these factors could be used as potential biomarkers predicting viral rebound.
Collapse
Affiliation(s)
- Marie-Angélique De Scheerder
- HIV Cure Research Center, Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.,Department of General Internal Medicine and Infectious Diseases, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Clarissa Van Hecke
- HIV Cure Research Center, Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 52, Christoph-Probst-Platz, 6020 Innsbruck, Austria
| | - Nele De Langhe
- HIV Cure Research Center, Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Sofie Rutsaert
- HIV Cure Research Center, Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Bram Vrancken
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Evolutionary and Computational Virology, Leuven, Belgium
| | - Wim Trypsteen
- HIV Cure Research Center, Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Ytse Noppe
- HIV Cure Research Center, Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Bea Van Der Gucht
- Department of General Internal Medicine and Infectious Diseases, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Jolanda Pelgrom
- Department of General Internal Medicine and Infectious Diseases, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Filip Van Wanzeele
- Department of General Internal Medicine and Infectious Diseases, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, New South Wales 2145, Australia
| | - Philippe Lemey
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Evolutionary and Computational Virology, Leuven, Belgium
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Wallinsgatan 6, Mölndal, Sweden.,Department of Infectious Diseases, Sahlgrenska University Hospital, 11 Region Västra Götaland, Gothenburg, Sweden
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.,Department of General Internal Medicine and Infectious Diseases, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
11
|
Increased Proviral DNA in Circulating Cells Correlates with Plasma Viral Rebound in Simian Immunodeficiency Virus-Infected Rhesus Macaques after Antiretroviral Therapy Interruption. J Virol 2021; 95:JVI.02064-20. [PMID: 33408173 PMCID: PMC8094949 DOI: 10.1128/jvi.02064-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/18/2020] [Indexed: 12/30/2022] Open
Abstract
Viral reservoirs are involved in persistent HIV infection, and a small number of mosaic latent cellular reservoirs promote viral rebound upon analytical treatment interruption, which is the major obstacle to a cure. However, early indicators that can predict resurgence of viremia after treatment interruption may aid treatment decisions in people living with HIV. The human immunodeficiency virus (HIV) reservoir is responsible for persistent viral infection, and a small number of mosaic latent cellular reservoirs promote viral rebound upon antiretroviral therapy interruption, which is the major obstacle to a cure. However, markers that determine effective therapy and viral rebound posttreatment interruption remain unclear. In this study, we comprehensively and longitudinally tracked dynamic decay of cell-associated viral RNA/DNA in systemic and lymphoid tissues in simian immunodeficiency virus (SIV)-infected rhesus macaques on prolonged combined antiretroviral therapy (cART) and evaluated predictors of viral rebound after treatment cessation. The results showed that suppressive ART substantially reduced plasma SIV RNA, cell-associated unspliced, and multiply spliced SIV RNA to undetectable levels, yet viral DNA remained detectable in systemic tissues and lymphoid compartments throughout cART. Intriguingly, a rapid increase of integrated proviral DNA in peripheral mononuclear cells was detected once treatment was withdrawn, accompanied by the emergence of detectable plasma viral load. Notably, the increase of peripheral proviral DNA after treatment interruption correlated with the emergence and degree of viral rebound. These findings suggest that measuring total viral DNA in SIV infection may be a relatively simple surrogate marker of reservoir size and may predict viral rebound after treatment interruption and inform treatment strategies. IMPORTANCE Viral reservoirs are involved in persistent HIV infection, and a small number of mosaic latent cellular reservoirs promote viral rebound upon analytical treatment interruption, which is the major obstacle to a cure. However, early indicators that can predict resurgence of viremia after treatment interruption may aid treatment decisions in people living with HIV. Utilizing the rhesus macaque model, we demonstrated that increased proviral DNA in peripheral cells after treatment interruption, rather than levels of proviral DNA, was a useful marker to predict the emergence and degree of viral rebound after treatment interruption, providing a rapid approach for monitoring HIV rebound and informing decisions.
Collapse
|
12
|
Thomas J, Ruggiero A, Paxton WA, Pollakis G. Measuring the Success of HIV-1 Cure Strategies. Front Cell Infect Microbiol 2020; 10:134. [PMID: 32318356 PMCID: PMC7154081 DOI: 10.3389/fcimb.2020.00134] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/13/2020] [Indexed: 01/10/2023] Open
Abstract
HIV-1 eradication strategies aim to achieve viral remission in the absence of antiretroviral therapy (ART). The development of an HIV-1 cure remains challenging due to the latent reservoir (LR): long-lived CD4 T cells that harbor transcriptionally silent HIV-1 provirus. The LR is stable despite years of suppressive ART and is the source of rebound viremia following therapy interruption. Cure strategies such as "shock and kill" aim to eliminate or reduce the LR by reversing latency, exposing the infected cells to clearance via the immune response or the viral cytopathic effect. Alternative strategies include therapeutic vaccination, which aims to prime the immune response to facilitate control of the virus in the absence of ART. Despite promising advances, these strategies have been unable to significantly reduce the LR or increase the time to viral rebound but have provided invaluable insight in the field of HIV-1 eradication. The development and assessment of an HIV-1 cure requires robust assays that can measure the LR with sufficient sensitivity to detect changes that may occur following treatment. The viral outgrowth assay (VOA) is considered the gold standard method for LR quantification due to its ability to distinguish intact and defective provirus. However, the VOA is time consuming and resource intensive, therefore several alternative assays have been developed to bridge the gap between practicality and accuracy. Whilst a cure for HIV-1 infection remains elusive, recent advances in our understanding of the LR and methods for its eradication have offered renewed hope regarding achieving ART free viral remission.
Collapse
Affiliation(s)
- Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Alessandra Ruggiero
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.,Immune and Infectious Disease Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, Rome, Italy
| | - William A Paxton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
13
|
Real F, Capron C, Sennepin A, Arrigucci R, Zhu A, Sannier G, Zheng J, Xu L, Massé JM, Greffe S, Cazabat M, Donoso M, Delobel P, Izopet J, Eugenin E, Gennaro ML, Rouveix E, Cramer Bordé E, Bomsel M. Platelets from HIV-infected individuals on antiretroviral drug therapy with poor CD4+ T cell recovery can harbor replication-competent HIV despite viral suppression. Sci Transl Med 2020; 12:12/535/eaat6263. [DOI: 10.1126/scitranslmed.aat6263] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/23/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022]
Abstract
In addition to hemostasis, human platelets have several immune functions and interact with infectious pathogens including HIV in vitro. Here, we report that platelets from HIV-infected individuals on combined antiretroviral drug therapy (ART) with low blood CD4+ T cell counts (<350 cells/μl) contained replication-competent HIV despite viral suppression. In vitro, human platelets harboring HIV propagated the virus to macrophages, a process that could be prevented with the biologic abciximab, an anti–integrin αIIb/β3 Fab. Furthermore, in our cohort, 88% of HIV-infected individuals on ART with viral suppression and with platelets containing HIV were poor immunological responders with CD4+ T cell counts remaining below <350 cells/μl for more than one year. Our study suggests that platelets may be transient carriers of HIV and may provide an alternative pathway for HIV dissemination in HIV-infected individuals on ART with viral suppression and poor CD4+ T cell recovery.
Collapse
Affiliation(s)
- Fernando Real
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | | | - Alexis Sennepin
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | - Riccardo Arrigucci
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Aiwei Zhu
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | - Gérémy Sannier
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | - Jonathan Zheng
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | - Lin Xu
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | - Jean-Marc Massé
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
- Electron Microscopy Platform, Institut Cochin, Université de Paris, Paris, France
| | - Ségolène Greffe
- Department of Internal Medicine, Hôpital Ambroise Paré, Boulogne, France
| | - Michelle Cazabat
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, France
| | - Maribel Donoso
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Pierre Delobel
- INSERM U1043, Toulouse, France
- Université Toulouse III Paul-Sabatier, Faculté de Médecine Toulouse-Purpan, Toulouse, France
- CHU de Toulouse, Hôpital Purpan, Service des Maladies Infectieuses et Tropicales, Toulouse, France
| | - Jacques Izopet
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, France
- INSERM U1043, Toulouse, France
- Université Toulouse III Paul-Sabatier, Faculté de Médecine Toulouse-Purpan, Toulouse, France
| | - Eliseo Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Maria Laura Gennaro
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Elisabeth Rouveix
- Department of Internal Medicine, Hôpital Ambroise Paré, Boulogne, France
| | - Elisabeth Cramer Bordé
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- Hôpital Ambroise Paré, Boulogne-Billancourt, France
| | - Morgane Bomsel
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| |
Collapse
|
14
|
Kint S, Trypsteen W, De Spiegelaere W, Malatinkova E, Kinloch-de Loes S, De Meyer T, Van Criekinge W, Vandekerckhove L. Underestimated effect of intragenic HIV-1 DNA methylation on viral transcription in infected individuals. Clin Epigenetics 2020; 12:36. [PMID: 32111236 PMCID: PMC7049218 DOI: 10.1186/s13148-020-00829-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background The HIV-1 proviral genome harbors multiple CpG islands (CpGIs), both in the promoter and intragenic regions. DNA methylation in the promoter region has been shown to be heavily involved in HIV-1 latency regulation in cultured cells. However, its exact role in proviral transcriptional regulation in infected individuals is poorly understood or characterized. Moreover, methylation at intragenic CpGIs has never been studied in depth. Results A large, well-characterized HIV-1 patient cohort (n = 72), consisting of 17 long-term non-progressors and 8 recent seroconverters (SRCV) without combination antiretroviral therapy (cART), 15 early cART-treated, and 32 late cART-treated patients, was analyzed using a next-generation bisulfite sequencing DNA methylation method. In general, we observed low level of promoter methylation and higher levels of intragenic methylation. Additionally, SRCV showed increased promoter methylation and decreased intragenic methylation compared with the other patient groups. This data indicates that increased intragenic methylation could be involved in proviral transcriptional regulation. Conclusions Contrasting in vitro studies, our results indicate that intragenic hypermethylation of HIV-1 proviral DNA is an underestimated factor in viral control in HIV-1-infected individuals, showing the importance of analyzing the complete proviral genome in future DNA methylation studies.
Collapse
Affiliation(s)
- Sam Kint
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, Medical Research Building 2, 9000, Ghent, Belgium.,Biobix, Department of Data Analysis and Mathematical Modelling, Faculty of Bio-science Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Wim Trypsteen
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, Medical Research Building 2, 9000, Ghent, Belgium
| | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Eva Malatinkova
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, Medical Research Building 2, 9000, Ghent, Belgium
| | - Sabine Kinloch-de Loes
- Division of Infection and Immunity, Royal Free Hospital, Royal Free Campus, University College London, Pont St, Hampstead, London, NW3 2QG, UK
| | - Tim De Meyer
- Biobix, Department of Data Analysis and Mathematical Modelling, Faculty of Bio-science Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Wim Van Criekinge
- Biobix, Department of Data Analysis and Mathematical Modelling, Faculty of Bio-science Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, Medical Research Building 2, 9000, Ghent, Belgium.
| |
Collapse
|
15
|
Van Hecke C, Trypsteen W, Malatinkova E, De Spiegelaere W, Vervisch K, Rutsaert S, Kinloch-de Loes S, Sips M, Vandekerckhove L. Early treated HIV-1 positive individuals demonstrate similar restriction factor expression profile as long-term non-progressors. EBioMedicine 2019; 41:443-454. [PMID: 30770230 PMCID: PMC6442000 DOI: 10.1016/j.ebiom.2019.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Clarissa Van Hecke
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Wim Trypsteen
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Eva Malatinkova
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Karen Vervisch
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Sofie Rutsaert
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Sabine Kinloch-de Loes
- Division of Infection and Immunitys, Royal Free Hospital and Royal Free Campus, University College London, Pont St, Hampstead, London NW3 2QG, United Kingdom
| | - Magdalena Sips
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| |
Collapse
|
16
|
Quantitation of Integrated HIV Provirus by Pulsed-Field Gel Electrophoresis and Droplet Digital PCR. J Clin Microbiol 2018; 56:JCM.01158-18. [PMID: 30232127 DOI: 10.1128/jcm.01158-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/12/2018] [Indexed: 12/19/2022] Open
Abstract
We utilized pulsed-field gel electrophoresis (PFGE) to purify high-molecular-weight DNA from HIV-infected cells. This purification, in combination with our previously described droplet digital PCR (ddPCR) assay, was used to develop a method to quantify proviral integrated HIV DNA free of lower-molecular-weight species of HIV DNA. Episomal 2-long-terminal-repeat (2-LTR) circles were completely cleared from HIV DNA samples. Technical replicates of the complete assay, starting with the same specimens, resulted in no statistical differences in quantification of integrated HIV gag sequences in cellular DNA from cells from HIV-infected subjects after prolonged treatment with antiretroviral therapy (ART). The PFGE ddPCR assay was compared to the Alu-gag quantitative PCR (qPCR) assay, the most widely used assay to measure proviral integrated HIV DNA. Spearman's rho nonparametric correlation determined PFGE ddPCR results to be positively correlated with Alu-gag qPCR results (r = 0.7052; P = 0.0273). In summary, PFGE ddPCR is a sensitive, reproducible, and robust method to measure proviral integrated HIV DNA and is theoretically more accurate than previously described assays, because it is a direct measure of integrated HIV DNA.
Collapse
|
17
|
Thomas J, Ruggiero A, Procopio FA, Pantaleo G, Paxton WA, Pollakis G. Comparative analysis and generation of a robust HIV-1 DNA quantification assay. J Virol Methods 2018; 263:24-31. [PMID: 30326210 DOI: 10.1016/j.jviromet.2018.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/18/2022]
Abstract
HIV-1 infection cannot be cured due to the presence of the latent reservoir (LR). Novel cure or treatment strategies, such as "shock and kill" or therapeutic vaccination, aim to reduce or eradicate the LR. Cure strategies utilise robust DNA quantification assays to measure the change in the LR in low copy scenarios. No standard assay exists, which impedes the reliable comparison of results from different therapy and vaccine trials and HIV-1 total DNA quantification methods have not been previously compared. The HIV-1 long terminal repeat (LTR) has been shown to be the best target for DNA quantification. We have analysed two HIV-1 quantification assays, both able to differentiate between the variant HIV-1 DNA forms via the use of pre-amplification and primers targeting LTR. We identify a strong correlation (r=0.9759, P<0.0001) between assays which is conserved in low copy samples (r=0.8220, P<0.0001) indicating that these assays may be used interchangeably. The RvS assay performed significantly (P=0.0021) better than the CV assay when quantifying HIV-1 total DNA in patient CD4+ T lymphocytes. Sequence analysis demonstrated that viral diversity can limit DNA quantification, however in silico analysis of the primers indicated that within the target region nucleotide miss-matches appear infrequently. Further in silico analysis using up to-date sequence information led to the improvement of primers and enabled us to establish a more broadly specific assay with significantly higher HIV-1 DNA quantification capacity in patient samples (p=0.0057, n=17).
Collapse
Affiliation(s)
- Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health (IGH), University of Liverpool, Liverpool, United Kingdom
| | - Alessandra Ruggiero
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health (IGH), University of Liverpool, Liverpool, United Kingdom
| | - Francesco A Procopio
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - William A Paxton
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health (IGH), University of Liverpool, Liverpool, United Kingdom
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health (IGH), University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
18
|
Visualization of HIV-1 RNA Transcription from Integrated HIV-1 DNA in Reactivated Latently Infected Cells. Viruses 2018; 10:v10100534. [PMID: 30274333 PMCID: PMC6212899 DOI: 10.3390/v10100534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 12/14/2022] Open
Abstract
We have recently developed the first microscopy-based strategy that enables simultaneous multiplex detection of viral RNA (vRNA), viral DNA (vDNA), and viral protein. Here, we used this approach to study the kinetics of latency reactivation in cells infected with the human immunodeficiency virus (HIV). We showed the transcription of nascent vRNA from individual latently integrated and reactivated vDNA sites appearing earlier than viral protein. We further demonstrated that this method can be used to quantitatively assess the efficacy of a variety of latency reactivating agents. Finally, this microscopy-based strategy was augmented with a flow-cytometry-based approach, enabling the detection of transcriptional reactivation of large numbers of latently infected cells. Hence, these approaches are shown to be suitable for qualitative and quantitative studies of HIV-1 latency and reactivation.
Collapse
|
19
|
Bosman KJ, Wensing AMJ, Pijning AE, van Snippenberg WJ, van Ham PM, de Jong DMC, Hoepelman AIM, Nijhuis M. Development of sensitive ddPCR assays to reliably quantify the proviral DNA reservoir in all common circulating HIV subtypes and recombinant forms. J Int AIDS Soc 2018; 21:e25185. [PMID: 30375818 PMCID: PMC6138437 DOI: 10.1002/jia2.25185] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION The latent reservoir is the main barrier on the road to HIV cure, and clinical approaches towards eradication are often evaluated by their effect on proviral DNA. To ensure inclusiveness and representativeness in HIV cure studies, proviral DNA quantification assays that are able to detect all common circulating HIV clades are urgently needed. Here, three HIV DNA assays targeting three different genomic regions were evaluated for their sensitivity and subtype-tolerance using digital PCR. METHODS A subtype-B-specific assay targeting gag (GAG) and two assays targeting conserved sequences in ltr and pol (LTR and JO) were assessed for their sensitivity and subtype-tolerance in digital PCR (Bio-Rad QX200), using a panel of serially diluted subtype reference plasmids as well as a panel of clinical isolates. Both panels represent subtypes A, B, C, D, F, G and circulating recombinant forms (CRFs) AE and AG, which together are responsible for 94% of HIV infections worldwide. RESULTS HIV subtype was observed to greatly affect HIV DNA quantification results. Robust regression analysis of the serially diluted plasmid panel showed that the GAG assay was only able to linearly quantify subtype B, D and G isolates (4/13 reference plasmids, average R2 = 0.99), whereas LTR and JO were able to quantify all tested isolates (13/13 reference plasmids, respective average R2 = 0.99 and 0.98). In the clinical isolates panel, isolates were considered detectable if all replicates produced a positive result. The GAG assay could detect HIV DNA in four out of five subtype B and one out of two subtype D isolates, whereas the LTR and JO assays detected HIV DNA in all twenty-nine tested isolates. LTR and JO results were found to be equally precise but more precise than GAG. CONCLUSIONS The results demonstrate the need for a careful validation of proviral reservoir quantification assays prior to investigations into non-B subtype reservoirs. The LTR and JO assays can sensitively and reliably quantify HIV DNA in a panel that represents the worldwide most prevalent subtypes and CRFs (A, B, C, D, AE, F, G and AG), justifying their application in future trials aimed at global HIV cure.
Collapse
Affiliation(s)
- Kobus J Bosman
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Annemarie MJ Wensing
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Aster E Pijning
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | | | - Petra M van Ham
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Dorien MC de Jong
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Andy IM Hoepelman
- Department of Internal Medicine and Infectious DiseasesUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Monique Nijhuis
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| |
Collapse
|
20
|
Effect of Short-Term Antiretroviral Therapy Interruption on Levels of Integrated HIV DNA. J Virol 2018; 92:JVI.00285-18. [PMID: 29593048 DOI: 10.1128/jvi.00285-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/23/2018] [Indexed: 12/28/2022] Open
Abstract
Analytic treatment interruption (ATI) studies are required to evaluate strategies aimed at achieving ART-free HIV remission, but the impact of ATI on the viral reservoir remains unclear. We validated a DNA size selection-based assay for measuring levels of integrated HIV DNA and applied it to assess the effects of short-term ATI on the HIV reservoir. Samples from participants from four AIDS Clinical Trials Group ATI studies were assayed for integrated HIV DNA levels. Cryopreserved peripheral blood mononuclear cells (PBMCs) were obtained for 12 participants with available samples pre-ATI and approximately 6 months after ART resumption. Four participants also had samples available during the ATI. The median duration of ATI was 12 weeks. Validation of the HIV integrated DNA size-exclusion (HIDE) assay was performed using samples spiked with unintegrated HIV DNA, HIV-infected cell lines, and participant PBMCs. The HIDE assay eliminated 99% of unintegrated HIV DNA species and strongly correlated with the established Alu-gag assay. For the majority of individuals, integrated DNA levels increased during ATI and subsequently declined upon ART resumption. There was no significant difference in the levels of integrated HIV DNA between the pre- and post-ATI time points, with a median ratio of post- to pre-ATI HIV DNA levels of 0.95. Using a new integrated HIV DNA assay, we found minimal change in the levels of integrated HIV DNA in participants who underwent an ATI, followed by 6 months of ART. This suggests that short-term ATI can be conducted without a significant impact on the levels of integrated proviral DNA in the peripheral blood.IMPORTANCE Interventions aimed at achieving sustained antiretroviral therapy (ART)-free HIV remission require treatment interruption trials to assess their efficacy. However, these trials are accompanied by safety concerns related to the expansion of the viral reservoir. We validated an assay that uses an automated DNA size-selection platform for quantifying levels of integrated HIV DNA and is less sample- and labor-intensive than current assays. Using stored samples from AIDS Clinical Trials Group studies, we found that short-term ART discontinuation had minimal impact on integrated HIV DNA levels after ART resumption, providing reassurance about the reservoir effects of short-term treatment interruption trials.
Collapse
|
21
|
Vibholm L, Schleimann MH, Højen JF, Benfield T, Offersen R, Rasmussen K, Olesen R, Dige A, Agnholt J, Grau J, Buzon M, Wittig B, Lichterfeld M, Petersen AM, Deng X, Abdel-Mohsen M, Pillai SK, Rutsaert S, Trypsteen W, De Spiegelaere W, Vandekerchove L, Østergaard L, Rasmussen TA, Denton PW, Tolstrup M, Søgaard OS. Short-Course Toll-Like Receptor 9 Agonist Treatment Impacts Innate Immunity and Plasma Viremia in Individuals With Human Immunodeficiency Virus Infection. Clin Infect Dis 2018; 64:1686-1695. [PMID: 28329286 DOI: 10.1093/cid/cix201] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/03/2017] [Indexed: 12/22/2022] Open
Abstract
Background. Treatment with latency reversing agents (LRAs) enhances human immunodeficiency virus type 1 (HIV-1) transcription in vivo but leads to only modest reductions in the size of the reservoir, possibly due to insufficient immune-mediated elimination of infected cells. We hypothesized that a single drug molecule-a novel Toll-like receptor 9 (TLR9) agonist, MGN1703-could function as an enhancer of innate immunity and an LRA in vivo. Methods. We conducted a single-arm, open-label study in which 15 virologically suppressed HIV-1-infected individuals on antiretroviral therapy received 60 mg MGN1703 subcutaneously twice weekly for 4 weeks. We characterized plasmacytoid dendritic cell, natural killer (NK), and T-cell activation using flow cytometry on baseline and after 4 weeks of treatment. HIV-1 transcription was quantified by measuring plasma HIV-1 RNA during MGN1703 administration. Results. In accordance with the cell type-specific expression of TLR9, MGN1703 treatment led to pronounced activation of plasmacytoid dendritic cells and substantial increases in plasma interferon-α2 levels (P < .0001). Consistently, transcription of interferon-stimulated genes (eg, OAS1, ISG15, Mx1; each P < .0001) were upregulated in CD4+ T cells as demonstrated by RNA sequencing. Further, proportions of activated cytotoxic NK cells and CD8+ T cells increased significantly during MGN1703 dosing, suggesting an enhancement of cellular immune responses. In 6 of 15 participants, plasma HIV-1 RNA increased from <20 copies/mL to >1500 copies/mL (range, 21-1571 copies/mL) during treatment. Conclusions. TLR9 agonist treatment in HIV infection has a dual potential by increasing HIV-1 transcription and enhancing cytotoxic NK cell activation, both of which are key outcomes in HIV-1 eradication therapy. Clinical Trials Registration. NCT02443935.
Collapse
Affiliation(s)
- Line Vibholm
- Department of Infectious Diseases, Aarhus University Hospital.,Institute of Clinical Medicine, Aarhus University
| | - Mariane H Schleimann
- Department of Infectious Diseases, Aarhus University Hospital.,Institute of Clinical Medicine, Aarhus University
| | - Jesper F Højen
- Department of Infectious Diseases, Aarhus University Hospital.,Institute of Clinical Medicine, Aarhus University
| | - Thomas Benfield
- Department of Infectious Diseases, Hvidovre Hospital, University of Copenhagen, and
| | - Rasmus Offersen
- Department of Infectious Diseases, Aarhus University Hospital.,Institute of Clinical Medicine, Aarhus University
| | | | - Rikke Olesen
- Department of Infectious Diseases, Aarhus University Hospital
| | - Anders Dige
- Institute of Clinical Medicine, Aarhus University.,Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | - Jørgen Agnholt
- Institute of Clinical Medicine, Aarhus University.,Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | - Judith Grau
- Hebron Institute of Research, Department of Infectious Diseases, Barcelona, Spain
| | - Maria Buzon
- Hebron Institute of Research, Department of Infectious Diseases, Barcelona, Spain
| | - Burghardt Wittig
- Foundation Institute Molecular Biology and Bioinformatics, Freie Universitaet, Berlin, Germany
| | - Mathias Lichterfeld
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston; Departments of
| | - Andreas Munk Petersen
- Gastroenterology and.,Microbiology, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, California, and.,University of California, San Francisco
| | - Mohamed Abdel-Mohsen
- Blood Systems Research Institute, San Francisco, California, and.,University of California, San Francisco.,The Wistar Institute, Philadelphia, Pennsylvania; and Departments of
| | - Satish K Pillai
- Blood Systems Research Institute, San Francisco, California, and.,University of California, San Francisco
| | | | | | - Ward De Spiegelaere
- Internal Medicine; and.,Morphology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | | | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital.,Institute of Clinical Medicine, Aarhus University
| | | | - Paul W Denton
- Department of Infectious Diseases, Aarhus University Hospital.,Institute of Clinical Medicine, Aarhus University
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital.,Institute of Clinical Medicine, Aarhus University
| | - Ole S Søgaard
- Department of Infectious Diseases, Aarhus University Hospital.,Institute of Clinical Medicine, Aarhus University
| |
Collapse
|
22
|
Pinzone MR, O’Doherty U. Measuring integrated HIV DNA ex vivo and in vitro provides insights about how reservoirs are formed and maintained. Retrovirology 2018; 15:22. [PMID: 29452580 PMCID: PMC5816390 DOI: 10.1186/s12977-018-0396-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/19/2018] [Indexed: 11/29/2022] Open
Abstract
The identification of the most appropriate marker to measure reservoir size has been a great challenge for the HIV field. Quantitative viral outgrowth assay (QVOA), the reference standard to quantify the amount of replication-competent virus, has several limitations, as it is laborious, expensive, and unable to robustly reactivate every single integrated provirus. PCR-based assays have been developed as an easier, cheaper and less error-prone alternative to QVOA, but also have limitations. Historically, measuring integrated HIV DNA has provided insights about how reservoirs are formed and maintained. In the 1990s, measuring integrated HIV DNA was instrumental in understanding that a subset of resting CD4 T cells containing integrated HIV DNA were the major source of replication-competent virus. Follow-up studies have further characterized the phenotype of these cells containing integrated HIV DNA, as well as shown the correlation between the integration levels and clinical parameters, such as duration of infection, CD4 count and viral load. Integrated HIV DNA correlates with total HIV measures and with QVOA. The integration assay has several limitations. First, it largely overestimates the reservoir size, as both defective and replication-competent proviruses are detected. Since defective proviruses are the majority in patients on ART, it follows that the number of proviruses capable of reactivating and releasing new virions is significantly smaller than the number of integrated proviruses. Second, in patients on ART clonal expansion could theoretically lead to the preferential amplification of proviruses close to an Alu sequence though longitudinal studies have not captured this effect. Proviral sequencing combined with integration measures is probably the best estimate of reservoir size, but it is expensive, time-consuming and requires considerable bioinformatics expertise. All these reasons limit its use on a large scale. Herein, we review the utility of measuring HIV integration and suggest combining it with sequencing and total HIV measurements can provide insights that underlie reservoir maintenance.
Collapse
Affiliation(s)
- Marilia Rita Pinzone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Una O’Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
23
|
Rutsaert S, Bosman K, Trypsteen W, Nijhuis M, Vandekerckhove L. Digital PCR as a tool to measure HIV persistence. Retrovirology 2018; 15:16. [PMID: 29378600 PMCID: PMC5789538 DOI: 10.1186/s12977-018-0399-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/19/2018] [Indexed: 11/12/2022] Open
Abstract
Although antiretroviral therapy is able to suppress HIV replication in infected patients, the virus persists and rebounds when treatment is stopped. In order to find a cure that can eradicate the latent reservoir, one must be able to quantify the persisting virus. Traditionally, HIV persistence studies have used real-time PCR (qPCR) to measure the viral reservoir represented by HIV DNA and RNA. Most recently, digital PCR is gaining popularity as a novel approach to nucleic acid quantification as it allows for absolute target quantification. Various commercial digital PCR platforms are nowadays available that implement the principle of digital PCR, of which Bio-Rad’s QX200 ddPCR is currently the most used platform in HIV research. Quantification of HIV by digital PCR is proving to be a valuable improvement over qPCR as it is argued to have a higher robustness to mismatches between the primers-probe set and heterogeneous HIV, and forfeits the need for a standard curve, both of which are known to complicate reliable quantification. However, currently available digital PCR platforms occasionally struggle with unexplained false-positive partitions, and reliable segregation between positive and negative droplets remains disputed. Future developments and advancements of the digital PCR technology are promising to aid in the accurate quantification and characterization of the persistent HIV reservoir.
Collapse
Affiliation(s)
- Sofie Rutsaert
- HIV Cure Research Center, Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Kobus Bosman
- Department of Medical Microbiology, Virology, UMC Utrecht, Utrecht, The Netherlands
| | - Wim Trypsteen
- HIV Cure Research Center, Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Monique Nijhuis
- Department of Medical Microbiology, Virology, UMC Utrecht, Utrecht, The Netherlands
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
24
|
Zhang M, Robinson TO, Duverger A, Kutsch O, Heath SL, Cron RQ. Regulatory CD4 T cells inhibit HIV-1 expression of other CD4 T cell subsets via interactions with cell surface regulatory proteins. Virology 2018; 516:21-29. [PMID: 29324358 DOI: 10.1016/j.virol.2017.12.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 01/16/2023]
Abstract
During chronic HIV-1 infection, regulatory CD4 T cells (Tregs) frequently represent the largest subpopulation of CD4 T cell subsets, implying relative resistant to HIV-1. When HIV-1 infection of CD4 T cells was explored in vitro and ex vivo from patient samples, Tregs possessed lower levels of HIV-1 DNA and RNA in comparison with conventional effector and memory CD4 T cells. Moreover, Tregs suppressed HIV-1 expression in other CD4 T cells in an in vitro co-culture system. This suppression was mediated in part via multiple inhibitory surface proteins expressed on Tregs. Antibody blockade of CTLA-4, PD-1, and GARP on Tregs resulted in increased HIV-1 DNA integration and mRNA expression in neighboring CD4 T cells. Moreover, antibody blockade of Tregs inhibitory proteins resulted in increased HIV-1 LTR transcription in co-cultured CD4 T cells. Thus, Tregs inhibit HIV-1 infection of other CD4 T cell subsets via interactions with inhibitory cell surface proteins.
Collapse
Affiliation(s)
- Mingce Zhang
- Division of Rheumatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Tanya O Robinson
- Division of Rheumatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Alexandra Duverger
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Olaf Kutsch
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Sonya L Heath
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Randy Q Cron
- Division of Rheumatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
25
|
Exploring viral reservoir: The combining approach of cell sorting and droplet digital PCR. Methods 2017; 134-135:98-105. [PMID: 29197654 DOI: 10.1016/j.ymeth.2017.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/24/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022] Open
Abstract
Combined antiretroviral therapy (cART) blocks different steps of HIV replication and maintains plasma viral RNA at undetectable levels. The virus can remain in long-living cells and create a reservoir where HIV can restart replicating after cART discontinuation. A persistent viral production triggers and maintains a persistent immune activation, which is a well-known feature of chronic HIV infection, and contributes either to precocious aging, or to the increased incidence of morbidity and mortality of HIV positive patients. The new frontier of the treatment of HIV infection is nowadays eradication of the virus from all host cells and tissues. For this reason, it is crucial to have a clear and precise idea of where the virus hides, and which are the cells that keep it silent. Important efforts have been made to improve the detection of viral reservoirs, and new techniques are now giving the opportunity to characterize viral reservoirs. Among these techniques, a strategic approach based upon cell sorting and droplet digital PCR (ddPCR) is opening new horizons and opportunities of research. This review provides an overview of the methods that combine cell sorting and ddPCR for the quantification of HIV DNA in different cell types, and for the detection of its maintenance.
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Despite the success of antiretroviral therapy in suppressing HIV, life-long therapy is required to avoid HIV reactivation from long-lived viral reservoirs. Currently, there is intense interest in searching for therapeutic interventions that can purge the viral reservoir to achieve complete remission in HIV patients off antiretroviral therapy. The evaluation of such interventions relies on our ability to accurately and precisely measure the true size of the viral reservoir. In this review, we assess the most commonly used HIV reservoir assays, as a clear understanding of the strengths and weaknesses of each is vital for the accurate interpretation of results and for the development of improved assays. RECENT FINDINGS The quantification of intracellular or plasma HIV RNA or DNA levels remains the most commonly used tests for the characterization of the viral reservoir. While cost-effective and high-throughput, these assays are not able to differentiate between replication-competent or defective fractions or quantify the number of infected cells. Viral outgrowth assays provide a lower bound for the fraction of cells that can produce infectious virus, but these assays are laborious, expensive and substantially underestimate the potential reservoir of replication-competent provirus. Newer assays are now available that seek to overcome some of these problems, including full-length proviral sequencing, inducible HIV RNA assays, ultrasensitive p24 assays and murine adoptive transfer techniques. The development and evaluation of strategies for HIV remission rely upon our ability to accurately and precisely quantify the size of the remaining viral reservoir. At this time, all current HIV reservoir assays have drawbacks such that combinations of assays are generally needed to gain a more comprehensive view of the viral reservoir. The development of novel, rapid, high-throughput assays that can sensitively quantify the levels of the replication-competent HIV reservoir is still needed.
Collapse
Affiliation(s)
- Radwa R Sharaf
- Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne St, Rm 421, Cambridge, Boston, MA, 02139, USA
| | - Jonathan Z Li
- Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne St, Rm 421, Cambridge, Boston, MA, 02139, USA.
| |
Collapse
|
27
|
Ruggiero A, Malatinkova E, Rutsaert S, Paxton WA, Vandekerckhove L, De Spiegelaere W. Utility of integrated HIV-1 DNA quantification in cure studies. Future Virol 2017. [DOI: 10.2217/fvl-2016-0130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Numerous HIV-1 curative strategies have been proposed to eradicate the virus reservoir pool that remains integrated within target cells, despite successful antiretroviral therapy. To test the impact of such interventions on this reservoir, a universal marker of persistence is needed. Quantifying integrated HIV-1 DNA load has been proposed as a strong virological marker. In this paper, we provide a detailed description of the most commonly used assays to quantify integrated HIV-1 DNA and applications in relevant clinical studies produced over the last 20 years with a major focus on the recent literature. We discuss the potential for using this marker of virological persistence and the technical limitations that need to be addressed.
Collapse
Affiliation(s)
- Alessandra Ruggiero
- Department of Clinical Infection, Microbiology & Immunology (CIMI), Institute of Infection & Global Health, University of Liverpool, Liverpool, UK
| | - Eva Malatinkova
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium
| | - Sofie Rutsaert
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium
| | - William A Paxton
- Department of Clinical Infection, Microbiology & Immunology (CIMI), Institute of Infection & Global Health, University of Liverpool, Liverpool, UK
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine & Health Sciences, Ghent University, Belgium
| | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Sciences, Ghent University, Belgium
| |
Collapse
|
28
|
Monitoring Integration over Time Supports a Role for Cytotoxic T Lymphocytes and Ongoing Replication as Determinants of Reservoir Size. J Virol 2016; 90:10436-10445. [PMID: 27630237 DOI: 10.1128/jvi.00242-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/15/2016] [Indexed: 01/30/2023] Open
Abstract
The dynamics of HIV reservoir accumulation off antiretroviral therapy (ART) is underexplored. Levels of integrated HIV DNA in peripheral blood mononuclear cells (PBMCs) were longitudinally monitored before and after antiviral therapy. HIV integration increased over time in both elite controllers (ECs; n = 8) and noncontrollers (NCs; n = 6) before ART, whereas integration remained stable in patients on ART (n = 4). The median annual fold change was higher in NCs than in ECs and negatively correlated with CD4/CD8 T-cell ratio. Cytotoxic T lymphocyte (CTL) function as assessed by infected CD4 T-cell elimination (ICE) and granzyme B activity did not significantly change over time in ECs, suggesting that the gradual increase in integrated HIV DNA observed in ECs was not a result of progressive loss of immune-mediated control. Also, acutely infected (n = 7) but not chronically infected (n = 6) patients exhibited a significant drop in integrated HIV DNA 12 months after ART initiation. In conclusion, in the absence of ART, integrated HIV accumulates over time both in NCs and in ECs, at variable individual rates. Starting ART early in infection leads to a greater drop in integrated HIV DNA than does initiating treatment after years of infection. The increase in integrated HIV DNA over time suggests that early treatment may be of benefit in limiting HIV reservoirs. IMPORTANCE The establishment of a latent reservoir represents a barrier to cure among HIV-infected individuals. The dynamics of HIV reservoir accumulation over time in patients before antiviral therapy is underexplored, in large part because it is difficult to accurately and reproducibly measure the size of HIV reservoir in this setting. In our study, we compared the dynamics of integrated HIV DNA over time in ECs and NCs before and after ART was initiated. We found that integrated HIV DNA levels progressively increase over time in the absence of ART, but with a higher, albeit variable, rate in NCs compared to ECs. In addition, integrated HIV DNA declines more dramatically when ART is initiated in acute rather than chronic HIV infection, suggesting important differences between acute and chronic infection. Our study highlights the role of HIV replication and CTL control in reservoir accumulation in sanctuary sites and why ART appears to be more effective in acute infection.
Collapse
|
29
|
Mavigner M, Lee ST, Habib J, Robinson C, Silvestri G, O’Doherty U, Chahroudi A. Quantifying integrated SIV-DNA by repetitive-sampling Alu-gag PCR. J Virus Erad 2016; 2:219-226. [PMID: 27781104 PMCID: PMC5075349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES Although antiretroviral therapy (ART) effectively suppresses HIV-1 replication, it does not eradicate the virus and ART interruption consistently results in rebound of viraemia, demonstrating the persistence of a long-lived viral reservoir. Several approaches aimed at reducing virus persistence are being developed, and accurate measurements of the latent reservoir (LR) are necessary to assess the effectiveness of anti-latency interventions. We sought to measure the LR in SIV/SHIV-infected rhesus macaques (RMs) by quantifying integrated SIV-DNA. METHODS We optimised a repetitive sampling Alu-gag PCR to quantify integrated SIV-DNA ex vivo in ART-naïve and ART-experienced SIV/SHIV-infected RMs. RESULTS In ART-naïve RMs, we found the median level of integrated SIV-DNA to be 1660 copies and 866 copies per million PBMC during untreated acute and chronic SHIV infection, respectively. Integrated and total SIV-DNA levels were positively correlated with one another. In ART-treated RMs, integrated SIV-DNA was readily detected in lymph nodes and spleen and levels of total (3319 copies/million cells) and integrated (3160 copies/million cells) SIV-DNA were similar after a median of 404 days of ART. In peripheral blood CD4+ T cells from ART-treated RMs, levels of total (3319 copies/million cells) and integrated (2742 copies/million cells) SIV-DNA were not significantly different and were positively correlated. CONCLUSIONS The assay described here is validated and can be used in interventional studies testing HIV/SIV cure strategies in RMs. Measurement of integrated SIV-DNA in ART-treated RMs, along with other reservoir analyses, gives an estimate of the size of the LR.
Collapse
Affiliation(s)
- Maud Mavigner
- Yerkes National Primate Research Center,
Emory University,
Atlanta,
GA,
USA,Department of Pediatrics,
Emory University School of Medicine,
Atlanta,
GA,
USA
| | - S Thera Lee
- Yerkes National Primate Research Center,
Emory University,
Atlanta,
GA,
USA,Department of Pediatrics,
Emory University School of Medicine,
Atlanta,
GA,
USA
| | - Jakob Habib
- Department of Pediatrics,
Emory University School of Medicine,
Atlanta,
GA,
USA
| | - Cameron Robinson
- Yerkes National Primate Research Center,
Emory University,
Atlanta,
GA,
USA
| | - Guido Silvestri
- Yerkes National Primate Research Center,
Emory University,
Atlanta,
GA,
USA
| | - Una O’Doherty
- Department of Pathology and Laboratory Medicine,
University of Pennsylvania,
Philadelphia,
PA,
USA
| | - Ann Chahroudi
- Yerkes National Primate Research Center,
Emory University,
Atlanta,
GA,
USA,Department of Pediatrics,
Emory University School of Medicine,
Atlanta,
GA,
USA,Corresponding author: Ann Chahroudi,
E472, HSRB, 1760 Haygood Drive,
Atlanta,
GA30322,
USA
| |
Collapse
|
30
|
Mavigner M, Lee ST, Habib J, Robinson C, Silvestri G, O’Doherty U, Chahroudi A. Quantifying integrated SIV-DNA by repetitive-sampling Alu-gag PCR. J Virus Erad 2016. [DOI: 10.1016/s2055-6640(20)30870-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
31
|
Integrated and Total HIV-1 DNA Predict Ex Vivo Viral Outgrowth. PLoS Pathog 2016; 12:e1005472. [PMID: 26938995 PMCID: PMC4777389 DOI: 10.1371/journal.ppat.1005472] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/03/2016] [Indexed: 02/06/2023] Open
Abstract
The persistence of a reservoir of latently infected CD4 T cells remains one of the major obstacles to cure HIV. Numerous strategies are being explored to eliminate this reservoir. To translate these efforts into clinical trials, there is a strong need for validated biomarkers that can monitor the reservoir over time in vivo. A comprehensive study was designed to evaluate and compare potential HIV-1 reservoir biomarkers. A cohort of 25 patients, treated with suppressive antiretroviral therapy was sampled at three time points, with median of 2.5 years (IQR: 2.4–2.6) between time point 1 and 2; and median of 31 days (IQR: 28–36) between time point 2 and 3. Patients were median of 6 years (IQR: 3–12) on ART, and plasma viral load (<50 copies/ml) was suppressed for median of 4 years (IQR: 2–8). Total HIV-1 DNA, unspliced (us) and multiply spliced HIV-1 RNA, and 2LTR circles were quantified by digital PCR in peripheral blood, at 3 time points. At the second time point, a viral outgrowth assay (VOA) was performed, and integrated HIV-1 DNA and relative mRNA expression levels of HIV-1 restriction factors were quantified. No significant change was found for long- and short-term dynamics of all HIV-1 markers tested in peripheral blood. Integrated HIV-1 DNA was associated with total HIV-1 DNA (p<0.001, R² = 0.85), us HIV-1 RNA (p = 0.029, R² = 0.40), and VOA (p = 0.041, R2 = 0.44). Replication-competent virus was detected in 80% of patients by the VOA and it correlated with total HIV-1 DNA (p = 0.039, R² = 0.54). The mean quantification difference between Alu-PCR and VOA was 2.88 log10, and 2.23 log10 between total HIV-1 DNA and VOA. The levels of usHIV-1 RNA were inversely correlated with mRNA levels of several HIV-1 restriction factors (TRIM5α, SAMHD1, MX2, SLFN11, pSIP1). Our study reveals important correlations between the viral outgrowth and total and integrated HIV-1 DNA measures, suggesting that the total pool of HIV-1 DNA may predict the size of the replication-competent virus in ART suppressed patients. Current HIV-1 research aims to find a cure for HIV-1, either by pursuing viral eradication or by attempting to attain an immune-mediated functional cure. For the purpose of interpreting the findings of these eradication strategies, a validated representative biomarker of the replication-competent latent HIV-1 reservoir is urgently needed. In this study we have evaluated several cell-associated HIV-1 persistence markers, and we have measured replication-competent reservoir using the viral outgrowth assay (VOA). The results show a correlation between the pool of HIV-1 DNA and the replication-competent reservoir. Our data show that the pool of HIV-1 DNA (total or integrated HIV-1 DNA) can predict the amount of replication-competent latent HIV-1 in patients receiving treatment. Hence, PCR based assays quantifying integrated and/or total HIV-1 DNA can play an important role in future studies aiming at HIV-1 eradication.
Collapse
|
32
|
Kinloch-de Loes S, Dorrell L, Yang H, Hardy GAD, Yerly S, Cellerai C, Vandekerckhove L, De Spielgelaere W, Malatinkova E, Wee Lee Koh W, Johnson MA. Aviremia 10 Years Postdiscontinuation of Antiretroviral Therapy Initiated During Primary Human Immunodeficiency Virus-1 Infection and Association With Gag-Specific T-Cell Responses. Open Forum Infect Dis 2015; 2:ofv144. [PMID: 26613092 PMCID: PMC4659693 DOI: 10.1093/ofid/ofv144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/24/2015] [Indexed: 11/13/2022] Open
Abstract
Combination antiretroviral therapy during primary human immunodeficiency virus-1 infection may enable long-term drug-free virological control in rare individuals. We describe a female who maintained aviremia and a normal CD4(+)/CD8(+) T cell ratio for 10 years after stopping therapy, despite a persistent viral reservoir. Cellular immune responses may have contributed to this outcome.
Collapse
Affiliation(s)
- Sabine Kinloch-de Loes
- Division of Infection and Immunity , Royal Free Campus, University College London ; Royal Free Hospital , London ; Department of Immunology , University College London Medical School , Royal Free Campus
| | - Lucy Dorrell
- Nuffield Department of Medicine ; Oxford National Institute of Health Research Biomedical Research Centre , University of Oxford
| | - Hongbing Yang
- Nuffield Department of Medicine ; Oxford National Institute of Health Research Biomedical Research Centre , University of Oxford
| | - Gareth A D Hardy
- Centre for Immunology and Virology , Imperial College London ; Chelsea and Westminster Hospital , London , United Kingdom
| | - Sabine Yerly
- Laboratory of Virology , Geneva University Hospital
| | - Cristina Cellerai
- Division of Infection and Immunity , Royal Free Campus, University College London ; Division of Immunology and Allergy, Department of Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Linos Vandekerckhove
- HIV Translational Research Unit , Ghent University ; University Hospital Ghent , Belgium
| | - Ward De Spielgelaere
- HIV Translational Research Unit , Ghent University ; University Hospital Ghent , Belgium
| | - Eva Malatinkova
- HIV Translational Research Unit , Ghent University ; University Hospital Ghent , Belgium
| | - Willie Wee Lee Koh
- Department of Immunology and Molecular Pathology , University College London Medical School , University College London Campus , United Kingdom
| | - Margaret A Johnson
- Division of Infection and Immunity , Royal Free Campus, University College London ; Royal Free Hospital , London
| |
Collapse
|
33
|
Serrao E, Engelman AN. Sites of retroviral DNA integration: From basic research to clinical applications. Crit Rev Biochem Mol Biol 2015; 51:26-42. [PMID: 26508664 DOI: 10.3109/10409238.2015.1102859] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
One of the most crucial steps in the life cycle of a retrovirus is the integration of the viral DNA (vDNA) copy of the RNA genome into the genome of an infected host cell. Integration provides for efficient viral gene expression as well as for the segregation of viral genomes to daughter cells upon cell division. Some integrated viruses are not well expressed, and cells latently infected with human immunodeficiency virus type 1 (HIV-1) can resist the action of potent antiretroviral drugs and remain dormant for decades. Intensive research has been dedicated to understanding the catalytic mechanism of integration, as well as the viral and cellular determinants that influence integration site distribution throughout the host genome. In this review, we summarize the evolution of techniques that have been used to recover and map retroviral integration sites, from the early days that first indicated that integration could occur in multiple cellular DNA locations, to current technologies that map upwards of millions of unique integration sites from single in vitro integration reactions or cell culture infections. We further review important insights gained from the use of such mapping techniques, including the monitoring of cell clonal expansion in patients treated with retrovirus-based gene therapy vectors, or patients with acquired immune deficiency syndrome (AIDS) on suppressive antiretroviral therapy (ART). These insights span from integrase (IN) enzyme sequence preferences within target DNA (tDNA) at the sites of integration, to the roles of host cellular proteins in mediating global integration distribution, to the potential relationship between genomic location of vDNA integration site and retroviral latency.
Collapse
Affiliation(s)
- Erik Serrao
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Alan N Engelman
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA
| |
Collapse
|
34
|
Malatinkova E, De Spiegelaere W, Bonczkowski P, Kiselinova M, Vervisch K, Trypsteen W, Johnson M, Verhofstede C, de Looze D, Murray C, Kinloch-de Loes S, Vandekerckhove L. Impact of a decade of successful antiretroviral therapy initiated at HIV-1 seroconversion on blood and rectal reservoirs. eLife 2015; 4:e09115. [PMID: 26439007 PMCID: PMC4657623 DOI: 10.7554/elife.09115] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/01/2015] [Indexed: 12/14/2022] Open
Abstract
Persistent reservoirs remain the major obstacles to achieve an HIV-1 cure. Prolonged early antiretroviral therapy (ART) may reduce the extent of reservoirs and allow for virological control after ART discontinuation. We compared HIV-1 reservoirs in a cross-sectional study using polymerase chain reaction-based techniques in blood and tissue of early-treated seroconverters, late-treated patients, ART-naïve seroconverters, and long-term non-progressors (LTNPs) who have spontaneous virological control without treatment. A decade of early ART reduced the total and integrated HIV-1 DNA levels compared with later treatment initiation, but not reaching the low levels found in LTNPs. Total HIV-1 DNA in rectal biopsies did not differ between cohorts. Importantly, lower viral transcription (HIV-1 unspliced RNA) and enhanced immune preservation (CD4/CD8), reminiscent of LTNPs, were found in early compared to late-treated patients. This suggests that early treatment is associated with some immunovirological features of LTNPs that may improve the outcome of future interventions aimed at a functional cure. DOI:http://dx.doi.org/10.7554/eLife.09115.001 Many people with HIV infections are able to live relatively normal lives thanks to major advances in drug therapies. A cure, however, remains elusive. One reason for this is that the virus can hide in certain types of human cells, where it is protected from the immune system and the effects of “antiretroviral” drugs. This creates reservoirs of virus particles in the body that can quickly multiply and spread if treatment stops. Some people who become infected with HIV are able to contain the virus without the help of drug treatments. These individuals – known as long-term non-progressors – do not become ill and only have low numbers of HIV particles in reservoirs. People who receive treatment early in the course of an HIV infection also have fewer viruses in reservoirs and are less likely to develop severe illness. Therefore, it might be possible to develop a “functional” cure that may not completely eliminate the virus from the body, but would prevent illness and allow the individuals to eventually stop taking antiretroviral drugs. Now, Malatinkova, De Spiegelaere et al. studied samples from 84 patients with HIV-1 to find how much effect an early start to treatment has on the amount of the virus in reservoirs. People who started treatment soon after infection had lower levels of HIV-1 in their blood than people who started treatment later (even after 10 years of treatment). However, patients that started treatment early had higher levels of HIV-1 in the blood than the patients who were long-term non-progressors. All the patients had similar levels of HIV-1 in tissue samples taken from the rectum, regardless of when they started treatment. The experiments suggest that HIV-1 reservoirs form very soon after infection. Malatinkova, De Spiegelaere et al. found that in addition to reducing reservoirs of HIV-1, an early start to drug treatment reduced the ability of the virus to make copies of its genetic code. People who started treatment earlier also had healthier immune cells. Together, the experiments support the benefits of starting drug treatments as soon as possible after a person is infected with HIV-1. It is important to further characterize thoroughly the viral reservoir in patients with limited HIV-1 reservoirs and to look for other immune factors involved in virus control, in the search for a functional cure of HIV. DOI:http://dx.doi.org/10.7554/eLife.09115.002
Collapse
Affiliation(s)
- Eva Malatinkova
- HIV Translational Research Unit, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Ward De Spiegelaere
- HIV Translational Research Unit, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Pawel Bonczkowski
- HIV Translational Research Unit, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Maja Kiselinova
- HIV Translational Research Unit, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Karen Vervisch
- HIV Translational Research Unit, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Wim Trypsteen
- HIV Translational Research Unit, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Margaret Johnson
- Division of Infection and Immunity, Royal Free Hospital, London, United Kingdom
| | - Chris Verhofstede
- AIDS Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Danny de Looze
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Charles Murray
- Department of Gastroenterology, Royal Free Hospital, London, United Kingdom
| | | | - Linos Vandekerckhove
- HIV Translational Research Unit, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
35
|
Ruggiero A, De Spiegelaere W, Cozzi-Lepri A, Kiselinova M, Pollakis G, Beloukas A, Vandekerckhove L, Strain M, Richman D, Phillips A, Geretti AM. During Stably Suppressive Antiretroviral Therapy Integrated HIV-1 DNA Load in Peripheral Blood is Associated with the Frequency of CD8 Cells Expressing HLA-DR/DP/DQ. EBioMedicine 2015; 2:1153-9. [PMID: 26498496 PMCID: PMC4588402 DOI: 10.1016/j.ebiom.2015.07.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/13/2015] [Accepted: 07/17/2015] [Indexed: 11/26/2022] Open
Abstract
Background Characterising the correlates of HIV persistence improves understanding of disease pathogenesis and guides the design of curative strategies. This study investigated factors associated with integrated HIV-1 DNA load during consistently suppressive first-line antiretroviral therapy (ART). Method Total, integrated, and 2-long terminal repeats (LTR) circular HIV-1 DNA, residual plasma HIV-1 RNA, T-cell activation markers, and soluble CD14 (sCD14) were measured in peripheral blood of 50 patients that had received 1–14 years of efavirenz-based or nevirapine-based therapy. Results Integrated HIV-1 DNA load (per 106 peripheral blood mononuclear cells) was median 1.9 log10 copies (interquartile range 1.7–2.2) and showed a mean difference of 0.2 log10 copies per 10 years of suppressive ART (95% confidence interval − 0.2, 0.6; p = 0.28). It was positively correlated with total HIV-1 DNA load and frequency of CD8+HLA-DR/DP/DQ+ cells, and was also higher in subjects with higher sCD14 levels, but showed no correlation with levels of 2-LTR circular HIV-1 DNA and residual plasma HIV-1 RNA, or the frequency of CD4+CD38+ and CD8+CD38+ cells. Adjusting for pre-ART viral load, duration of suppressive ART, CD4 cell counts, residual plasma HIV-1 RNA levels, and sCD14 levels, integrated HIV-1 DNA load was mean 0.5 log10 copies higher for each 50% higher frequency of CD8+HLA-DR/DP/DQ+ cells (95% confidence interval 0.2, 0.9; p = 0.01). Conclusions The observed positive association between integrated HIV-1 DNA load and frequency of CD8+DR/DP/DQ+ cells indicates that a close correlation between HIV persistence and immune activation continues during consistently suppressive therapy. The inducers of the distinct activation profile warrant further investigation. Data from a homogenously treated population with consistent virological suppression Integrated HIV-1 DNA load did not vary significantly by duration of therapy Integrated HIV-1 DNA load was not associated with markers of recent virus replication Integrated HIV-1 DNA load and CD8+HLA-DR/DP/DQ+ frequency were positively associated Subjects with top quartile integrated HIV-1 DNA load showed high sCD14 levels
Integrated HIV-1 DNA load remains constant in the peripheral blood of individuals receiving long-term suppressive antiretroviral therapy (ART). However, the mechanisms preventing decay of the reservoir remain unclear. We studied a cross-sectional population, defined by the duration of suppressive ART. Integrated HIV-1 DNA load did not differ significantly according to the duration of suppressive ART, and showed no association with direct or indirect markers of ongoing virus replication. Rather, there was an independent, positive association between integrated HIV-1 DNA load and the frequency of CD8 cells expressing the activation marker HLA-DR/DP/DQ. These cells appear to have important regulatory and effector function. Our findings add to growing evidence that immune activation sustains the HIV-1 reservoir during long-term suppressive ART.
Collapse
Key Words
- 2-LTR, 2-long terminal repeats
- ART, Anti-retroviral therapy
- Activation
- CMV, cytomegalovirus virus
- CRN, Clinical Research Network
- EBV, Epstein-Bar virus
- ELISA, enzyme-linked immune-enzymatic assay
- HIC, HIV-1 controllers
- HIV-1 VL, HIV-1 viral load
- HIV-1, Human Immunodeficiency Virus type 1
- HLA, Human Leukocyte Antigen
- Integration
- LPS, lipopolysaccharide
- NIHR, National Institute for Health Research
- NNRTI, Non-nucleoside reverse-transcriptase inhibitors
- NRTI, nucleoside/nucleotide reverse transcriptase inhibitors
- PBMCs, Peripheral blood mononuclear cells
- PCR, Polymerase chain reaction
- PFA, paraformaldehyde
- Persistence
- Reservoir
- Suppression
- VLS, Viral Load Suppression
- WHO, World Health Organisation
- sCD14, soluble CD14
Collapse
Affiliation(s)
- Alessandra Ruggiero
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health (IGH), University of Liverpool, 8 West Derby Street, Liverpool L697BE, United Kingdom
| | - Ward De Spiegelaere
- HIV Translational Research Unit, Department of Internal Medicine, Ghent University and University Hospital Ghent, De Pintelaan 1859000, Ghent, Belgium
| | - Alessandro Cozzi-Lepri
- Department of Infection and Population Health, University College London, Royal Free Campus, Rowland Hill Street, London, NW32PF, United Kingdom
| | - Maja Kiselinova
- HIV Translational Research Unit, Department of Internal Medicine, Ghent University and University Hospital Ghent, De Pintelaan 1859000, Ghent, Belgium
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health (IGH), University of Liverpool, 8 West Derby Street, Liverpool L697BE, United Kingdom
| | - Apostolos Beloukas
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health (IGH), University of Liverpool, 8 West Derby Street, Liverpool L697BE, United Kingdom
| | - Linos Vandekerckhove
- HIV Translational Research Unit, Department of Internal Medicine, Ghent University and University Hospital Ghent, De Pintelaan 1859000, Ghent, Belgium
| | - Matthew Strain
- VA San Diego Healthcare System and Center for AIDS Research, University of California San Diego, La Jolla, CA 92093, United States
| | - Douglas Richman
- VA San Diego Healthcare System and Center for AIDS Research, University of California San Diego, La Jolla, CA 92093, United States
| | - Andrew Phillips
- Department of Infection and Population Health, University College London, Royal Free Campus, Rowland Hill Street, London, NW32PF, United Kingdom
| | - Anna Maria Geretti
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health (IGH), University of Liverpool, 8 West Derby Street, Liverpool L697BE, United Kingdom
| | | |
Collapse
|
36
|
Bruner KM, Hosmane NN, Siliciano RF. Towards an HIV-1 cure: measuring the latent reservoir. Trends Microbiol 2015; 23:192-203. [PMID: 25747663 PMCID: PMC4386620 DOI: 10.1016/j.tim.2015.01.013] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/23/2015] [Accepted: 01/28/2015] [Indexed: 02/07/2023]
Abstract
The latent reservoir (LR) of HIV-1 in resting memory CD4(+) T cells serves as a major barrier to curing HIV-1 infection. While many PCR- and culture-based assays have been used to measure the size of the LR, correlation between results of different assays is poor and recent studies indicate that no available assay provides an accurate measurement of reservoir size. The discrepancies between assays are a hurdle to clinical trials that aim to measure the efficacy of HIV-1 eradication strategies. Here we describe the advantages and disadvantages of various approaches to measuring the LR.
Collapse
Affiliation(s)
- Katherine M Bruner
- Department of Medicine, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, USA
| | - Nina N Hosmane
- Department of Medicine, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, 733 North Broadway, Baltimore, MD 21205, USA.
| |
Collapse
|