1
|
Grooms AJ, Burris BJ, Badu-Tawiah AK. Mass spectrometry for metabolomics analysis: Applications in neonatal and cancer screening. MASS SPECTROMETRY REVIEWS 2024; 43:683-712. [PMID: 36524560 PMCID: PMC10272294 DOI: 10.1002/mas.21826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Chemical analysis by analytical instrumentation has played a major role in disease diagnosis, which is a necessary step for disease treatment. While the treatment process often targets specific organs or compounds, the diagnostic step can occur through various means, including physical or chemical examination. Chemically, the genome may be evaluated to give information about potential genetic outcomes, the transcriptome to provide information about expression actively occurring, the proteome to offer insight on functions causing metabolite expression, or the metabolome to provide a picture of both past and ongoing physiological function in the body. Mass spectrometry (MS) has been elevated among other analytical instrumentation because it can be used to evaluate all four biological machineries of the body. In addition, MS provides enhanced sensitivity, selectivity, versatility, and speed for rapid turnaround time, qualities that are important for instance in clinical procedures involving the diagnosis of a pediatric patient in intensive care or a cancer patient undergoing surgery. In this review, we provide a summary of the use of MS to evaluate biomarkers for newborn screening and cancer diagnosis. As many reviews have recently appeared focusing on MS methods and instrumentation for metabolite analysis, we sought to describe the biological basis for many metabolomic and additional omics biomarkers used in newborn screening and how tandem MS methods have recently been applied, in comparison to traditional methods. Similar comparison is done for cancer screening, with emphasis on emerging MS approaches that allow biological fluids, tissues, and breath to be analyzed for the presence of diagnostic metabolites yielding insight for treatment options based on the understanding of prior and current physiological functions of the body.
Collapse
Affiliation(s)
- Alexander J Grooms
- Department of Chemistry and Biochemistry, The Ohio State University, Ohio, Columbus, USA
| | - Benjamin J Burris
- Department of Chemistry and Biochemistry, The Ohio State University, Ohio, Columbus, USA
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Ohio, Columbus, USA
| |
Collapse
|
2
|
Adang LA, Mowafy S, Herbst ZM, Zhou Z, Schlotawa L, Radhakrishnan K, Bentley B, Pham V, Yu E, Pillai NR, Orchard PJ, De Castro M, Vanderver A, Pasquali M, Gelb MH, Ahrens-Nicklas RC. Biochemical signatures of disease severity in multiple sulfatase deficiency. J Inherit Metab Dis 2024; 47:374-386. [PMID: 37870986 PMCID: PMC10947943 DOI: 10.1002/jimd.12688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Sulfatases catalyze essential cellular reactions, including degradation of glycosaminoglycans (GAGs). All sulfatases are post-translationally activated by the formylglycine generating enzyme (FGE) which is deficient in multiple sulfatase deficiency (MSD), a neurodegenerative lysosomal storage disease. Historically, patients were presumed to be deficient of all sulfatase activities; however, a more nuanced relationship is emerging. Each sulfatase may differ in their degree of post-translational modification by FGE, which may influence the phenotypic spectrum of MSD. Here, we evaluate if residual sulfatase activity and accumulating GAG patterns distinguish cases from controls and stratify clinical severity groups in MSD. We quantify sulfatase activities and GAG accumulation using three complementary methods in MSD participants. Sulfatases differed greatly in their tolerance of reduction in FGE-mediated activation. Enzymes that degrade heparan sulfate (HS) demonstrated lower residual activities than those that act on other GAGs. Similarly, HS-derived urinary GAG subspecies preferentially accumulated, distinguished cases from controls, and correlated with disease severity. Accumulation patterns of specific sulfatase substrates in MSD provide fundamental insights into sulfatase regulation and will serve as much-needed biomakers for upcoming clinical trials. This work highlights that biomarker investigation of an ultra-rare disease can simultaneously inform our understanding of fundamental biology and advance clinical trial readiness efforts.
Collapse
Affiliation(s)
- Laura A. Adang
- Division of Neurology, The Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Samar Mowafy
- Department of Chemistry, University of Washington, Seattle, Washington
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Abbassia, Egypt
| | - Zackary M. Herbst
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Zitao Zhou
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Lars Schlotawa
- Department of Pediatrics and Adolescent Medicine, University Medical Centre Göttingen, Germany
| | | | | | - Vi Pham
- Division of Human Genetics, The Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emily Yu
- Division of Neurology, The Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nishitha R. Pillai
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Paul J. Orchard
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Mauricio De Castro
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Adeline Vanderver
- Division of Neurology, The Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marzia Pasquali
- Department of Pathology and ARUP Laboratories, University of Utah School of Medicine, Salt Lake City, Utah
| | - Michael H. Gelb
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Rebecca C. Ahrens-Nicklas
- Division of Human Genetics, The Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Tajmir-Riahi A, Khatami S, Shemirani F, Mirzazadeh R. Two fluorimetric determinations of acid α-glucosidase activity in dried blood spot: Pompe disease in Iranian population. Anal Biochem 2023; 682:115346. [PMID: 37821037 DOI: 10.1016/j.ab.2023.115346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/14/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
INTRODUCTION Pompe disease is a lysosomal storage disorder. This study aimed to validate and compare 2 fluorimetric methods for measuring α-glucosidase acid activity in dried blood spot sample (DBS), with potential applications in neonatal screening, and disease follow-up of Pompe patients among the Iranian population for the first time. MATERIALS AND METHODS The evaluation involved 3 enzyme levels and 7 parameters. The analysis included 141 Healthy individuals, 8 Pompe patients, and 10 obligate heterozygotes using reference and modified methods. RESULTS Both methods exhibited highly linear calibration curves. The limit of detection (LOD) and limit of quantification (LOQ) were obtained in the micromolar concentration range in 2 methods. Inter-day and intra-day precision, expressed as relative standard deviations (RSD%) were calculated. The normal ranges were determined in healthy individuals. Receiver operating characteristic (ROC) curves were analyzed, and 2 parameters, total neutral α-glucosidase (NAG)/acid α-glucosidase (GAA) and pH ratio, were identified as cut-off values with excellent accuracy, sensitivity, and specificity for evaluating Pompe disease in both methods. CONCLUSIONS Establishing and implementing these 2 methods for the Iranian population effectively differentiated between healthy and patient individuals. Method II, with its shorter incubation time, demonstrated practicality in the clinical setting.
Collapse
Affiliation(s)
| | - Shohreh Khatami
- Biochemistry Department, Pasteur Institute of Iran, Tehran, Iran
| | - Farzaneh Shemirani
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | | |
Collapse
|
4
|
Zhang H, Yang Y, Jiang Y, Zhang M, Xu Z, Wang X, Jiang J. Mass Spectrometry Analysis for Clinical Applications: A Review. Crit Rev Anal Chem 2023; 55:213-232. [PMID: 37910438 DOI: 10.1080/10408347.2023.2274039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Mass spectrometry (MS) has become an attractive analytical method in clinical analysis due to its comprehensive advantages of high sensitivity, high specificity and high throughput. Separation techniques coupled MS detection (e.g., LC-MS/MS) have shown unique advantages over immunoassay and have developed as golden criterion for many clinical applications. This review summarizes the characteristics and applications of MS, and emphasizes the high efficiency of MS in clinical research. In addition, this review also put forward further prospects for the future of mass spectrometry technology, including the introduction of miniature MS instruments, point-of-care detection and high-throughput analysis, to achieve better development of MS technology in various fields of clinical application. Moreover, as ambient ionization mass spectrometry (AIMS) requires little or no sample pretreatment and improves the flux of MS, this review also summarizes its potential applications in clinic.
Collapse
Affiliation(s)
- Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
| | - Yali Yang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
| | - Meng Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China
| | - Zhilong Xu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China
| | - Xiaofei Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China
| |
Collapse
|
5
|
Malekkou A, Theodosiou A, Alexandrou A, Papaevripidou I, Sismani C, Jacobs EH, Ruijter GJ, Anastasiadou V, Ourani S, Athanasiou E, Drousiotou A, Grafakou O, Petrou PP. GAA variants associated with reduced enzymatic activity but lack of Pompe-related symptoms, incidentally identified by exome sequencing. Mol Genet Metab Rep 2023; 36:100997. [PMID: 37600231 PMCID: PMC10433214 DOI: 10.1016/j.ymgmr.2023.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023] Open
Abstract
Pompe disease is a rare metabolic myopathy caused by pathogenic variants affecting the activity of the lysosomal glycogen-degrading enzyme acid alpha-glucosidase (GAA). Impaired GAA function results in the accumulation of undegraded glycogen within lysosomes in multiple tissues but predominantly affects the skeletal, smooth and cardiac muscle. The degree of residual enzymatic activity appears to roughly correlate with the age of onset and the severity of the clinical symptoms. Here, we report four siblings in which the GAA variants NM_000152.5:c.2237G > C p.(Trp746Ser) and NM_000152.5:c.266G > A p.(Arg89His) were identified as an incidental finding of clinical exome sequencing. These variants are listed in the ClinVar and the Pompe disease GAA variant databases but are reported here for the first time in compound heterozygosity. All four siblings displayed normal urine tetrasaccharide levels and no clinical manifestations related to Pompe disease. Nevertheless, GAA enzymatic activity was within the range for late onset Pompe patients. Our report shows an association between a novel genotype and attenuated GAA enzymatic activity. The clinical significance can only be established by the regular monitoring of these individuals. The study highlights the major challenges for clinical care arising from incidental findings of next generation sequencing.
Collapse
Affiliation(s)
- Anna Malekkou
- Biochemical Genetics Department, The Cyprus Institute of Neurology and Genetics, P. O. Box 23462, 1683 Nicosia, Cyprus
| | - Athina Theodosiou
- Cytogenetics and Genomics Department, The Cyprus Institute of Neurology and Genetics, P. O. Box 23462, 1683 Nicosia, Cyprus
| | - Angelos Alexandrou
- Cytogenetics and Genomics Department, The Cyprus Institute of Neurology and Genetics, P. O. Box 23462, 1683 Nicosia, Cyprus
| | - Ioannis Papaevripidou
- Cytogenetics and Genomics Department, The Cyprus Institute of Neurology and Genetics, P. O. Box 23462, 1683 Nicosia, Cyprus
| | - Carolina Sismani
- Cytogenetics and Genomics Department, The Cyprus Institute of Neurology and Genetics, P. O. Box 23462, 1683 Nicosia, Cyprus
| | - Edwin H. Jacobs
- Center for Lysosomal and Metabolic Diseases, Department of Clinical Genetics, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - George J.G. Ruijter
- Center for Lysosomal and Metabolic Diseases, Department of Clinical Genetics, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Violetta Anastasiadou
- Clinical Genetics Department, Archbishop Makarios III Hospital, Korytsas 6, 2012 Nicosia, Cyprus
- Karaiskakio Foundation, P.O. Box 22680, 1523 Nicosia, Cyprus
| | - Sofia Ourani
- Clinical Genetics Department, Archbishop Makarios III Hospital, Korytsas 6, 2012 Nicosia, Cyprus
| | - Emilia Athanasiou
- Clinical Genetics Department, Archbishop Makarios III Hospital, Korytsas 6, 2012 Nicosia, Cyprus
| | - Anthi Drousiotou
- Biochemical Genetics Department, The Cyprus Institute of Neurology and Genetics, P. O. Box 23462, 1683 Nicosia, Cyprus
| | - Olga Grafakou
- Inborn Errors of Metabolism Clinic, Department of Pediatrics, Archbishop Makarios III Hospital, Korytsas 6, 2012 Nicosia, Cyprus
| | - Petros P. Petrou
- Biochemical Genetics Department, The Cyprus Institute of Neurology and Genetics, P. O. Box 23462, 1683 Nicosia, Cyprus
| |
Collapse
|
6
|
Ding S, Han L. Newborn screening for genetic disorders: Current status and prospects for the future. Pediatr Investig 2022; 6:291-298. [PMID: 36582269 PMCID: PMC9789938 DOI: 10.1002/ped4.12343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022] Open
Abstract
Newborn screening (NBS) is a public health service aimed at identifying infants with severe genetic disorders, thus providing effective treatment early enough to prevent or ameliorate the onset of symptoms. Current NBS uses biochemical analysis of dried blood spots, predominately with time-resolved fluorescence immunoassay and tandem mass spectrometry, which produces some false positives and false negatives. The application of enzymatic activity-based testing technology provides a reliable screening method for some disorders. Genetic testing is now commonly used for secondary or confirmatory testing after a positive result in some NBS programs. Recently, next-generation sequencing (NGS) has emerged as a robust tool that enables large panels of genes to be scanned together rapidly. Rapid advances in NGS emphasize the potential for genomic sequencing to improve NBS programs. However, some challenges still remain and require solution before this is applied for population screening.
Collapse
Affiliation(s)
- Si Ding
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric ResearchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric ResearchShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
7
|
Gragnaniello V, Pijnappel PW, Burlina AP, In 't Groen SL, Gueraldi D, Cazzorla C, Maines E, Polo G, Salviati L, Di Salvo G, Burlina AB. Newborn screening for Pompe disease in Italy: Long-term results and future challenges. Mol Genet Metab Rep 2022; 33:100929. [PMID: 36310651 PMCID: PMC9597184 DOI: 10.1016/j.ymgmr.2022.100929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Pompe disease (PD) is a progressive neuromuscular disorder caused by a lysosomal acid α-glucosidase (GAA) deficiency. Enzymatic replacement therapy is available, but early diagnosis by newborn screening (NBS) is essential for early treatment and better outcomes, especially with more severe forms. We present results from 7 years of NBS for PD and the management of infantile-onset (IOPD) and late-onset (LOPD) patients, during which we sought candidate predictive parameters of phenotype severity at baseline and during follow-up. We used a tandem mass spectrometry assay for α-glucosidase activity to screen 206,741 newborns and identified 39 positive neonates (0.019%). Eleven had two pathogenic variants of the GAA gene (3 IOPD, 8 LOPD); six carried variants of uncertain significance (VUS). IOPD patients were treated promptly and had good outcomes. LOPD and infants with VUS were followed; all were asymptomatic at the last visit (mean age 3.4 years, range 0.5–5.5). Urinary glucose tetrasaccharide was a useful and biomarker for rapidly differentiating IOPD from LOPD and monitoring response to therapy during follow-up. Our study, the largest reported to date in Europe, presents data from longstanding NBS for PD, revealing an incidence in North East Italy of 1/18,795 (IOPD 1/68,914; LOPD 1/25,843), and the absence of mortality in IOPD treated from birth. In LOPD, rigorous long-term follow-up is needed to evaluate the best time to start therapy. The high pseudodeficiency frequency, ethical issues with early LOPD diagnosis, and difficulty predicting phenotypes based on biochemical parameters and genotypes, especially in LOPD, need further study.
Collapse
Key Words
- Acid α-glucosidase
- CLIR, Collaborative Laboratory Integrated Reports
- CRIM, cross-reactive immunological material
- DBS, dried blood spot
- DMF, digital microfluidics
- ECG, electrocardiogram
- EF, ejection fraction
- EMG, electromyography
- ERT, enzyme replacement therapy
- Enzyme replacement therapy
- GAA, acid α-glucosidase
- GMFM-88, Gross Motor Function Measure
- Glc4, glucose tetrasaccharide
- IOPD, infantile-onset Pompe disease
- ITI, immunotolerance induction
- LOPD, late-onset Pompe disease
- LVMI, left ventricular max index
- MFM-20, motor function measurement
- MRC, Medical Research Council Scale
- MRI, magnetic resonance imaging
- MS/MS, tandem mass spectrometry
- NBS, newborn screening
- Newborn screening
- PBMC, peripheral blood mononuclear cells
- PD, Pompe disease
- PPV, positive predictive value
- Pompe disease
- RUSP, Recommended Uniform Screening Panel
- Tandem mass-spectrometry
- Urinary tetrasaccharide
- VUS, variants of uncertain significance.
- nv, normal values
- rhGAA, recombinant human GAA
Collapse
Affiliation(s)
- Vincenza Gragnaniello
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Pim W.W.M. Pijnappel
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Stijn L.M. In 't Groen
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Daniela Gueraldi
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Chiara Cazzorla
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Evelina Maines
- Division of Pediatrics, S. Chiara General Hospital, Trento, Italy
| | - Giulia Polo
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, and Myology Center, University of Padova, Padova, Italy
| | - Giovanni Di Salvo
- Division of Paediatric Cardiology, Department of Women's and Children's Health, University Hospital Padua, Padua, Italy
| | - Alberto B. Burlina
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
- Corresponding author at: Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, via Orus 2/c, 35129 Padua, Italy.
| |
Collapse
|
8
|
Zhang T, Duong P, Dayuha R, Collins CJ, Beckman E, Thies J, Chang I, Lam C, Sun A, Scott AI, Thompson J, Singh A, Khaledi H, Gelb MH, Hahn SH. A rapid and non-invasive proteomic analysis using DBS and buccal swab for multiplexed second-tier screening of Pompe disease and Mucopolysaccharidosis type I. Mol Genet Metab 2022; 136:296-305. [PMID: 35787971 PMCID: PMC10387444 DOI: 10.1016/j.ymgme.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE Current newborn screening programs for Pompe disease (PD) and mucopolysaccharidosis type I (MPS I) suffer from a high false positive rate and long turnaround time for clinical follow up. This study aimed to develop a novel proteomics-based assay for rapid and accurate second-tier screening of PD and MPS I. A fast turnaround assay would enable the identification of severe cases who need immediate clinical follow up and treatment. METHODS We developed an immunocapture coupled with mass spectrometry-based proteomics (Immuno-SRM) assay to quantify GAA and IDUA proteins in dried blood spots (DBS) and buccal swabs. Sensitivity, linearity, reproducibility, and protein concentration range in healthy control samples were determined. Clinical performance was evaluated in known PD and MPS I patients as well as pseudodeficiency and carrier cases. RESULTS Using three 3.2 mm punches (~13.1 μL of blood) of DBS, the assay showed reproducible and sensitive quantification of GAA and IDUA. Both proteins can also be quantified in buccal swabs with high reproducibility and sensitivity. Infantile onset Pompe disease (IOPD) and severe MPS I cases are readily identifiable due to the absence of GAA and IDUA, respectively. In addition, late onset Pompe disease (LOPD) and attenuated MPS I patients showed much reduced levels of the target protein. By contrast, pseudodeficiency and carrier cases exhibited significant higher target protein levels compared to true patients. CONCLUSION Direct quantification of endogenous GAA and IDUA peptides in DBS by Immuno-SRM can be used for second-tier screening to rapidly identify severe PD and MPS I patients with a turnaround time of <1 week. Such patients could benefit from immediate clinical follow up and possibly earlier treatment.
Collapse
Affiliation(s)
- Tong Zhang
- Seattle Children's Research Institute, Seattle, WA, United States of America
| | - Phi Duong
- Seattle Children's Research Institute, Seattle, WA, United States of America
| | - Remwilyn Dayuha
- Seattle Children's Research Institute, Seattle, WA, United States of America
| | | | - Erika Beckman
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA, United States of America
| | - Jenny Thies
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA, United States of America
| | - Irene Chang
- Biochemical Genetics Clinic, Seattle Children's Hospital, Seattle, WA, United States of America; Department of Pediatrics, Division of Genetic Medicine, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Christina Lam
- Biochemical Genetics Clinic, Seattle Children's Hospital, Seattle, WA, United States of America; Department of Pediatrics, Division of Genetic Medicine, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Angela Sun
- Biochemical Genetics Clinic, Seattle Children's Hospital, Seattle, WA, United States of America; Department of Pediatrics, Division of Genetic Medicine, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Anna I Scott
- Department of Laboratory, Seattle Children's Hospital, Seattle, WA, United States of America
| | - John Thompson
- WA State Department of Health, Seattle, WA, United States of America
| | - Aranjeet Singh
- WA State Department of Health, Seattle, WA, United States of America
| | - Hamid Khaledi
- Department of Chemistry, University of Washington, Seattle, WA, United States of America
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, WA, United States of America
| | - Si Houn Hahn
- Seattle Children's Research Institute, Seattle, WA, United States of America; Biochemical Genetics Clinic, Seattle Children's Hospital, Seattle, WA, United States of America; Department of Pediatrics, Division of Genetic Medicine, University of Washington School of Medicine, Seattle, WA, United States of America.
| |
Collapse
|
9
|
Strovel ET, Cusmano-Ozog K, Wood T, Yu C. Measurement of lysosomal enzyme activities: A technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2022; 24:769-783. [PMID: 35394426 DOI: 10.1016/j.gim.2021.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Assays that measure lysosomal enzyme activity are important tools for the screening and diagnosis of lysosomal storage disorders (LSDs). They are often ordered in combination with urine oligosaccharide and glycosaminoglycan analysis, additional biomarker assays, and/or DNA sequencing when an LSD is suspected. Enzyme testing in whole blood/leukocytes, serum/plasma, cultured fibroblasts, or dried blood spots demonstrating deficient enzyme activity remains a key component of LSD diagnosis and is often prompted by characteristic clinical findings, abnormal newborn screening, abnormal biochemical findings (eg, elevated glycosaminoglycans), or molecular results indicating pathogenic variants or variants of uncertain significance in a gene associated with an LSD. This document, which focuses on clinical enzyme testing for LSDs, provides a resource for laboratories to develop and implement clinical testing, to describe variables that can influence test performance and interpretation of results, and to delineate situations for which follow-up molecular testing is warranted.
Collapse
Affiliation(s)
- Erin T Strovel
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | | | - Tim Wood
- Section of Genetics and Metabolism, Department of Pediatrics, School of Medicine, Children's Hospital Colorado Anschutz Medical Campus, Aurora, CO
| | - Chunli Yu
- Department of Genetics and Genomics Science, Icahn School of Medicine at Mount Sinai, New York, NY; Sema4, Stamford, CT
| |
Collapse
|
10
|
Bychkov I, Baydakova G, Filatova A, Migiaev O, Marakhonov A, Pechatnikova N, Pomerantseva E, Konovalov F, Ampleeva M, Kaimonov V, Skoblov M, Zakharova E. Complex Transposon Insertion as a Novel Cause of Pompe Disease. Int J Mol Sci 2021; 22:ijms221910887. [PMID: 34639227 PMCID: PMC8509548 DOI: 10.3390/ijms221910887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022] Open
Abstract
Pompe disease (OMIM#232300) is an autosomal recessive lysosomal storage disorder caused by mutations in the GAA gene. According to public mutation databases, more than 679 pathogenic variants have been described in GAA, none of which are associated with mobile genetic elements. In this article, we report a novel molecular genetic cause of Pompe disease, which could be hardly detected using routine molecular genetic analysis. Whole genome sequencing followed by comprehensive functional analysis allowed us to discover and characterize a complex mobile genetic element insertion deep in the intron 15 of the GAA gene in a patient with infantile onset Pompe disease.
Collapse
Affiliation(s)
- Igor Bychkov
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (G.B.); (A.F.); (O.M.); (A.M.); (M.S.); (E.Z.)
- Correspondence:
| | - Galina Baydakova
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (G.B.); (A.F.); (O.M.); (A.M.); (M.S.); (E.Z.)
| | - Alexandra Filatova
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (G.B.); (A.F.); (O.M.); (A.M.); (M.S.); (E.Z.)
| | - Ochir Migiaev
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (G.B.); (A.F.); (O.M.); (A.M.); (M.S.); (E.Z.)
| | - Andrey Marakhonov
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (G.B.); (A.F.); (O.M.); (A.M.); (M.S.); (E.Z.)
| | | | - Ekaterina Pomerantseva
- Center of Genetics and Reproductive Medicine GENETICO, JSC, 119333 Moscow, Russia; (E.P.); (V.K.)
| | - Fedor Konovalov
- Independent Clinical Bioinformatics Laboratory, 123181 Moscow, Russia; (F.K.); (M.A.)
| | - Maria Ampleeva
- Independent Clinical Bioinformatics Laboratory, 123181 Moscow, Russia; (F.K.); (M.A.)
| | - Vladimir Kaimonov
- Center of Genetics and Reproductive Medicine GENETICO, JSC, 119333 Moscow, Russia; (E.P.); (V.K.)
| | - Mikhail Skoblov
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (G.B.); (A.F.); (O.M.); (A.M.); (M.S.); (E.Z.)
| | - Ekaterina Zakharova
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (G.B.); (A.F.); (O.M.); (A.M.); (M.S.); (E.Z.)
| |
Collapse
|
11
|
Liao HC, Jack R, Scott AI. Galactocerebrosidase activity by liquid-chromatography tandem mass spectrometry for clinical diagnosis of Krabbe disease. Clin Chim Acta 2021; 519:300-305. [PMID: 34015306 DOI: 10.1016/j.cca.2021.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Deficiency of galactosylcerebrosidase (GALC) causes Krabbe disease. Historically, a diagnosis is made by measuring GALC enzymatic activity with a radioisotope assay. To improve the workflow and performance, we developed and clinically validated a leukocyte enzymatic assay using liquid chromatography tandem mass spectrometry (LC-MS/MS). MATERIALS Extracted cell lysates were quantified and incubated with commercially available multiplexed substrates and internal standards. Liquid-liquid extraction was performed, and pre-analytical and analytical variability were evaluated and validated following clinical laboratory regulation guidelines. RESULTS Enzymatic reaction products were resolved from substrate breakdown products by a 3.5-minute column separation. Intra- and inter- assay imprecision were less than 15%. No matrix effects or carryover were observed. ACD anticoagulant tubes provide the best sample stability. Detection of product was linear with an R2 of 0.99. Small differences in GALC activity were measurable near the anticipated disease range. Confirmed cases of Krabbe disease were well differentiated from carriers and non-Krabbe individuals (normal reference range). CONCLUSION An LC-MS/MS assay was developed, which can measure trace residual GALC activity in leukocytes and aid in the diagnosis of Krabbe disease. The multiplexed mixture allows for built-in sample quality control and enables a streamlined workflow for evaluation of multiple lysosomal storage diseases.
Collapse
Affiliation(s)
- Hsuan-Chieh Liao
- University of Washington, Department of Laboratory Medicine and Pathology, Seattle, WA, United States; Seattle Children's Hospital, Department of Laboratories, Seattle, WA, United States
| | - Rhona Jack
- University of Washington, Department of Laboratory Medicine and Pathology, Seattle, WA, United States; Seattle Children's Hospital, Department of Laboratories, Seattle, WA, United States
| | - Anna I Scott
- University of Washington, Department of Laboratory Medicine and Pathology, Seattle, WA, United States; Seattle Children's Hospital, Department of Laboratories, Seattle, WA, United States.
| |
Collapse
|
12
|
Karam C, Ragole T, Moshe-Lilie O, Chahin N. Unwarranted, long term, alglucosidase alfa enzyme replacement therapy in two non-Pompe disease patients. Clin Neurol Neurosurg 2020; 196:106048. [DOI: 10.1016/j.clineuro.2020.106048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 10/24/2022]
|
13
|
Hong X, Kumar AB, Daiker J, Yi F, Sadilek M, De Mattia F, Fumagalli F, Calbi V, Damiano R, Della Bona M, la Marca G, Vanderver AL, Waldman AT, Adang L, Sherbini O, Woidill S, Suhr T, Kurtzberg J, Beltran-Quintero ML, Escolar M, Aiuti A, Finglas A, Olsen A, Gelb MH. Leukocyte and Dried Blood Spot Arylsulfatase A Assay by Tandem Mass Spectrometry. Anal Chem 2020; 92:6341-6348. [PMID: 31922725 DOI: 10.1021/acs.analchem.9b05274] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) assays were developed to measure arylsulfatase A (ARSA) activity in leukocytes and dried blood spots (DBS) using deuterated natural sulfatide substrate. These new assays were highly specific and sensitive. Patients with metachromatic leukodystrophy (MLD) and multiple sulfatase deficiency (MSD) displayed a clear deficit in the enzymatic activity and could be completely distinguished from normal controls. The leukocyte assay reported here will be important for diagnosing MLD and MSD patients and for monitoring the efficacy of therapeutic treatments. ARSA activity was measured in DBS for the first time without an antibody. This new ARSA DBS assay can serve as a second-tier test following the sulfatide measurement in DBS for newborn screening of MLD. This leads to an elimination of most of the false positives identified by the sulfatide assay.
Collapse
Affiliation(s)
- Xinying Hong
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Arun Babu Kumar
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jessica Daiker
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Fan Yi
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Fabiola De Mattia
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale, San Raffaele, Milan,20132, Italy
| | - Francesca Fumagalli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale, San Raffaele, Milan,20132, Italy.,Pediatric Immunohematology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
| | - Valeria Calbi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale, San Raffaele, Milan,20132, Italy.,Pediatric Immunohematology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
| | - Roberta Damiano
- Newborn Screening, Clinical Chemistry, and Pharmacology Lab, Meyer Children's Hospital, Florence, 50139, Italy
| | - Maria Della Bona
- Newborn Screening, Clinical Chemistry, and Pharmacology Lab, Meyer Children's Hospital, Florence, 50139, Italy
| | - Giancarlo la Marca
- Newborn Screening, Clinical Chemistry, and Pharmacology Lab, Meyer Children's Hospital, Florence, 50139, Italy.,Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, 50121, Italy
| | - Adeline L Vanderver
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Amy T Waldman
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Laura Adang
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Omar Sherbini
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Sarah Woidill
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Teryn Suhr
- MLD Foundation, West Linn, Oregon 97068, United States
| | - Joanne Kurtzberg
- Department of Pediatrics, Duke University, Durham, North Carolina 27705, United States
| | | | - Maria Escolar
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale, San Raffaele, Milan,20132, Italy
| | | | - Amber Olsen
- United MSD Foundation, Ocean Springs, Misssissippi 39564, United States
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.,Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
14
|
Swiner DJ, Jackson S, Burris BJ, Badu-Tawiah AK. Applications of Mass Spectrometry for Clinical Diagnostics: The Influence of Turnaround Time. Anal Chem 2020; 92:183-202. [PMID: 31671262 PMCID: PMC7896279 DOI: 10.1021/acs.analchem.9b04901] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This critical review discusses how the need for reduced clinical turnaround times has influenced chemical instrumentation. We focus on the development of modern mass spectrometry (MS) and its application in clinical diagnosis. With increased functionality that takes advantage of novel front-end modifications and computational capabilities, MS can now be used for non-traditional clinical analyses, including applications in clinical microbiology for bacteria differentiation and in surgical operation rooms. We summarize here recent developments in the field that have enabled such capabilities, which include miniaturization for point-of-care testing, direct complex mixture analysis via ambient ionization, chemical imaging and profiling, and systems integration.
Collapse
Affiliation(s)
- Devin J. Swiner
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Sierra Jackson
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Benjamin J. Burris
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Abraham K. Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
15
|
Molecular Approaches for the Treatment of Pompe Disease. Mol Neurobiol 2019; 57:1259-1280. [PMID: 31713816 DOI: 10.1007/s12035-019-01820-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022]
Abstract
Glycogen storage disease type II (GSDII, Pompe disease) is a rare metabolic disorder caused by a deficiency of acid alpha-glucosidase (GAA), an enzyme localized within lysosomes that is solely responsible for glycogen degradation in this compartment. The manifestations of GSDII are heterogeneous but are classified as early or late onset. The natural course of early-onset Pompe disease (EOPD) is severe and rapidly fatal if left untreated. Currently, one therapeutic approach, namely, enzyme replacement therapy, is available, but advances in molecular medicine approaches hold promise for even more effective therapeutic strategies. These approaches, which we review here, comprise splicing modification by antisense oligonucleotides, chaperone therapy, stop codon readthrough therapy, and the use of viral vectors to introduce wild-type genes. Considering the high rate at which innovations are translated from bench to bedside, it is reasonable to expect substantial improvements in the treatment of this illness in the foreseeable future.
Collapse
|
16
|
Newborn screening for Pompe disease in Japan: report and literature review of mutations in the GAA gene in Japanese and Asian patients. J Hum Genet 2019; 64:741-755. [DOI: 10.1038/s10038-019-0603-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 11/08/2022]
|
17
|
Gelb MH. Newborn Screening for Lysosomal Storage Diseases: Methodologies, Screen Positive Rates, Normalization of Datasets, Second-Tier Tests, and Post-Analysis Tools. Int J Neonatal Screen 2018; 4:23. [PMID: 30882045 PMCID: PMC6419971 DOI: 10.3390/ijns4030023] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
All of the worldwide newborn screening (NBS) for lysosomal storage diseases (LSDs) is done by measurement of lysosomal enzymatic activities in dried blood spots (DBS). Substrates used for these assays are discussed. While the positive predictive value (PPV) is the gold standard for evaluating medical tests, current PPVs for NBS of LSDs cannot be used as a performance metric due to statistical sampling errors and uncertainty in the onset of disease symptoms. Instead, we consider the rate of screen positives as the only currently reliable way to compare LSD NBS results across labs worldwide. It has been suggested that the expression of enzymatic activity data as multiple-of-the-mean is a way to normalize datasets obtained using different assay platforms, so that results can be compared, and universal cutoffs can be developed. We show that this is often not the case, and normalization is currently not feasible. We summarize the recent use of pattern matching statistical analysis together with measurement of an expanded group of enzymatic activities and biomarkers to greatly reduce the number of false positives for NBS of LSDs. We provide data to show that these post-enzymatic activity assay methods are more powerful than genotype analysis for the stratification of NBS for LSDs.
Collapse
Affiliation(s)
- Michael H Gelb
- Departments of Chemistry, University of Washington, Seattle, WA 98195, USA;
- Departments of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
18
|
The New York pilot newborn screening program for lysosomal storage diseases: Report of the First 65,000 Infants. Genet Med 2018; 21:631-640. [PMID: 30093709 PMCID: PMC6369014 DOI: 10.1038/s41436-018-0129-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/27/2018] [Indexed: 01/05/2023] Open
Abstract
Purpose: We conducted a consented pilot newborn screening (NBS) for Pompe,
Gaucher, Niemann Pick A/B, Fabry, and MPS 1 to assess the suitability of
these lysosomal storage disorders (LSD) for public health mandated
screening. Methods: At five participating high-birth-rate, ethnically diverse New York
City hospitals, recruiters discussed the study with post-partum parents and
documented verbal consent. Screening on consented samples was performed
using multiplexed tandem mass spectrometry. Screen-positive infants
underwent confirmatory enzymology, DNA testing, and biomarker quantitation
when available. Affected infants are being followed for clinical management
and long term outcome. Results: 65,605 infants participated over four years, representing an overall
consent rate of 74%. Sixty-nine infants were screen-positive. Twenty-three
were confirmed true positives, all of whom were predicted to have late-onset
phenotypes. Six of the 69 currently have undetermined disease status. Conclusion: Our results suggest that NBS for LSDs is much more likely to detect
individuals at risk for late-onset disease, similar to results from other
NBS programs. This work has demonstrated the feasibility of using a novel
consented pilot NBS study design that can be modified to include other
disorders under consideration for public health implementation as a means to
gather critical evidence for evidence-based NBS practices.
Collapse
|
19
|
Piraud M, Pettazzoni M, Lavoie P, Ruet S, Pagan C, Cheillan D, Latour P, Vianey-Saban C, Auray-Blais C, Froissart R. Contribution of tandem mass spectrometry to the diagnosis of lysosomal storage disorders. J Inherit Metab Dis 2018; 41:457-477. [PMID: 29556840 DOI: 10.1007/s10545-017-0126-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/25/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
Abstract
Tandem mass spectrometry (MS/MS) is a highly sensitive and specific technique. Thanks to the development of triple quadrupole analyzers, it is becoming more widely used in laboratories working in the field of inborn errors of metabolism. We review here the state of the art of this technique applied to the diagnosis of lysosomal storage disorders (LSDs) and how MS/MS has changed the diagnostic rationale in recent years. This fine technology brings more sensitive, specific, and reliable methods than the previous biochemical ones for the analysis of urinary glycosaminoglycans, oligosaccharides, and sialic acid. In sphingolipidoses, the quantification of urinary sphingolipids (globotriaosylceramide, sulfatides) is possible. The measurement of new plasmatic biomarkers such as oxysterols, bile acids, and lysosphingolipids allows the screening of many sphingolipidoses and related disorders (Niemann-Pick type C), replacing tedious biochemical techniques. Applied to amniotic fluid, a more reliable prenatal diagnosis or screening of LSDs is now available for fetuses presenting with antenatal manifestations. Applied to enzyme measurements, it allows high throughput assays for the screening of large populations, even newborn screening. The advent of this new method can modify the diagnostic rationale behind LSDs.
Collapse
Affiliation(s)
- Monique Piraud
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France.
| | - Magali Pettazzoni
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Pamela Lavoie
- Service de Génétique Médicale, Département de Pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Séverine Ruet
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Cécile Pagan
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - David Cheillan
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Philippe Latour
- Unité de Neurogénétique Moléculaire, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Christine Vianey-Saban
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Christiane Auray-Blais
- Service de Génétique Médicale, Département de Pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Roseline Froissart
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| |
Collapse
|
20
|
Tortorelli S, Eckerman JS, Orsini JJ, Stevens C, Hart J, Hall PL, Alexander JJ, Gavrilov D, Oglesbee D, Raymond K, Matern D, Rinaldo P. Moonlighting newborn screening markers: the incidental discovery of a second-tier test for Pompe disease. Genet Med 2017; 20:840-846. [PMID: 29095812 DOI: 10.1038/gim.2017.190] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/20/2017] [Indexed: 01/14/2023] Open
Abstract
PURPOSE To describe a novel biochemical marker in dried blood spots suitable to improve the specificity of newborn screening for Pompe disease. METHODS The new marker is a ratio calculated between the creatine/creatinine (Cre/Crn) ratio as the numerator and the activity of acid α-glucosidase (GAA) as the denominator. Using Collaborative Laboratory Integrated Reports (CLIR), the new marker was incorporated in a dual scatter plot that can achieve almost complete segregation between Pompe disease and false-positive cases. RESULTS The (Cre/Crn)/GAA ratio was measured in residual dried blood spots of five Pompe cases and was found to be elevated (range 4.41-13.26; 99%ile of neonatal controls: 1.10). Verification was by analysis of 39 blinded specimens that included 10 controls, 24 samples with a definitive classification (16 Pompe, 8 false positives), and 5 with genotypes of uncertain significance. The CLIR tool showed 100% concordance of classification for the 24 known cases. Of the remaining five cases, three p.V222M homozygotes, a benign variant, were classified by CLIR as false positives; two with genotypes of unknown significance, one likely informative, were categorized as Pompe disease. CONCLUSION The CLIR tool inclusive of the new ratio could have prevented at least 12 of 13 (92%) false-positive outcomes.
Collapse
Affiliation(s)
- Silvia Tortorelli
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
| | - Jason S Eckerman
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Joseph J Orsini
- Laboratory of Human Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Colleen Stevens
- Laboratory of Human Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Jeremy Hart
- Division of Laboratory Services, Kentucky Department for Public Health, Frankfort, Kentucky, USA.,Department of Pathology & Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Patricia L Hall
- EGL Genetics, Tucker, Georgia, USA.,Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - John J Alexander
- EGL Genetics, Tucker, Georgia, USA.,Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dimitar Gavrilov
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Devin Oglesbee
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Kimiyo Raymond
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Dietrich Matern
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Piero Rinaldo
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
21
|
Mashima R, Okuyama T. Enzyme activities of α-glucosidase in Japanese neonates with pseudodeficiency alleles. Mol Genet Metab Rep 2017; 12:110-114. [PMID: 28725570 PMCID: PMC5503834 DOI: 10.1016/j.ymgmr.2017.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 11/25/2022] Open
Abstract
Lysosomal storage disorders (LSDs) are caused by defective enzyme activities in lysosomes, characterized by the accumulation of sphingolipids, glycolipids, oligosaccharides, mucopolysaccharides, the oxidation products of cholesterol, and other biological substances. A growing number of clinical studies have suggested the enhanced efficacy of existing therapies, including enzyme replacement therapy, which is effective when it is initiated during the presymptomatic period. Thus, the identification of disease-affected individuals by newborn screening has been considered an effective platform. Previous studies have suggested that the discrimination of infantile-onset Pompe disease (IOPD) requires multi-step examination of GAA enzyme activity using the fluorometric technique. In sharp contrast, the MS/MS-based technique can identify the population of IOPD and the pseudodeficiency alleles of the GAA enzyme [Liao HC et al. Clin Chem (2017) in press; doi: http://dx.doi.org/10.1373/clinchem.2016.269027]. To determine whether MS/MS-based assay can identify these two populations in Japanese neonates, we first performed a validation study of this assay using flow-injection analysis (FIA)-MS/MS and liquid chromatography (LC)-MS/MS followed by examination of GAA enzyme activity in our population. By minimizing the effect of substrate-derived in-source decomposition products, the activities of 6 LSD enzymes were quantified in FIA-MS/MS and LC-MS/MS. The mean value of GAA activity with IOPD, pseudodeficiency alleles, and healthy controls by FIA-MS/MS were 1.0 ± 0.3 μmol/h/L (max, 1.3; min, 0.7; median, 1.2; n = 3), 2.7 ± 0.7 μmol/h/L (max, 4.5; min, 1.5; median, 2.5; n = 19), and 12.9 ± 5.4 μmol/h/L (max, 29.6; min, 2.5; median, 11.0; n = 83), respectively. These results suggest that the population of GAA with pseudodeficiency alleles has approximately 20% of GAA enzyme activity compared to controls, providing the preliminary evidence to estimate the cut-off values in the Japanese population using this technique.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|