1
|
Dekaliuk M, Farka Z, Hildebrandt N. The pros and cons of nucleic acid-amplified immunoassays-a comparative study on the quantitation of prostate-specific antigen with and without rolling circle amplification. Anal Bioanal Chem 2024; 416:7285-7294. [PMID: 38849527 PMCID: PMC11584466 DOI: 10.1007/s00216-024-05357-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024]
Abstract
Integrating isothermal nucleic acid amplification strategies into immunoassays can significantly decrease analytical limits of detection (LODs). On the other hand, an amplification step adds time, complication, reagents, and costs to the assay format. To evaluate the pros and cons in the context of heterogeneous multistep immunoassays, we quantified prostate-specific antigen (PSA) with and without rolling circle amplification (RCA). In addition, we compared time-gated (TG) with continuous-wave (CW) photoluminescence (PL) detection using a terbium complex and a fluorescein dye, respectively. For both direct (non-amplified) and amplified assays, TG PL detection provided circa four- to eightfold lower LODs, illustrating the importance of autofluorescence background suppression even for multi-wash assay formats. Amplified assays required an approximately 2.4 h longer assay time but led to almost 100-fold lower LODs down to 1.3 pg/mL of PSA. Implementation of TG-FRET (using a Tb-Cy5.5 donor-acceptor pair) into the RCA immunoassay resulted in a slightly higher LOD (3.0 pg/mL), but the ratiometric detection format provided important benefits, such as higher reproducibility, lower standard deviations, and multiplexing capability. Overall, our direct comparison demonstrated the importance of biological background suppression even in heterogeneous assays and the potential of using isothermal RCA for strongly decreasing analytical LODs, making such assays viable alternatives to conventional enzyme-linked immunosorbent assays (ELISAs).
Collapse
Affiliation(s)
- Mariia Dekaliuk
- Laboratory of Molecular Assays and Imaging, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznań, Poland.
- Laboratoire COBRA, CNRS, INSA Rouen, Université de Rouen Normandie, Normandie Université, Rouen, France.
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Niko Hildebrandt
- Laboratoire COBRA, CNRS, INSA Rouen, Université de Rouen Normandie, Normandie Université, Rouen, France.
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, L8S 4L7, Canada.
| |
Collapse
|
2
|
Zhang SJ, Wu C, Walt DR. A Multiplexed Digital Platform Enables Detection of Attomolar Protein Levels with Minimal Cross-Reactivity. ACS NANO 2024; 18:29891-29901. [PMID: 39422558 DOI: 10.1021/acsnano.4c10340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Protein-based biomarkers are essential for disease diagnostics, yet their low abundance in biofluids often presents significant detection challenges for traditional enzyme-linked immunosorbent assay (ELISA) techniques. While various ultrasensitive methods such as digital ELISA have improved sensitivity, multiplex assays still suffer from considerable cross-reactivities that can compromise result accuracies. To address this challenge, we have developed barcoded Molecular On-bead Signal Amplification for Individual Counting (barcoded MOSAIC), a multiplexed digital ELISA technology that markedly reduces cross-reactivity by pairing barcoded detection antibodies with specific bead types. This approach enables the simultaneous detection of eight analytes from less than 9 μL of blood, with sensitivities ranging from midpicomolar to low-attomolar levels and a collective dynamic range exceeding seven logs across multiple analytes within a single multiplex assay. Additionally, barcoded MOSAIC is compatible with standard immunoassay reagents and workflows, utilizing a rapid, automatable flow cytometric readout for quantification, which makes it a highly accessible benchtop platform that is readily adoptable by both research and clinical laboratories, setting the stage for future translation into point-of-care applications.
Collapse
Affiliation(s)
- Stephanie J Zhang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Connie Wu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - David R Walt
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Sun Y, Liu Y, Li R, Zhang C, Wu M, Zhang X, Xu H, Zeng R, Zeng Y, Liu X. Direct visualization of immune status for tumor-infiltrating lymphocytes by rolling circle amplification. JOURNAL OF BIOPHOTONICS 2024; 17:e202300374. [PMID: 37885324 DOI: 10.1002/jbio.202300374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 10/28/2023]
Abstract
The immune status of tumor-infiltrating lymphocytes (TILs) is essential for the effectiveness of cancer immunotherapies. However, due to the diversity of immune status in TILs, cellular heterogeneity, and the applicability to the clinic, it is still lacking effective strategies to meet clinical needs. We developed a novel immuno-recognition-induced method based on rolling circle amplification (RCA), namely immunoRCA, to in situ visualize the immune status of TILs in actual clinical samples. This developed immunoRCA method, in which, feature mRNAs were used as the biomarkers for the immune status of TILs, has a low fluorescence background, high sensitivity, and specificity. The immunoRCA was able to efficiently evaluate the immune status of CD8+ T cells regulated by activating or inhibiting factors, track the T cell type and immune status during in vitro expansion, and in situ visualize the number, location, and immune status of TILs in clinical specimens.
Collapse
Affiliation(s)
- Yupeng Sun
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Yan Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, People's Republic of China
| | - Rui Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, People's Republic of China
| | - Cuilin Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Xiaolong Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
| | - Haipo Xu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Rui Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People's Republic of China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, People's Republic of China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, People's Republic of China
| |
Collapse
|
4
|
Gao J, Gao L, Tang Y, Li F. Homogeneous protein assays mediated by dynamic DNA nanotechnology. CAN J CHEM 2022. [DOI: 10.1139/cjc-2022-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Driven by recent advances in DNA nanotechnology, analytical methods have been greatly improved for designing simple and homogeneous assays for proteins. The translation from target proteins to DNA outputs dramatically enhances the sensitivity of protein assays. More importantly, the protein-responsive DNA nanotechnology has offered diverse assay mechanisms, allowing flexible assay designs and high sensitivity without the need for sophisticated operational procedures. This review will focus on the design principles and mechanistic insight of analytical assays mediated by protein-responsive DNA nanotechnology, which will serve a general guide for assay design and applications.
Collapse
Affiliation(s)
- Jiajie Gao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
| | - Lu Gao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
| | - Yanan Tang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
| | - Feng Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
- Department of Chemistry, Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ONL2S 3A1, Canada
| |
Collapse
|
5
|
Abdolhosseini M, Zandsalimi F, Moghaddam FS, Tavoosidana G. A review on colorimetric assays for DNA virus detection. J Virol Methods 2022; 301:114461. [PMID: 35031384 DOI: 10.1016/j.jviromet.2022.114461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 12/22/2022]
Abstract
Early detection is one of the ways to deal with DNA virus widespread prevalence, and it is necessary to know new diagnostic methods and techniques. Colorimetric assays are one of the most advantageous methods in detecting viruses. These methods are based on color change, which can be seen either with the naked eye or with special devices. The aim of this study is to introduce and evaluate effective colorimetric methods based on amplification, nanoparticle, CRISPR/Cas, and Lateral flow in the diagnosis of DNA viruses and to discuss the effectiveness of each of the updated methods. Compared to the other methods, colorimetric assays are preferred for faster detection, high efficiency, cheaper cost, and high sensitivity and specificity. It is expected that the spread of these viruses can be prevented by identifying and developing new methods.
Collapse
Affiliation(s)
- Mansoreh Abdolhosseini
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Zandsalimi
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Salasar Moghaddam
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Tavoosidana
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Gong Z, Tang Y, Ma N, Cao W, Wang Y, Wang S, Tian Y. Applications of DNA-Functionalized Proteins. Int J Mol Sci 2021; 22:12911. [PMID: 34884714 PMCID: PMC8657886 DOI: 10.3390/ijms222312911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
As an important component that constitutes all the cells and tissues of the human body, protein is involved in most of the biological processes. Inspired by natural protein systems, considerable efforts covering many discipline fields were made to design artificial protein assemblies and put them into application in recent decades. The rapid development of structural DNA nanotechnology offers significant means for protein assemblies and promotes their application. Owing to the programmability, addressability and accurate recognition ability of DNA, many protein assemblies with unprecedented structures and improved functions have been successfully fabricated, consequently creating many brand-new researching fields. In this review, we briefly introduced the DNA-based protein assemblies, and highlighted the limitations in application process and corresponding strategies in four aspects, including biological catalysis, protein detection, biomedicine treatment and other applications.
Collapse
Affiliation(s)
- Zhaoqiu Gong
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China; (Z.G.); (Y.T.); (N.M.); (W.C.); (Y.W.)
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Yuanyuan Tang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China; (Z.G.); (Y.T.); (N.M.); (W.C.); (Y.W.)
| | - Ningning Ma
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China; (Z.G.); (Y.T.); (N.M.); (W.C.); (Y.W.)
| | - Wenhong Cao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China; (Z.G.); (Y.T.); (N.M.); (W.C.); (Y.W.)
| | - Yong Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China; (Z.G.); (Y.T.); (N.M.); (W.C.); (Y.W.)
| | - Shuang Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China; (Z.G.); (Y.T.); (N.M.); (W.C.); (Y.W.)
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Ye Tian
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China; (Z.G.); (Y.T.); (N.M.); (W.C.); (Y.W.)
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| |
Collapse
|
7
|
Landegren U, Hammond M. Cancer diagnostics based on plasma protein biomarkers: hard times but great expectations. Mol Oncol 2021; 15:1715-1726. [PMID: 33012111 PMCID: PMC8169444 DOI: 10.1002/1878-0261.12809] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/14/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022] Open
Abstract
Cancer diagnostics based on the detection of protein biomarkers in blood has promising potential for early detection and continuous monitoring of disease. However, the currently available protein biomarkers and assay formats largely fail to live up to expectations, mainly due to insufficient diagnostic specificity. Here, we discuss what kinds of plasma proteins might prove useful as biomarkers of malignant processes in specific organs. We consider the need to search for biomarkers deep down in the lowest reaches of the proteome, below current detection levels. In this regard, we comment on the poor molecular detection sensitivity of current protein assays compared to nucleic acid detection reactions, and we discuss requirements for achieving detection of vanishingly small amounts of proteins, to ensure detection of early stages of malignant growth through liquid biopsy.
Collapse
Affiliation(s)
- Ulf Landegren
- Department of Immunology, Genetics and PathologyUppsala University and SciLifeLabUppsalaSweden
| | - Maria Hammond
- Department of Immunology, Genetics and PathologyUppsala University and SciLifeLabUppsalaSweden
| |
Collapse
|
8
|
Gilboa T, Maley AM, Ogata AF, Wu C, Walt DR. Sequential Protein Capture in Multiplex Single Molecule Arrays: A Strategy for Eliminating Assay Cross-Reactivity. Adv Healthc Mater 2021; 10:e2001111. [PMID: 32893488 PMCID: PMC8238389 DOI: 10.1002/adhm.202001111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Indexed: 12/31/2022]
Abstract
Measurements of multiple biomolecules within the same biological sample are important for many clinical applications to enable accurate disease diagnosis or classification. These disease-related biomarkers often exist at very low levels in biological fluids, necessitating ultrasensitive measurement methods. Single-molecule arrays (Simoa), a bead-based digital enzyme-linked immunosorbent assay, is the current state of the art for ultrasensitive protein detection and can detect sub-femtomolar protein concentrations, but its ability to achieve high-order multiplexing without cross-reactivity remains a challenge. Here, a sequential protein capture approach for multiplex Simoa assays is implemented to eliminate cross-reactivity between binding reagents by sequentially capturing each protein analyte and then incubating each capture bead with only its corresponding detection antibody. This strategy not only reduces cross-reactivity to background levels and significantly improves measurement accuracies, but also enables higher-order multiplexing. As a proof of concept, the sequential multiplex Simoa assay is used to measure five different cytokines in plasma samples from Coronavirus Disease 2019 (COVID-19) patients. The ultrasensitive sequential multiplex Simoa assays will enable the simultaneous measurements of multiple low-abundance analytes in a time- and cost-effective manner and will prove especially critical in many cases where sample volumes are limited.
Collapse
Affiliation(s)
- Tal Gilboa
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Adam M Maley
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Alana F Ogata
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Connie Wu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - David R Walt
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
9
|
Shi H, Cui J, Sulemana H, Wang W, Gao L. Protein detection based on rolling circle amplification sensors. LUMINESCENCE 2021; 36:842-848. [PMID: 33502072 DOI: 10.1002/bio.4017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/07/2021] [Accepted: 01/17/2021] [Indexed: 12/22/2022]
Abstract
Rolling circle amplification (RCA) is an isothermal process under the action of DNA polymerases. Large-scale DNA templates have been generated using RCA for target detection. Some signal amplification strategies including optical sensors and electrochemical sensors based on RCA have been applied to achieve sensitive detection. Sensors based on RCA have attracted increasing interest. Advances in RCA-based sensors for protein detection are reviewed in this paper. The advantages and detection mechanisms of sensors based on RCA are revealed and discussed. Finally, possible challenges and future perspectives are also outlined.
Collapse
Affiliation(s)
- Haixia Shi
- P. E. Department of Jiangsu University, Zhenjiang, China
| | - Jingjie Cui
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | | | - Wunian Wang
- P. E. Department of Jiangsu University, Zhenjiang, China
| | - Li Gao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Xu L, Duan J, Chen J, Ding S, Cheng W. Recent advances in rolling circle amplification-based biosensing strategies-A review. Anal Chim Acta 2020; 1148:238187. [PMID: 33516384 DOI: 10.1016/j.aca.2020.12.062] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/09/2020] [Accepted: 12/28/2020] [Indexed: 01/12/2023]
Abstract
Rolling circle amplification (RCA) is an efficient enzymatic isothermal reaction that using circular probe as a template to generate long tandem single-stranded DNA or RNA products under the initiation of short DNA or RNA primers. As a simplified derivative of natural rolling circle replication which synthesizes copies of circular nucleic acids molecules such as plasmids, RCA amplifies the circular template rapidly without thermal cycling and finds various applications in molecular biology. Compared with other amplification strategies, RCA has many obvious advantages. Firstly, because of the strict complementarity required in ligation of a padlock probe, it endows the RCA reaction with high specificity and can even be utilized to distinguish single base mismatches. Secondly, through the introduction of multiple primers, exponential amplification can be achieved easily and leads to a good sensitivity. Thirdly, RCA products can be customized by manipulating circular templates to generate functional nucleic acids such as aptamer, DNAzymes and restriction enzyme sites. Moreover, the RCA has good biocompatibility and is especially suitable for in situ detection. Therefore, RCA has attracted considerable attention as an efficient and potential tool for highly sensitive detection of biomarkers. Herein, we comprehensively introduce the fundamental principles of RCA technology, summarize it from three aspects including initiation mode, amplification mode and signal output mode, and discuss the recent application of RCA-based biosensor in this review.
Collapse
Affiliation(s)
- Lulu Xu
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Jiaxin Duan
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Junman Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
11
|
Björkesten J, Patil S, Fredolini C, Lönn P, Landegren U. A multiplex platform for digital measurement of circular DNA reaction products. Nucleic Acids Res 2020; 48:e73. [PMID: 32469060 PMCID: PMC7367203 DOI: 10.1093/nar/gkaa419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/21/2020] [Accepted: 05/27/2020] [Indexed: 12/03/2022] Open
Abstract
Digital PCR provides high sensitivity and unprecedented accuracy in DNA quantification, but current approaches require dedicated instrumentation and have limited opportunities for multiplexing. Here, we present an isothermal platform for digital enumeration of DNA reaction products in multiplex via standard fluorescence microscopy. Circular DNA strands, which may result from a wide range of molecular detection reactions, are captured on streptavidin-coated surfaces via hybridized biotinylated primers, followed by rolling circle amplification (RCA). The addition of 15% polyethylene glycol 4000 during RCA resulted in uniform, easily recorded reaction products. Immobilized DNA circles were visualized as RCA products with 100% efficiency, as determined by droplet digital PCR. We confirmed previous reports about the influence on RCA by sequence composition and size of RCA templates, and we developed an efficient one-step restaining procedure for sequential multiplexing using toehold-triggered DNA strand displacement. Finally, we exemplify applications of this digital readout platform by demonstrating more than three orders of magnitude improved sensitivity by digital measurement of prostate specific antigen (PSA) (detection threshold ∼100 pg/l), compared to a commercial enzyme-linked immunosorbent assay (ELISA) with analogue readout (detection threshold ∼500 ng/l), using the same antibody pair.
Collapse
Affiliation(s)
- Johan Björkesten
- From the department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, 751 08, Sweden
| | - Sourabh Patil
- From the department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, 751 08, Sweden
| | - Claudia Fredolini
- From the department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, 751 08, Sweden
| | - Peter Lönn
- From the department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, 751 08, Sweden
| | - Ulf Landegren
- From the department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, 751 08, Sweden
| |
Collapse
|
12
|
Ikebuchi R, Isaac AW, Yoshii K, Doulabi EM, Löf L, Azimi A, Chen L, Fredolini C, Gallini R, Landegren U, Kamali-Moghaddam M. Human proteins incorporated into tick-borne encephalitis virus revealed by in situ proximity ligation. Biochem Biophys Res Commun 2020; 525:714-719. [PMID: 32139125 DOI: 10.1016/j.bbrc.2020.02.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/22/2020] [Indexed: 12/21/2022]
Abstract
Host proteins incorporated into virus particles have been reported to contribute to infectivity and tissue-tropism. This incorporation of host proteins is expected to be variable among viral particles, however, protein analysis at single-virus levels has been challenging. We have developed a method to detect host proteins incorporated on the surface of virions using the in situ proximity ligation assay (isPLA) with rolling circle amplification (RCA), employing oligonucleotide-conjugated antibody pairs. The technique allows highly selective and sensitive antibody-based detection of viral and host proteins on the surface of individual virions. We detected recombinant noninfectious sub-viral particles (SVPs) of tick-borne encephalitis virus (TBEV) immobilized in microtiter wells as fluorescent particles detected by regular fluorescence microscopy. Counting the particles in the images enabled us to estimate individual TBEV-SVP counts in different samples. Using isPLA we detected individual calnexin-, CD9-, CD81-, CD29- and CD59-positive SVPs among the viral particles. Our data suggests that a diversity of host proteins may be incorporated into TEBV, illustrating that isPLA with digital counting enables single-virus analysis of host protein incorporation.
Collapse
Affiliation(s)
- Ryoyo Ikebuchi
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; JSPS Overseas Research Fellow, Japan Society for the Promotion of Science, Japan.
| | - Alfred W Isaac
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Kentaro Yoshii
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Ehsan Manouchehri Doulabi
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Liza Löf
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Alireza Azimi
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lei Chen
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Claudia Fredolini
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Radiosa Gallini
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ulf Landegren
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Obande GA, Banga Singh KK. Current and Future Perspectives on Isothermal Nucleic Acid Amplification Technologies for Diagnosing Infections. Infect Drug Resist 2020; 13:455-483. [PMID: 32104017 PMCID: PMC7024801 DOI: 10.2147/idr.s217571] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 11/16/2019] [Indexed: 12/13/2022] Open
Abstract
Nucleic acid amplification technology (NAAT) has assumed a critical position in disease diagnosis in recent times and contributed significantly to healthcare. Application of these methods has resulted in a more sensitive, accurate and rapid diagnosis of infectious diseases than older traditional methods like culture-based identification. NAAT such as the polymerase chain reaction (PCR) is widely applied but seldom available to resource-limited settings. Isothermal amplification (IA) methods provide a rapid, sensitive, specific, simpler and less expensive procedure for detecting nucleic acid from samples. However, not all of these IA techniques find regular applications in infectious diseases diagnosis. Disease diagnosis and treatment could be improved, and the rapidly increasing problem of antimicrobial resistance reduced, with improvement, adaptation, and application of isothermal amplification methods in clinical settings, especially in developing countries. This review centres on some isothermal techniques that have found documented applications in infectious diseases diagnosis, highlighting their principles, development, strengths, setbacks and imminent potentials for use at points of care.
Collapse
Affiliation(s)
- Godwin Attah Obande
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
- Department of Microbiology, Faculty of Science, Federal University Lafia, Lafia, Nasarawa State, Nigeria
| | - Kirnpal Kaur Banga Singh
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
14
|
Using hapten cross-reactivity to screen heterologous competitive antigens for improving the sensitivity of ELISA. Food Chem 2020; 303:125379. [DOI: 10.1016/j.foodchem.2019.125379] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 07/13/2019] [Accepted: 08/17/2019] [Indexed: 02/07/2023]
|
15
|
Li D, Li X, Shen B, Li P, Chen Y, Ding S, Chen W. Aptamer recognition and proximity-induced entropy-driven circuit for enzyme-free and rapid amplified detection of platelet-derived growth factor-BB. Anal Chim Acta 2019; 1092:102-107. [PMID: 31708022 DOI: 10.1016/j.aca.2019.09.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/01/2019] [Accepted: 09/04/2019] [Indexed: 12/25/2022]
Abstract
Platelet-derived growth factor-BB (PDGF-BB) is currently used as a biomarker protein for cancer early diagnosis and clinical treatment. Herein, we reported a robust and enzyme-free strategy based on aptamer recognition and proximity-induced entropy-driven circuits (AR-PEDC) for homogeneous and rapid detection of platelet-derived growth factor BB (PDGF-BB) without any washing steps or thermocycling. The proximity probes specifically recognize target protein to form the completed trigger (CT). Then, the CT reacts with three-strand complex to form intermediate, which subsequently binds to fuel strand to release reporter strand, assistant strand and the CT. The revised proximity probes exhibit significantly improved signal-to-background ratio and faster association rate. Moreover, target protein/proximity probes interaction can specifically initiate entropy-driven circuits, thus providing immense signal amplification for ultrasensitive detection of PDGF-BB with low detection limit of 9.6 pM. The practical ability of the developed strategy is demonstrated by detection of PDGF-BB in human serum with satisfactory results. In addition, this method is flexible and can be conveniently extended to a variety of targets by simply substituting the target specific sequence. Thus, this strategy presents a rapid, low background and versatile amplification mechanism for the detection of protein biomarkers and offers a promising alternative platform for clinical diagnosis.
Collapse
Affiliation(s)
- Dandan Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xinmin Li
- Department of Laboratory Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, Chongqing, 400016, China
| | - Bo Shen
- Department of Laboratory Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, Chongqing, 400016, China
| | - Pu Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yuanjiao Chen
- Department of Laboratory Medicine, Fengjie Country Traditional Chinese Medicine Hospital, Chongqing, Chongqing, 400016, China
| | - Shijia Ding
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weixian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
16
|
Hernández-Neuta I, Neumann F, Brightmeyer J, Ba Tis T, Madaboosi N, Wei Q, Ozcan A, Nilsson M. Smartphone-based clinical diagnostics: towards democratization of evidence-based health care. J Intern Med 2019; 285:19-39. [PMID: 30079527 PMCID: PMC6334517 DOI: 10.1111/joim.12820] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent advancements in bioanalytical techniques have led to the development of novel and robust diagnostic approaches that hold promise for providing optimal patient treatment, guiding prevention programs and widening the scope of personalized medicine. However, these advanced diagnostic techniques are still complex, expensive and limited to centralized healthcare facilities or research laboratories. This significantly hinders the use of evidence-based diagnostics for resource-limited settings and the primary care, thus creating a gap between healthcare providers and patients, leaving these populations without access to precision and quality medicine. Smartphone-based imaging and sensing platforms are emerging as promising alternatives for bridging this gap and decentralizing diagnostic tests offering practical features such as portability, cost-effectiveness and connectivity. Moreover, towards simplifying and automating bioanalytical techniques, biosensors and lab-on-a-chip technologies have become essential to interface and integrate these assays, bringing together the high precision and sensitivity of diagnostic techniques with the connectivity and computational power of smartphones. Here, we provide an overview of the emerging field of clinical smartphone diagnostics and its contributing technologies, as well as their wide range of areas of application, which span from haematology to digital pathology and rapid infectious disease diagnostics.
Collapse
Affiliation(s)
- I Hernández-Neuta
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, SE, Sweden
| | - F Neumann
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, SE, Sweden
| | - J Brightmeyer
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - T Ba Tis
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
| | - N Madaboosi
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, SE, Sweden
| | - Q Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - A Ozcan
- Electrical and Computer Engineering Department, University of California Los Angeles, Los Angeles, CA, USA
| | - M Nilsson
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, SE, Sweden
| |
Collapse
|
17
|
Landegren U, Al-Amin RA, Björkesten J. A myopic perspective on the future of protein diagnostics. N Biotechnol 2018; 45:14-18. [DOI: 10.1016/j.nbt.2018.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 01/09/2023]
|
18
|
Abstract
Validation of antibodies and other protein binders is a subject of pressing concern for the research community and one which is uppermost in the minds of all who use antibodies as research and diagnostic reagents. Assessing an antibody's fitness for purpose includes accurate ascertainment of its target specificity and suitability for the envisaged task. Moreover, standardised procedures are essential to guarantee sample quality in testing procedures. The problem of defining precise standards for antibody validation has engendered much debate in recent publications and meetings, but gradually a consensus is emerging. At the 8th Alpbach Affinity Proteomics workshop (March 2017), a panel of leaders in the antibody field discussed suggestions which could bring this complex but essential issue a step nearer to a resolution. 'Alpbach recommendations' for best practice include tailoring binder validation processes according to the intended applications and promoting greater transparency in publications and in the information available from commercial antibody developers/providers. A single approach will not fit all applications and end users must ensure that the reported validation holds for their specific requirements, highlighting the need for adequate training in the fundamentals of antibody characterisation and validation across the user community.
Collapse
Affiliation(s)
- Michael J Taussig
- Cambridge Protein Arrays Ltd., Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Cláudia Fonseca
- Cambridge Protein Arrays Ltd., Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - James S Trimmer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, 95616, USA; Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA, 95616, USA.
| |
Collapse
|
19
|
Xiang W, Wang G, Cao S, Wang Q, Xiao X, Li T, Yang M. Coupling antibody based recognition with DNA based signal amplification using an electrochemical probe modified with MnO2 nanosheets and gold nanoclusters: Application to the sensitive voltammetric determination of the cancer biomarker alpha fetoprotein. Mikrochim Acta 2018; 185:335. [DOI: 10.1007/s00604-018-2867-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/08/2018] [Indexed: 12/26/2022]
|
20
|
Klaesson A, Grannas K, Ebai T, Heldin J, Koos B, Leino M, Raykova D, Oelrich J, Arngården L, Söderberg O, Landegren U. Improved efficiency of in situ protein analysis by proximity ligation using UnFold probes. Sci Rep 2018; 8:5400. [PMID: 29599435 PMCID: PMC5876389 DOI: 10.1038/s41598-018-23582-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 03/14/2018] [Indexed: 12/26/2022] Open
Abstract
We have redesigned probes for in situ proximity ligation assay (PLA), resulting in more efficient localized detection of target proteins. In situ PLA depends on recognition of target proteins by pairs of antibody-oligonucleotide conjugates (PLA probes), which jointly give rise to DNA circles that template localized rolling circle amplification reactions. The requirement for dual recognition of the target proteins improves selectivity by ignoring any cross-reactivity not shared by the antibodies, and it allows detection of protein-protein interactions and post-translational modifications. We herein describe an improved design of the PLA probes –UnFold probes – where all elements required for formation of circular DNA strands are incorporated in the probes. Premature interactions between the UnFold probes are prevented by including an enzymatic “unfolding” step in the detection reactions. This allows DNA circles to form by pairs of reagents only after excess reagents have been removed. We demonstrate the performance of UnFold probes for detection of protein-protein interactions and post-translational modifications in fixed cells and tissues, revealing considerably more efficient signal generation. We also apply the UnFold probes to detect IL-6 in solution phase after capture on solid supports, demonstrating increased sensitivity over both normal sandwich enzyme-linked immunosorbent assays and conventional PLA assays.
Collapse
Affiliation(s)
- Axel Klaesson
- Department of Pharmaceutical Biosciences, Pharmaceutical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Karin Grannas
- Department of Pharmaceutical Biosciences, Pharmaceutical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Tonge Ebai
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johan Heldin
- Department of Pharmaceutical Biosciences, Pharmaceutical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Björn Koos
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Mattias Leino
- Department of Pharmaceutical Biosciences, Pharmaceutical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Doroteya Raykova
- Department of Pharmaceutical Biosciences, Pharmaceutical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Johan Oelrich
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Linda Arngården
- Department of Pharmaceutical Biosciences, Pharmaceutical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Ola Söderberg
- Department of Pharmaceutical Biosciences, Pharmaceutical Cell Biology, Uppsala University, Uppsala, Sweden.
| | - Ulf Landegren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
21
|
Li X, Shen C, Yang M, Rasooly A. Polycytosine DNA Electric-Current-Generated Immunosensor for Electrochemical Detection of Human Epidermal Growth Factor Receptor 2 (HER2). Anal Chem 2018; 90:4764-4769. [DOI: 10.1021/acs.analchem.8b00023] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaoqing Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China, 410083
| | - Congcong Shen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China, 410083
| | - Minghui Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China, 410083
| | - Avraham Rasooly
- National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| |
Collapse
|