1
|
Son A, Kim W, Lee W, Park J, Kim H. Applicability of selected reaction monitoring for precise screening tests. Expert Rev Proteomics 2024; 21:237-246. [PMID: 38697802 DOI: 10.1080/14789450.2024.2350975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/27/2024] [Indexed: 05/05/2024]
Abstract
INTRODUCTION The proactive identification of diseases through screening tests has long been endorsed as a means to preempt symptomatic onset. However, such screening endeavors are fraught with complications, such as diagnostic inaccuracies, procedural risks, and patient unease during examinations. These challenges are amplified when screenings for multiple diseases are administered concurrently. Selected Reaction Monitoring (SRM) offers a unique advantage, allowing for the high-throughput quantification of hundreds of analytes with minimal interferences. AREAS COVERED Our research posits that SRM-based assays, traditionally tailored for single-disease biomarker profiling, can be repurposed for multi-disease screening. This innovative approach has the potential to substantially alleviate time, labor, and cost demands on healthcare systems and patients alike. Nonetheless, there are formidable methodological hurdles to overcome. These include difficulties in detecting low-abundance proteins and the risk of model overfitting due to the multiple functionalities of single proteins across different disease spectrums - issues especially pertinent in blood-based assays where detection sensitivity is constrained. As we move forward, technological strides in sample preparation, online extraction, throughput, and automation are expected to ameliorate these limitations. EXPERT OPINION The maturation of mass spectrometry's integration into clinical laboratories appears imminent, positioning it as an invaluable asset for delivering highly sensitive, reproducible, and precise diagnostic results.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Woojin Kim
- Department of Bio-AI convergence Chungnam National University,Daejeon, South Korea
| | - Wonseok Lee
- Department of Bio-AI convergence Chungnam National University,Daejeon, South Korea
| | - Jongham Park
- Department of Bio-AI convergence Chungnam National University,Daejeon, South Korea
| | - Hyunsoo Kim
- Department of Bio-AI convergence Chungnam National University,Daejeon, South Korea
- Department of Convergent Bioscience and Informatics, Chungnam National University, Daejeon, Republic of Korea
- SCICS, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Liu Y, Han G, Gong J, Hua X, Zhu Q, Zhou S, Jiang L, Li Q, Liu S. Intramolecular fluorescence resonance energy transfer strategy for accurate detection of AFP-L3% and improved diagnosis of hepatocellular carcinoma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122950. [PMID: 37295202 DOI: 10.1016/j.saa.2023.122950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/17/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
Early and accurate diagnosis of hepatocellular carcinoma (HCC) is of significant importance for improving the survival rate and quality of life for HCC patients. The combined detection of alpha-fetoprotein (AFP) and alpha-fetoprotein-L3 (AFP-L3), namely AFP-L3%, can greatly improve the accuracy of HCC diagnosis compared with AFP detection. Herein, we developed a novel intramolecular fluorescence resonance energy transfer (FRET) strategy for sequential detection of AFP and AFP-specific core fucose to improve the diagnosis accuracy of HCC. Firstly, fluorescence-labeled AFP aptamer (AFP Apt-FAM) was used to specifically recognize all AFP isoforms, and total AFP was quantitatively determined using fluorescence intensity of FAM. Then, 4-((4-(dimethylamino)phenyl)azo)benzoic acid (Dabcyl) labeled lectins (PhoSL-Dabcyl) were used to specifically recognize the core fucose expressed on AFP-L3 that does not bind to other AFP isoforms. The combination of FAM and Dabcyl on the same AFP molecule could generate FRET effect, thereby quenching the fluorescence signal of FAM and quantitatively determining AFP-L3. After that, AFP-L3% was calculated according to the ratio of AFP-L3 to AFP. With this strategy, the concentration of total AFP, AFP-L3 isoform as well as the AFP-L3% were sensitively detected. Detection limits of 0.66 and 0.186 ng/mL were obtained for AFP and AFP-L3 in human serum, respectively. Clinical human serum test results showed that AFP- L3 % test was more accurate than AFP assay to distinguish healthy people, HCC patients and benign liver disease patients. Therefore, the proposed strategy is simple, sensitive and selective, which can improve the accuracy of early diagnosis of HCC, and has good clinical application potential.
Collapse
Affiliation(s)
- Yu Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Gaohua Han
- Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou 225300, China
| | - Jing Gong
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Xin Hua
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Qian Zhu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Sisi Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ling Jiang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Quan Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
3
|
Silva MLS. Capitalizing glycomic changes for improved biomarker-based cancer diagnostics. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:366-395. [PMID: 37455827 PMCID: PMC10344901 DOI: 10.37349/etat.2023.00140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/24/2023] [Indexed: 07/18/2023] Open
Abstract
Cancer serum biomarkers are valuable or even indispensable for cancer diagnostics and/or monitoring and, currently, many cancer serum markers are routinely used in the clinic. Most of those markers are glycoproteins, carrying cancer-specific glycan structures that can provide extra-information for cancer monitoring. Nonetheless, in the majority of cases, this differential feature is not exploited and the corresponding analytical assays detect only the protein amount, disregarding the analysis of the aberrant glycoform. Two exceptions to this trend are the biomarkers α-fetoprotein (AFP) and cancer antigen 19-9 (CA19-9), which are clinically monitored for their cancer-related glycan changes, and only the AFP assay includes quantification of both the protein amount and the altered glycoform. This narrative review demonstrates, through several examples, the advantages of the combined quantification of protein cancer biomarkers and the respective glycoform analysis, which enable to yield the maximum information and overcome the weaknesses of each individual analysis. This strategy allows to achieve higher sensitivity and specificity in the detection of cancer, enhancing the diagnostic power of biomarker-based cancer detection tests.
Collapse
Affiliation(s)
- Maria Luísa S. Silva
- Unidade de Aprendizagem ao Longo da Vida, Universidade Aberta, 1269-001 Lisboa, Portugal
| |
Collapse
|
4
|
Wang Z, Qin H, Liu S, Sheng J, Zhang X. Precision diagnosis of hepatocellular carcinoma. Chin Med J (Engl) 2023; 136:1155-1165. [PMID: 36939276 PMCID: PMC10278703 DOI: 10.1097/cm9.0000000000002641] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 03/21/2023] Open
Abstract
ABSTRACT Hepatocellular carcinoma (HCC) is the most common type of primary hepatocellular carcinoma (PHC). Early diagnosis of HCC remains the key to improve the prognosis. In recent years, with the promotion of the concept of precision medicine and more in-depth analysis of the biological mechanism underlying HCC, new diagnostic methods, including emerging serum markers, liquid biopsies, molecular diagnosis, and advances in imaging (novel contrast agents and radiomics), have emerged one after another. Herein, we reviewed and analyzed scientific advances in the early diagnosis of HCC and discussed their application and shortcomings. This review aimed to provide a reference for scientific research and clinical practice of HCC.
Collapse
Affiliation(s)
- Zhenxiao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Hanjiao Qin
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Shui Liu
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| |
Collapse
|
5
|
Hu L, Shi T, Chen J, Cui Q, Yu H, Wu D, Ma H, Wei Q, Ju H. Dual-quenching electrochemiluminescence resonance energy transfer system from CoPd nanoparticles enhanced porous g-C 3N 4 to FeMOFs-sCuO for neuron-specific enolase immunosensing. Biosens Bioelectron 2023; 226:115132. [PMID: 36791617 DOI: 10.1016/j.bios.2023.115132] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/09/2023]
Abstract
For the diagnosis and therapy of small cell lung cancer (SCLC), the accurate and sensitive determination of neuron-specific enolase (NSE) content is crucial. This work outlines a dual-quenching electrochemiluminescence resonance energy transfer (ECL-RET) immunosensor based on the double quenching effects of iron base metal organic frameworks (FeMOFs) loaded with small sized CuO nanoparticles (FeMOFs-sCuO) towards CoPd nanoparticles (CoPdNPs) enhanced porous g-C3N4 (P-C3N4-CoPdNPs). To be specific, we prepared a porous g-C3N4 (P-C3N4) which has a rich porous structure, and significantly increased the specific surface area and the number of reaction sites of P-C3N4. Meanwhile, the CoPdNPs were loaded onto P-C3N4 to improve the ECL luminescence property of P-C3N4/K2S2O8 system through acting as a coreaction accelerator. In addition, the ultraviolet-visible (UV-vis) absorption spectra of FeMOFs and small sized CuO nanoparticles (sCuO) showed considerable overlap with the ECL emission spectra of P-C3N4 appropriately. Therefore, FeMOFs with high specific surface area were prepared and well combined with sCuO to effectively dual-quenching the ECL emission of P-C3N4 based on resonance energy transfer. Hence, a new type ECL-RET couple made up of P-C3N4-CoPdNPs (donor) and FeMOFs-sCuO (acceptor) were developed for the first time. A certain amount of P-C3N4-CoPdNPs, Ab1, BSA, NSE were modified layer by layer onto the electrode surface. Then FeMOFs-sCuO-Ab2 bioconjugates was incubated through the immune recognition binding. As a result, a sandwich-type ECL biosensor was manufactured successfully for NSE immunoassay. Under optimal experimental conditions, the limit of detection (LOD) and the limit of quantitation (LOQ) of the prepared ECL sensor for NSE analysis was 20.4 fg mL-1 and 7.99 fg mL-1, respectively, with the relative standard deviation (RSD) of 1.68%. The linear detection range was 0.0000500-100 ng mL-1. The studied immunosensor had satisfactory sensitivity, specificity and reproducibility, manifesting the suggested sensing strategy might offer a good technical means and theoretical basis for the sensitivity analysis of NSE and has a potential application in clinical diagnosis analysis.
Collapse
Affiliation(s)
- Lihua Hu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Tengfei Shi
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Jiye Chen
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Qianqian Cui
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Hao Yu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| |
Collapse
|
6
|
Wang M, Jiang M, Li P, Yuan M, Zhao C, Lai W, Li J, Hong C, Qi Y. Construction of a competitive electrochemical immunosensor based on sacrifice of Prussian blue and its ultrasensitive detection of alpha-fetoprotein. Anal Chim Acta 2023; 1257:341143. [PMID: 37062562 DOI: 10.1016/j.aca.2023.341143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Effective signal amplification is a prerequisite for ultrasensitive detection by electrochemical immunosensors. For quantitative and ultrasensitive detection of alpha-fetoprotein (AFP), we designed a competitive electrochemical immunosensor and transferred the immunoreactivity from the electrode surface to the cuvette. AFP antigen was captured using AFP primary antibody (Ab1) immobilized on magnetic nanobeads (MBs), and ZIF-8 nanomaterials attached to secondary antibody (Ab2) were used as probes. MBs helped retain the sandwich structure in the test tube through incubation and washing steps. Then, an appropriately fixed excess of sodium ethylenediaminetetraacetic acid (EDTA) solution was added to the cuvettes, resulting in etching of Zn ions from ZIF-8 and formation of Zn-EDTA complexes. After magnetic separation, a certain amount of supernatant is added dropwise to the Prussian blue (PB)-modified electrode (GCE), and Fe ions (from PB) complex with the remaining EDTA in the supernatant, thus reducing the signal response value of PB. The higher the AFP concentration, the lower the amount of free EDTA in the supernatant, the less the destruction of PB, and therefore the higher the current. Under optimal conditions, the immunosensor achieved ultra-sensitive detection of AFP in the range of 10-4 ng/mL-100 ng/mL with a limit of detection (LOD) as low as 0.032 pg/mL (S/N = 3). The excellent performance provides an important tool for the early screening and detection of AFP.
Collapse
|
7
|
Zhao Y, Liu Q, Qin Y, Cao Y, Zhao J, Zhang K, Cao Y. Ordered Labeling-Facilitated Electrochemical Assay of Alpha-Fetoprotein-L3 Ratio for Diagnosing Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6411-6419. [PMID: 36693188 DOI: 10.1021/acsami.2c19231] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Serum alpha fetoprotein (AFP) is a "gold-standard" biomarker for the diagnosis of hepatocellular carcinoma (HCC). Available pieces of evidence suggest that the ratio of AFP-L3 isoform in the total AFP may provide more accurate prediction for the incidence of HCC. In this work, we design an electrochemical aptasensor for high-accuracy assay of AFP-L3 ratio based on differentiated labeling of AFP isoforms in an orderly fashion. Specifically, total AFP is first captured by an AFP aptamer-functionalized electrode and labeled with quantum dots-functionalized DNA probes via mild reduction. Then, AFP-L3 isoform that strongly binds to Lens culinaris agglutinin is labeled with silver nanoparticles after the exonuclease-catalyzed removal of DNA probes. By tracing the electrochemical responses of quantum dots and silver nanoparticles, respectively, the amounts of total AFP and AFP-L3 isoforms are determined and the AFP-L3 ratio is accordingly calculated to favor the accurate HCC diagnosis. Experimental results prove the high-accuracy assay of AFP-L3 ratio based on the AFP quantitation in a linear range of 0.0008-40 ng mL-1 and AFP-L3 quantitation in a linear range of 0.004-40 ng mL-1. The aptasensor also displays satisfactory specificity and good recoveries even in the complex serum samples. Therefore, the aptasensor may provide a valuable tool for the assay of the AFP-L3 ratio and have a great potential use in early warning of HCC for clinical application.
Collapse
Affiliation(s)
- Yingyan Zhao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qi Liu
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
- Department of Geriatric Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Yujia Qin
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yue Cao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jing Zhao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Kai Zhang
- Department of Geriatric Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Gastroenterology, Dongying People's Hospital, Dongying 257091, China
| | - Ya Cao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
8
|
Dunbar C, Kushnir MM, Yang YK. Glycosylation Profiling of the Neoplastic Biomarker Alpha Fetoprotein through Intact Mass Protein Analysis. J Proteome Res 2023; 22:226-234. [PMID: 36541409 PMCID: PMC9830635 DOI: 10.1021/acs.jproteome.2c00656] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Elevated serum alpha-fetoprotein (AFP) can be observed in liver cirrhosis and hepatocellular carcinoma (HCC). The glycosylation patterns of AFP have been shown to differentiate these conditions, with AFP glycoforms with core fucosylation (AFP-L3) serving as a malignancy risk predictor for HCC. We have developed a method to detect endogenously present AFP proteoforms and to quantify the relative abundance of AFP-L3 glycoforms (AFP-L3%) in serum samples. This method consists of immune enrichment of endogenous AFP, followed by liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) intact protein analysis of AFP. Data are available via ProteomeXchange with identifier PXD038606. Based on the AFP profiles in authentic patient serum samples, we have identified that the frequently observed AFP glycoforms without core fucosylation (AFP-L1) are G2S2 and G2S1, and common AFP-L3 glycoforms are G2FS1 and G2FS2. The intensities of glycoforms in the deconvoluted spectrum are used to quantify AFP-L3% in each sample. The method evaluation included reproducibility, specificity, dilution integrity, and comparison of AFP-L3% with a lectin-binding gel shift electrophoresis (GSE) assay. The AFP-L1 and AFP-L3 proteoforms were reproducibly identified in multiple patient serum samples, resulting in reproducible AFP-L3% quantification. There was considerable agreement between the developed LC-HRMS and commercial GSE methods when quantifying AFP-L3% (Pearson r = 0.63) with a proportional bias.
Collapse
Affiliation(s)
- Carmen Dunbar
- ARUP
Institute for Clinical and Experimental Pathology, Salt Lake City, Utah84108, United States
| | - Mark M. Kushnir
- ARUP
Institute for Clinical and Experimental Pathology, Salt Lake City, Utah84108, United States,Department
of Pathology, University of Utah, Salt Lake City, Utah84108, United States
| | - Yifei K. Yang
- ARUP
Institute for Clinical and Experimental Pathology, Salt Lake City, Utah84108, United States,Department
of Pathology, University of Utah, Salt Lake City, Utah84108, United States,
| |
Collapse
|
9
|
Predictive Value of MRI with Serum Lectin-Reactive Alpha-Fetoprotein for Liver Cancer Recurrence after Percutaneous Radiofrequency Ablation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5132135. [PMID: 35911145 PMCID: PMC9325635 DOI: 10.1155/2022/5132135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022]
Abstract
Objective To explore the predictive value of magnetic resonance imaging (MRI) with serum lectin-reactive alpha-fetoprotein (AFP-L3) for liver cancer recurrence after percutaneous radiofrequency ablation (RFA). Methods This study included 94 liver cancer patients admitted for RFA treatment and 82 healthy subjects. MRI was performed to record the apparent diffusion coefficient (ADC). The serum concentrations of AFP-L3 were quantified in all participants. The correlation of the AFP-L3 serum level and ADC value with clinical efficacy following RFA was analyzed. Moreover, the prognostic factors affecting liver cancer recurrence were analyzed, as well as the predictive effect of the ADC value and AFP-L3 on liver cancer recurrence. Results The serum AFP-L3 level was higher in liver cancer patients than the healthy controls with a lower ADC value. Besides, the patients with tumor residuals had lower ADC values and higher serum AFP-L3 levels than those with complete ablated tumor. The combined detection of the ADC value and serum AFP-L3 level had a sensitivity of 87.50% and a specificity of 87.18% for diagnosing complete ablation after RFA treatment. The number of tumor nodules, tumor diameter, AFP, AFP-L3, and the presence of liver cirrhosis are all independent risk factors for liver cancer recurrence within one year. Meanwhile, the combined detection of the ADC value and serum AFP-L3 level had a good predictive effect on liver cancer recurrence with the sensitivity of 92.86% and a specificity of 69.62%. Conclusion The ADC values combined with serum AFP-L3 detection had good predictive effects on complete ablation and recurrence of liver cancer after RFA treatment.
Collapse
|
10
|
Lee J, Yeo I, Kim Y, Shin D, Kim J, Kim Y, Lim YS, Kim Y. Comparison of Fucose-Specific Lectins to Improve Quantitative AFP-L3 Assay for Diagnosing Hepatocellular Carcinoma Using Mass Spectrometry. J Proteome Res 2022; 21:1548-1557. [PMID: 35536554 DOI: 10.1021/acs.jproteome.2c00196] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glycoproteins have many important biological functions. In particular, aberrant glycosylation has been observed in various cancers, such as liver cancer. A well-known glycoprotein biomarker is α-fetoprotein (AFP), a surveillance biomarker for hepatocellular carcinoma (HCC) that contains a glycosylation site at asparagine 251. The low diagnostic sensitivity of AFP led researchers to focus on AFP-L3, which has the same sequence as conventional AFP but contains a fucosylated glycan. AFP-L3 has high affinity for Lens culinaris agglutinin (LCA) lectin, prompting many groups to use it for detecting AFP-L3. However, a few studies have identified more effective lectins for fractionating AFP-L3. In this study, we compared the amounts of enriched AFP-L3 with five fucose-specific lectins─LCA, Lotus tetragonolobus lectin (LTL), Ulex europaeus agglutinin I (UEA I), Aleuria aurantia lectin (AAL), and Aspergillus oryzae lectin (AOL)─to identify better lectins and improve HCC diagnostic assays using mass spectrometry (MS). Our results indicate that LTL was the most effective lectin for capturing AFP-L3 species, yielding approximately 3-fold more AFP-L3 than LCA from the same pool of HCC serum samples. Thus, we recommend the use of LTL for AFP-L3 assays, given its potential to improve the diagnostic sensitivity in patients having limited results by conventional LCA assay. The MS data have been deposited to the PeptideAtlas (PASS01752).
Collapse
Affiliation(s)
- Jihyeon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul 03080, Korea
| | - Injoon Yeo
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul 03080, Korea
| | - Yoseop Kim
- Department of Biomedical Engineering, Seoul National University College of Engineering, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Dongyoon Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul 03080, Korea
| | - Jaenyeon Kim
- Department of Biomedical Engineering, Seoul National University College of Engineering, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Yeongshin Kim
- Department of Biomedical Engineering, Seoul National University College of Engineering, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Young-Suk Lim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, Songpa-gu, Seoul 05505, Korea
| | - Youngsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul 03080, Korea.,Department of Biomedical Engineering, Seoul National University College of Engineering, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
11
|
Rappold BA. Review of the Use of Liquid Chromatography-Tandem Mass Spectrometry in Clinical Laboratories: Part I-Development. Ann Lab Med 2022; 42:121-140. [PMID: 34635606 PMCID: PMC8548246 DOI: 10.3343/alm.2022.42.2.121] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 09/28/2021] [Indexed: 11/19/2022] Open
Abstract
The process of method development for a diagnostic assay based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) involves several disparate technologies and specialties. Additionally, method development details are typically not disclosed in journal publications. Method developers may need to search widely for pertinent information on their assay(s). This review summarizes the current practices and procedures in method development. Additionally, it probes aspects of method development that are generally not discussed, such as how exactly to calibrate an assay or where to place quality controls, using examples from the literature. This review intends to provide a comprehensive resource and induce critical thinking around the experiments for and execution of developing a clinically meaningful LC-MS/MS assay.
Collapse
Affiliation(s)
- Brian A. Rappold
- Laboratory Corporation of America Holdings, Research Triangle Park, NC, USA
| |
Collapse
|
12
|
Zhao K, Zhou X, Xiao Y, Wang Y, Wen L. Research Progress in Alpha-Fetoprotein-Induced Immunosuppression of Liver Cancer. Mini Rev Med Chem 2022; 22:2237-2243. [PMID: 35184712 DOI: 10.2174/1389557522666220218124816] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022]
Abstract
Abstract:
Liver cancer is one of the most common malignant tumors, with limited treatment and 8.2% high mortality. Liver cancer is the fourth leading cause of cancer-related deaths, which seriously endangers human life and health. Approximately 70% of liver cancer patients show increased serum alpha-fetoprotein (AFP) levels. AFP is the main diagnostic and prognostic indicator of liver cancer. AFP, a key marker of liver cancer, plays a crucial role in regulating the proliferation of tumor cells, apoptosis, and induction of cellular immune escape. High levels of AFP during embryonic development protect the embryos from maternal immune attack. AFP also promotes immune escape of liver cancer cells by inhibiting tumor-infiltrating lymphocytes (TILs), natural killer cells (NK), dendritic cells (DC), and macrophages; thus, it is also used as a target antigen in immunotherapy for liver cancer. AFP is highly expressed in liver cancer cells. In addition to being used in the diagnosis of liver cancer, it has become a target of immunotherapy for liver cancer as a tumor-associated antigen. In immunotherapy, it was also confirmed that early AFP response was positively correlated with the efficacy of immunotherapy. Early AFP responders had longer PFS and OS than non-responders. At present, the methods of immunotherapy for liver cancer mainly include Adoptive Cell Transfer Therapy (ACT), tumor vaccine therapy, immune checkpoint inhibitors (ICIs) therapy and so on. A large number of studies have shown that AFP mainly plays a role in ACT and liver cancer vaccines. This review presents the research progress of AFP and immunosuppression of liver cancer.
Collapse
Affiliation(s)
- Kailiang Zhao
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaoquan Zhou
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuchun Xiao
- People\'s Hospital of Shangdang District, Changzhi, 047100, China
| | - Yanni Wang
- Taizhou Institute for Drug Control, Jiangsu Taizhou, 225300, China
| | - Lu Wen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
13
|
Hu X, Chen R, Wei Q, Xu X. The Landscape Of Alpha Fetoprotein In Hepatocellular Carcinoma: Where Are We? Int J Biol Sci 2022; 18:536-551. [PMID: 35002508 PMCID: PMC8741863 DOI: 10.7150/ijbs.64537] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and has been acknowledged as a leading cause of death among cirrhosis patients. Difficulties in early diagnosis and heterogeneity are obstacles to effective treatment, especially for advanced HCC. Liver transplantation (LT) is considered the best therapy for HCC. Although many biomarkers are being proposed, alpha-fetoprotein (AFP), which was identified over 60 years ago, remains the most utilized. Recently, much hope has been placed in the immunogenicity of AFP to develop novel therapies, such as AFP vaccines and AFP-specific adoptive T-cell transfer (ACT). This review summarizes the performance of AFP as a biomarker for HCC diagnosis and prognosis, as well as its correlation with molecular classes. In addition, the role of AFP in LT is also described. Finally, we highlight the mechanism and application prospects of two immune therapies (AFP vaccine and ACT) for HCC. In general, our review points out the prevalence of AFP in HCC, accompanied by some controversies and novel directions for future research.
Collapse
Affiliation(s)
- Xin Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,Zhejiang University Cancer Center, Hangzhou, 310058, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Ronggao Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Qiang Wei
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,Zhejiang University Cancer Center, Hangzhou, 310058, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
14
|
Phipps WS, Greene DN, Pflaum H, Laha TJ, Dickerson JA, Irvine J, Merrill AE, Ranjitkar P, Henderson CM, Hoofnagle AN. Small volume retinol binding protein measurement by liquid chromatography-tandem mass spectrometry. Clin Biochem 2022; 99:111-117. [PMID: 34678307 PMCID: PMC8671195 DOI: 10.1016/j.clinbiochem.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND The measurement of plasma concentrations of retinol binding protein is a component of nutritional assessment in neonatal intensive care. However, serial testing in newborns is hampered by the limited amount of blood that can be sampled. Limitations are most severe with preterm infants, for whom close monitoring may be most important. METHODS We developed an assay to quantify retinol binding protein using trypsin digestion and liquid chromatography-tandem mass spectrometry, which requires a serum or plasma volume of 5 µl. Additionally, we validated the method according to current recommendations and performed comparison with a standard nephelometry platform in clinical use. RESULTS The assay demonstrated linearity from below 1 mg/dL (0.48 µM) to more than 20 mg/dL (9.7 µM), and an imprecision of 11.8% at 0.43 mg/dL (0.21 µM). The distribution of results observed with the new method was different when compared with nephelometry. CONCLUSION Liquid chromatography-tandem mass spectrometry facilitated testing a smaller sample volume, thereby increasing the ability to monitor key nutritional markers in premature infants. The differences in results compared with a commercially-available nephelometric assay revealed questionable results for lower concentrations by immunoassay.
Collapse
Affiliation(s)
- William S. Phipps
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Dina N. Greene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Hannah Pflaum
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Thomas J. Laha
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Jane A. Dickerson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA,Seattle Children’s Hospital, Seattle, WA
| | - Jill Irvine
- University of Washington Medical Center, Seattle, WA
| | - Anna E. Merrill
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Pratistha Ranjitkar
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Clark M. Henderson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Andrew N. Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA,Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
15
|
Thyroglobulin and thyroid cancer. Cancer Biomark 2022. [DOI: 10.1016/b978-0-12-824302-2.00006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Zhou JM, Wang T, Zhang KH. AFP-L3 for the diagnosis of early hepatocellular carcinoma: A meta-analysis. Medicine (Baltimore) 2021; 100:e27673. [PMID: 34713864 PMCID: PMC8556013 DOI: 10.1097/md.0000000000027673] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 10/15/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The present study aimed to systematically evaluate the diagnostic value of an isoform of alpha-fetoprotein (AFP), AFP-L3, for early hepatocellular carcinoma (HCC) by a meta-analysis. METHODS Diagnostic reports of AFP-L3% in early HCC were searched in the PubMed, Web of Science, Cochrane Library, and Embase databases up to December 2019. The retrieved literature was reviewed, and eligible articles were selected. Data were extracted from the eligible articles, and the risk of bias was evaluated according to the Quality Assessment of Diagnostic Accuracy Studies scale. Statistical analyses were conducted by MetaDiSc1.4 and RevMan5.3 software. The sensitivities, specificities, and diagnostic odds ratios were pooled. The summary receiver operating characteristic curve was drawn, and the area under the curve was calculated. RESULTS Six studies with acceptable quality were included in the meta-analysis involving 2447 patients. No threshold effect was observed among the 6 studies, but there was obvious heterogeneity. The pooled sensitivity, specificity, and positive and negative likelihood ratios of AFP-L3% for the diagnosis of early HCC were 0.34 (95% CI 0.30-0.39, P < .0001), 0.92 (95% CI 0.91-0.93, P < .0001), 4.46 (95% CI 2.94-6.77, P = .0033), and 0.71 (95% CI 0.61-0.82, P = .0004), respectively. The diagnostic odds ratio was 6.78 (95% CI 4.02-11.44, P = .0074). The the area under the curve of the summary receiver operating characteristic was 0.755 (95% CI 0.57-0.94). CONCLUSION AFP-L3% has high specificity but low sensitivity for diagnose early HCC, suggesting that AFP-L3% is more valuable for excluding HCC in conditions with elevated AFP than for diagnosing early HCC. In addition, a hypersensitive detection method can improve the diagnostic accuracy of AFP-L3% for early HCC.
Collapse
|
17
|
Lee J, Lim YS, Lee JH, Gwak GY, Do M, Yeo I, Shin D, Han D, Park T, Kim Y. Inclusive Quantification Assay of Serum Des-γ-Carboxyprothrombin Proteoforms for Hepatocellular Carcinoma Surveillance by Targeted Mass Spectrometry. Hepatol Commun 2021; 5:1767-1783. [PMID: 34558815 PMCID: PMC8485883 DOI: 10.1002/hep4.1752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/25/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant cancer with one of the highest mortality rates. Des-γ-carboxyprothrombin (DCP) is an HCC serologic surveillance marker that can complement the low sensitivity of alpha-fetoprotein (AFP). DCP exists in the blood as a mixture of proteoforms from an impaired carboxylation process at glutamic acid (Glu) residues within the N-terminal domain. The heterogeneity of DCP may affect the accuracy of measurements because DCP levels are commonly determined using an immunoassay that relies on antibody reactivity to an epitope in the DCP molecule. In this study, we aimed to improve the DCP measurement assay by applying a mass spectrometry (MS)-based approach for a more inclusive quantification of various DCP proteoforms. We developed a multiple-reaction monitoring-MS (MRM-MS) assay to quantify multiple noncarboxylated peptides included in the various des-carboxylation states of DCP. We performed the MRM-MS assay in 300 patients and constructed a robust diagnostic model that simultaneously monitored three noncarboxylated peptides. The MS-based quantitative assay for DCP had reliable surveillance power, which was evident from the area under the receiver operating characteristic curve (AUROC) values of 0.874 and 0.844 for the training and test sets, respectively. It was equivalent to conventional antibody-based quantification, which had AUROC values at the optimal cutoff (40 mAU/mL) of 0.743 and 0.704 for the training and test sets, respectively. The surveillance performance of the MS-based DCP assay was validated using an independent validation set consisting of 318 patients from an external cohort, resulting in an AUROC value of 0.793. Conclusion: Due to cost effectiveness and high reproducibility, the quantitative DCP assay using the MRM-MS method is superior to antibody-based quantification and has equivalent performance.
Collapse
Affiliation(s)
- Jihyeon Lee
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulKorea
| | - Young-Suk Lim
- Department of GastroenterologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research InstituteSeoul National University College of MedicineSeoulKorea
| | - Geum-Youn Gwak
- Department of MedicineSamsung Medical CenterSungkyunkwan University School of MedicineSeoulKorea
| | - Misol Do
- Department of Biomedical EngineeringSeoul National University College of EngineeringSeoulKorea
| | - Injoon Yeo
- Department of Biomedical EngineeringSeoul National University College of EngineeringSeoulKorea
| | - Dongyoon Shin
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulKorea
| | - Dohyun Han
- Biomedical Research InstituteSeoul National University HospitalSeoulKorea
| | - Taesung Park
- Department of StatisticsSeoul National UniversitySeoulKorea
| | - Youngsoo Kim
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulKorea.,Department of Biomedical EngineeringSeoul National University College of EngineeringSeoulKorea
| |
Collapse
|
18
|
Wu CC, Lu YT, Yeh TS, Chan YH, Dash S, Yu JS. Identification of Fucosylated SERPINA1 as a Novel Plasma Marker for Pancreatic Cancer Using Lectin Affinity Capture Coupled with iTRAQ-Based Quantitative Glycoproteomics. Int J Mol Sci 2021; 22:ijms22116079. [PMID: 34199928 PMCID: PMC8200073 DOI: 10.3390/ijms22116079] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive cancer with a high mortality rate, necessitating the development of effective diagnostic, prognostic and predictive biomarkers for disease management. Aberrantly fucosylated proteins in PC are considered a valuable resource of clinically useful biomarkers. The main objective of the present study was to identify novel plasma glycobiomarkers of PC using the iTRAQ quantitative proteomics approach coupled with Aleuria aurantia lectin (AAL)-based glycopeptide enrichment and isotope-coded glycosylation site-specific tagging, with a view to analyzing the glycoproteome profiles of plasma samples from patients with non-metastatic and metastatic PC and gallstones (GS). As a result, 22 glycopeptides with significantly elevated levels in plasma samples of PC were identified. Fucosylated SERPINA1 (fuco-SERPINA1) was selected for further validation in 121 plasma samples (50 GS and 71 PC) using an AAL-based reverse lectin ELISA technique developed in-house. Our analyses revealed significantly higher plasma levels of fuco-SERPINA1 in PC than GS subjects (310.7 ng/mL v.s. 153.6 ng/mL, p = 0.0114). Elevated fuco-SERPINA1 levels were associated with higher TNM stage (p = 0.024) and poorer prognosis for overall survival (log-rank test, p = 0.0083). The increased plasma fuco-SERPINA1 levels support the utility of this protein as a novel prognosticator for PC.
Collapse
Affiliation(s)
- Chia-Chun Wu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (C.-C.W.); (Y.-T.L.)
| | - Yu-Ting Lu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (C.-C.W.); (Y.-T.L.)
| | - Ta-Sen Yeh
- Department of General Surgery, Chang Gung Memorial Hospital, Linkou 33305, Taiwan; (T.-S.Y.); (Y.-H.C.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yun-Hsin Chan
- Department of General Surgery, Chang Gung Memorial Hospital, Linkou 33305, Taiwan; (T.-S.Y.); (Y.-H.C.)
| | - Srinivas Dash
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (C.-C.W.); (Y.-T.L.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Liver Research Center, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3-211-8800 (ext. 5171); Fax: +886-3-211-8891
| |
Collapse
|
19
|
Ghantasala S, Pai MGJ, Biswas D, Gahoi N, Mukherjee S, KP M, Nissa MU, Srivastava A, Epari S, Shetty P, Moiyadi A, Srivastava S. Multiple Reaction Monitoring-Based Targeted Assays for the Validation of Protein Biomarkers in Brain Tumors. Front Oncol 2021; 11:548243. [PMID: 34055594 PMCID: PMC8162214 DOI: 10.3389/fonc.2021.548243] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
The emergence of omics technologies over the last decade has helped in advancement of research and our understanding of complex diseases like brain cancers. However, barring genomics, no other omics technology has been able to find utility in clinical settings. The recent advancements in mass spectrometry instrumentation have resulted in proteomics technologies becoming more sensitive and reliable. Targeted proteomics, a relatively new branch of mass spectrometry-based proteomics has shown immense potential in addressing the shortcomings of the standard molecular biology-based techniques like Western blotting and Immunohistochemistry. In this study we demonstrate the utility of Multiple reaction monitoring (MRM), a targeted proteomics approach, in quantifying peptides from proteins like Apolipoprotein A1 (APOA1), Apolipoprotein E (APOE), Prostaglandin H2 D-Isomerase (PTGDS), Vitronectin (VTN) and Complement C3 (C3) in cerebrospinal fluid (CSF) collected from Glioma and Meningioma patients. Additionally, we also report transitions for peptides from proteins - Vimentin (VIM), Cystatin-C (CST3) and Clusterin (CLU) in surgically resected Meningioma tissues; Annexin A1 (ANXA1), Superoxide dismutase (SOD2) and VIM in surgically resected Glioma tissues; and Microtubule associated protein-2 (MAP-2), Splicing factor 3B subunit 2 (SF3B2) and VIM in surgically resected Medulloblastoma tissues. To our knowledge, this is the first study reporting the use of MRM to validate proteins from three types of brain malignancies and two different bio-specimens. Future studies involving a large cohort of samples aimed at accurately detecting and quantifying peptides of proteins with roles in brain malignancies could potentially result in a panel of proteins showing ability to classify and grade tumors. Successful application of these techniques could ultimately offer alternative strategies with increased accuracy, sensitivity and lower turnaround time making them translatable to the clinics.
Collapse
Affiliation(s)
- Saicharan Ghantasala
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Medha Gayathri J. Pai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Deeptarup Biswas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Nikita Gahoi
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Shuvolina Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Manubhai KP
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Mehar Un Nissa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | - Sridhar Epari
- Department of Pathology, Tata Memorial Centre’s – Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Prakash Shetty
- Homi Bhabha National Institute, Mumbai, India
- Department of Neurosurgery, Tata Memorial Centre’s – Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
| | - Aliasgar Moiyadi
- Homi Bhabha National Institute, Mumbai, India
- Department of Neurosurgery, Tata Memorial Centre’s – Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
20
|
Shin D, Rhee SJ, Lee J, Yeo I, Do M, Joo EJ, Jung HY, Roh S, Lee SH, Kim H, Bang M, Lee KY, Kwon JS, Ha K, Ahn YM, Kim Y. Quantitative Proteomic Approach for Discriminating Major Depressive Disorder and Bipolar Disorder by Multiple Reaction Monitoring-Mass Spectrometry. J Proteome Res 2021; 20:3188-3203. [PMID: 33960196 DOI: 10.1021/acs.jproteome.1c00058] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Because major depressive disorder (MDD) and bipolar disorder (BD) manifest with similar symptoms, misdiagnosis is a persistent issue, necessitating their differentiation through objective methods. This study was aimed to differentiate between these disorders using a targeted proteomic approach. Multiple reaction monitoring-mass spectrometry (MRM-MS) analysis was performed to quantify protein targets regarding the two disorders in plasma samples of 270 individuals (90 MDD, 90 BD, and 90 healthy controls (HCs)). In the training set (72 MDD and 72 BD), a generalizable model comprising nine proteins was developed. The model was evaluated in the test set (18 MDD and 18 BD). The model demonstrated a good performance (area under the curve (AUC) >0.8) in discriminating MDD from BD in the training (AUC = 0.84) and test sets (AUC = 0.81) and in distinguishing MDD from BD without current hypomanic/manic/mixed symptoms (90 MDD and 75 BD) (AUC = 0.83). Subsequently, the model demonstrated excellent performance for drug-free MDD versus BD (11 MDD and 10 BD) (AUC = 0.96) and good performance for MDD versus HC (AUC = 0.87) and BD versus HC (AUC = 0.86). Furthermore, the nine proteins were associated with neuro, oxidative/nitrosative stress, and immunity/inflammation-related biological functions. This proof-of-concept study introduces a potential model for distinguishing between the two disorders.
Collapse
Affiliation(s)
| | - Sang Jin Rhee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | | | | | | | - Eun-Jeong Joo
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea.,Department of Psychiatry, Nowon Eulji Medical Center, Eulji University, Seoul 01830, Republic of Korea
| | - Hee Yeon Jung
- Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul 07061, Republic of Korea.,Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, 101 Daehakro, Seoul 30380, Republic of Korea
| | - Sungwon Roh
- Department of Psychiatry, Hanyang University Hospital, Seoul 04763, Republic of Korea.,Department of Psychiatry, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea
| | - Hyeyoung Kim
- Department of Psychiatry, Inha University Hospital, Incheon 22332, Republic of Korea
| | - Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea
| | - Kyu Young Lee
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea.,Department of Psychiatry, Nowon Eulji Medical Center, Eulji University, Seoul 01830, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea.,Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, 101 Daehakro, Seoul 30380, Republic of Korea
| | - Kyooseob Ha
- Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea.,Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, 101 Daehakro, Seoul 30380, Republic of Korea
| | - Yong Min Ahn
- Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea.,Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, 101 Daehakro, Seoul 30380, Republic of Korea
| | | |
Collapse
|
21
|
Tsai IJ, Su ECY, Tsai IL, Lin CY. Clinical Assay for the Early Detection of Colorectal Cancer Using Mass Spectrometric Wheat Germ Agglutinin Multiple Reaction Monitoring. Cancers (Basel) 2021; 13:cancers13092190. [PMID: 34063271 PMCID: PMC8124906 DOI: 10.3390/cancers13092190] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is currently the third leading cause of cancer death worldwide. Early diagnosis of CRC is important for increasing the opportunity for treatment and receiving a good prognosis. The aim of our study was to develop a detection method that combined wheat germ agglutinin (WGA) chromatography with mass spectrometry (MS) for early detection of CRC. Further, machine learning algorithms and logistic regression were applied to combine multiple biomarkers we discovered. We validated in a population of 286 plasma samples the diagnostic performance of peptides corresponding to WGA-captured protein and its combination, which received a sensitivity of 84.5% and a specificity of 97.5% in the diagnoses of CRC. Proteomic biomarkers combined with algorithms can provide a powerful tool for discriminating patients with CRC and health controls (HCs). Measurements of WGA-captured PF4, ITIH4, and APOE with MS are then useful for early detection of CRC. Additionally, our study revealed the potential of applying lectin chromatography with MS for disease diagnosis. Abstract Colorectal cancer (CRC) is currently the third leading cause of cancer-related mortality in the world. U.S. Food and Drug Administration-approved circulating tumor markers, including carcinoembryonic antigen, carbohydrate antigen (CA) 19-9 and CA125 were used as prognostic biomarkers of CRC that attributed to low sensitivity in diagnosis of CRC. Therefore, our purpose is to develop a novel strategy for novel clinical biomarkers for early CRC diagnosis. We used mass spectrometry (MS) methods such as nanoLC-MS/MS, targeted LC-MS/MS, and stable isotope-labeled multiple reaction monitoring (MRM) MS coupled to test machine learning algorithms and logistic regression to analyze plasma samples from patients with early-stage CRC, late-stage CRC, and healthy controls (HCs). On the basis of our methods, 356 peptides were identified, 6 differential expressed peptides were verified, and finally three peptides corresponding wheat germ agglutinin (WGA)-captured proteins were semi-quantitated in 286 plasma samples (80 HCs and 206 CRCs). The novel peptide biomarkers combination of PF454–62, ITIH4429–438, and APOE198–207 achieved sensitivity 84.5%, specificity 97.5% and an AUC of 0.96 in CRC diagnosis. In conclusion, our study demonstrated that WGA-captured plasma PF454–62, ITIH4429–438, and APOE198–207 levels in combination may serve as highly effective early diagnostic biomarkers for patients with CRC.
Collapse
Affiliation(s)
- I-Jung Tsai
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Emily Chia-Yu Su
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - I-Lin Tsai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Yu Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 3326)
| |
Collapse
|
22
|
Xu MM, Zhou MT, Li SW, Zhen XC, Yang S. Glycoproteins as diagnostic and prognostic biomarkers for neurodegenerative diseases: A glycoproteomic approach. J Neurosci Res 2021; 99:1308-1324. [PMID: 33634546 DOI: 10.1002/jnr.24805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/21/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases (NDs) are incurable and can develop progressively debilitating disorders, including dementia and ataxias. Alzheimer's disease and Parkinson's disease are the most common NDs that mainly affect the elderly people. There is an urgent need to develop new diagnostic tools so that patients can be accurately stratified at an early stage. As a common post-translational modification, protein glycosylation plays a key role in physiological and pathological processes. The abnormal changes in glycosylation are associated with the altered biological pathways in NDs. The pathogenesis-related proteins, like amyloid-β and microtubule-associated protein tau, have altered glycosylation. Importantly, specific glycosylation changes in cerebrospinal fluid, blood and urine are valuable for revealing neurodegeneration in the early stages. This review describes the emerging biomarkers based on glycoproteomics in NDs, highlighting the potential applications of glycoprotein biomarkers in the early detection of diseases, monitoring of the disease progression, and measurement of the therapeutic responses. The mass spectrometry-based strategies for characterizing glycoprotein biomarkers are also introduced.
Collapse
Affiliation(s)
- Ming-Ming Xu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | | | - Shu-Wei Li
- Nanjing Apollomics Biotech, Inc., Nanjing, China
| | - Xue-Chu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
23
|
Liu R, Li Y, Wu A, Kong M, Ding W, Hu Z, Chen L, Cai W, Wang F. Identification of Plasma hsa_circ_0005397 and Combined With Serum AFP, AFP-L3 as Potential Biomarkers for Hepatocellular Carcinoma. Front Pharmacol 2021; 12:639963. [PMID: 33679420 PMCID: PMC7933497 DOI: 10.3389/fphar.2021.639963] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Mounting evidence has demonstrated that circular RNA (circRNA) plays crucial roles in the occurrence and development of hepatocellular carcinoma (HCC). However, the expression pattern and clinical application value of plasma circRNA in HCC are still largely unknown. Herein, we explored the role of plasma hsa_circ_0005397 in diagnosis and prognosis of HCC. Methods: The expression level of plasma hsa_circ_0005397 was measured by quantitative real-time polymerase chain reaction (qRT-PCR). The identification and origin of plasma hsa_circ_0005397 were confirmed by RNase R assay, Sanger sequencing and HCC cell culture. In addition, its diagnostic value was assessed by receiver operating characteristic (ROC) curve and prognostic value was evaluated by dynamics monitoring and Kaplan–Meier curve analyses in HCC patients. Results: The expression of plasma hsa_circ_0005397 was higher in patients with HCC than that in patients with benign liver diseases and healthy controls (both p < 0.05). Moreover, it was closely correlated with tumor size (p = 0.020) and TNM stage (p = 0.006) of HCC patients. The area under the ROC curve of plasma hsa_circ_0005397 was 0.737 and 95% confidence interval was 0.671–0.795. Furthermore, the combination of plasma hsa_cic_0005397, serum AFP and AFP-L3 could improve the diagnostic sensitivity of HCC. Additionally, dynamic monitoring plasma hsa_cic_0005397 might help us predict recurrence or metastasis in HCC patients after surgical resection. Besides, the increased plasma hsa_cic_0005397 was closely correlated with shorter overall survival of HCC patients (p = 0.007). Conclusion: Plasma has_circ_0005397 represents a novel noninvasive biomarker for HCC. Moreover, the combination of plasma hsa_cic_0005397, serum AFP and AFP-L3 might improve the diagnostic value for HCC.
Collapse
Affiliation(s)
- Ruoyu Liu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Yi Li
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Anqi Wu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Mingzhu Kong
- Department of Laboratory Medicine, School of Public Health, Nantong University, Jiangsu, China
| | - Weijia Ding
- Department of Laboratory Medicine, School of Public Health, Nantong University, Jiangsu, China
| | - Zeyang Hu
- Department of Laboratory Medicine, School of Public Health, Nantong University, Jiangsu, China
| | - Lin Chen
- Department of Gastroenterology and Laboratory Medicine, Nantong Third Hospital Affiliated to Nantong University, Jiangsu, China
| | - Weihua Cai
- Department of Gastroenterology and Laboratory Medicine, Nantong Third Hospital Affiliated to Nantong University, Jiangsu, China
| | - Feng Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Jiangsu, China
| |
Collapse
|
24
|
Kim Y, Yeo I, Huh I, Kim J, Han D, Jang JY, Kim Y. Development and Multiple Validation of the Protein Multi-marker Panel for Diagnosis of Pancreatic Cancer. Clin Cancer Res 2021; 27:2236-2245. [PMID: 33504556 DOI: 10.1158/1078-0432.ccr-20-3929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE To develop and validate a protein-based, multi-marker panel that provides superior pancreatic ductal adenocarcinoma (PDAC) detection abilities with sufficient diagnostic performance. EXPERIMENTAL DESIGN A total of 959 plasma samples from patients at multiple medical centers were used. To construct an optimal, diagnostic, multi-marker panel, we applied data preprocessing procedure to biomarker candidates. The multi-marker panel was developed using a training set comprised of 261 PDAC cases and 290 controls. Subsequent evaluations were performed in a validation set comprised of 65 PDAC cases and 72 controls. Further validation was performed in an independent set comprised of 75 PDAC cases and 47 controls. RESULTS A multi-marker panel containing 14 proteins was developed. The multi-marker panel achieved AUCs of 0.977 and 0.953 for the training set and validation set, respectively. In an independent validation set, the multi-marker panel yielded an AUC of 0.928. The diagnostic performance of the multi-marker panel showed significant improvements compared with carbohydrate antigen (CA) 19-9 alone (training set AUC = 0.977 vs. 0.872, P < 0.001; validation set AUC = 0.953 vs. 0.832, P < 0.01; independent validation set AUC = 0.928 vs. 0.771, P < 0.001). When the multi-marker panel and CA 19-9 were combined, the diagnostic performance of the combined panel was improved for all sets. CONCLUSIONS This multi-marker panel and the combined panel showed statistically significant improvements in diagnostic performance compared with CA 19-9 alone and has the potential to complement CA 19-9 as a diagnostic marker in clinical practice.
Collapse
Affiliation(s)
- Yoseop Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, College of Engineering, Seoul, Republic of South Korea
| | - Injoon Yeo
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of South Korea
| | - Iksoo Huh
- College of Nursing and Research Institute of Nursing Science, Seoul National University, Seoul, Republic of South Korea
| | - Jaenyeon Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, College of Engineering, Seoul, Republic of South Korea
| | - Dohyun Han
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of South Korea
| | - Jin-Young Jang
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of South Korea.
| | - Youngsoo Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, College of Engineering, Seoul, Republic of South Korea. .,Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of South Korea.,Institute of Bioengineering, Seoul National University, Seoul, Republic of South Korea
| |
Collapse
|
25
|
Cheng M, Zhang Y, Wang Y, Zhu A, Chen L, Hua Z, Zhang X. SERS Immunosensor of Array Units Surrounded by Particles: A Platform for Auxiliary Diagnosis of Hepatocellular Carcinoma. NANOMATERIALS 2020; 10:nano10102090. [PMID: 33096939 PMCID: PMC7589698 DOI: 10.3390/nano10102090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 11/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the diseases with high mortality worldwide, so its early diagnosis and treatment have attracted much attention. Due to the advantages of the high sensitivity of surface-enhanced Raman scattering (SERS) detection, SERS has excellent application value in the diagnosis of HCC. In this paper, silver nanoparticles (AgNPs) are modified by magnetron sputtering on the surface of polystyrene (PS) templates with spheres of two different diameters. The array of units surrounded by particles is successfully prepared and the SERS performance is characterized. The effect of the gap between AgNPs on plasmon coupling and hot spot distribution is discussed. Finite-difference time domain (FDTD) simulation is used to verify the electric fields and hot spot distribution of the array. The differences in the concentrations of HCC markers are analyzed by using the change of SERS signal intensity of the array. The whole process proves that the preparation of structures with a strong local electric field to provide highly sensitive SERS signals is a key link in the detection of HCC markers, which is conducive to the diagnosis of HCC and has potential application value in clinical diagnosis.
Collapse
Affiliation(s)
- Mingyu Cheng
- School of Material and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China; (M.C.); (Y.W.)
- Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, College of Physics, Jilin Normal University, Changchun 130103, China; (L.C.); (Z.H.)
| | - Yongjun Zhang
- School of Material and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China; (M.C.); (Y.W.)
- Correspondence: (Y.Z.); (X.Z.)
| | - Yaxin Wang
- School of Material and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China; (M.C.); (Y.W.)
| | - Aonan Zhu
- College of Chemistry, Nankai University, Tianjin 300071, China;
| | - Lei Chen
- Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, College of Physics, Jilin Normal University, Changchun 130103, China; (L.C.); (Z.H.)
| | - Zhong Hua
- Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, College of Physics, Jilin Normal University, Changchun 130103, China; (L.C.); (Z.H.)
| | - Xiaolong Zhang
- Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, College of Physics, Jilin Normal University, Changchun 130103, China; (L.C.); (Z.H.)
- Correspondence: (Y.Z.); (X.Z.)
| |
Collapse
|
26
|
Do M, Kim H, Yeo I, Lee J, Park IA, Ryu HS, Kim Y. Clinical Application of Multiple Reaction Monitoring-Mass Spectrometry to Human Epidermal Growth Factor Receptor 2 Measurements as a Potential Diagnostic Tool for Breast Cancer Therapy. Clin Chem 2020; 66:1339-1348. [DOI: 10.1093/clinchem/hvaa178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022]
Abstract
Abstract
Background
Human epidermal growth factor receptor 2 (HER2) is often overexpressed in breast cancer and correlates with a worse prognosis. Thus, the accurate detection of HER2 is crucial for providing the appropriate measures for patients. However, the current techniques used to detect HER2 status, immunohistochemistry and fluorescence in situ hybridization (FISH), have limitations. Specifically, FISH, which is mandatory for arbitrating 2+ cases, is time-consuming and costly. To address this shortcoming, we established a multiple reaction monitoring-mass spectrometry (MRM-MS) assay that improves on existing methods for differentiating HER2 status.
Methods
We quantified HER2 expression levels in 210 breast cancer formalin-fixed paraffin-embedded (FFPE) tissue samples by MRM-MS. We aimed to improve the accuracy and precision of HER2 quantification by simplifying the sample preparation through predicting the number of FFPE slides required to ensure an adequate amount of protein and using the expression levels of an epithelial cell-specific protein as a normalization factor when measuring HER2 expression levels.
Results
To assess the correlation between MRM-MS and IHC/FISH data, HER2 quantitative data from MRM-MS were divided by the expression levels of junctional adhesion molecule A, an epithelial cell-specific protein, prior to statistical analysis. The normalized HER2 amounts distinguished between HER2 2+/FISH-negative and 2+/FISH-positive groups (AUROC = 0.908), which could not be differentiated by IHC. In addition, all HER2 status were discriminated by MRM-MS.
Conclusions
This MRM-MS assay yields more accurate HER2 expression levels relative to immunohistochemistry and should help to guide clinicians toward the proper treatment for breast cancer patients, based on their HER2 expression.
Collapse
Affiliation(s)
- Misol Do
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyunsoo Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Injoon Yeo
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jihyeon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - In Ae Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youngsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
27
|
Preparation of Tissue Samples for Large-scale Quantitative Mass Spectrometric Analysis. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0495-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
28
|
Kim J, Yeo I, Kim H, Sohn A, Kim Y, Kim Y. Web portal for analytical validation of MRM-MS assay abided with integrative multinational guidelines. Sci Rep 2020; 10:10848. [PMID: 32616742 PMCID: PMC7331696 DOI: 10.1038/s41598-020-67731-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 06/15/2020] [Indexed: 11/29/2022] Open
Abstract
Multiple reaction monitoring-mass spectrometry became a mainstream method for quantitative proteomics, which made the validation of a method and the analyzed data important. In this portal for validation of the MRM-MS assay, we developed a website that automatically evaluates uploaded MRM-MS data, based on biomarker assay guidelines from the European Medicines Agency, the US Food & Drug Administration, and the Korea Food & Drug Administration. The portal reads a Skyline output file and produces the following results—calibration curve, specificity, sensitivity, carryover, precision, recovery, matrix effect, recovery, dilution integrity, stability, and QC—according to the standards of each independent agency. The final tables and figures that pertain to the 11 evaluation categories are displayed in an individual page. Spring boot was used as a framework for development of the webpage, which follows MVC Pattern. JSP, HTML, XML, and Java Script were used to develop the webpage. A server was composed of Apache Tomcat, MySQL. Input files were skyline-derived output files (csv file), and each files were organized by specific columns in order. SQL, JAVA were interworked to evaluate all the categories and show the results. Method Validation Portal can be accessed via any kind of explorer from https://pnbvalid.snu.ac.kr.
Collapse
Affiliation(s)
- Jaenyeon Kim
- Interdisciplinary Program of Bioengineering, Seoul National University College of Engineering, Seoul, South Korea
| | - Injoon Yeo
- Interdisciplinary Program of Bioengineering, Seoul National University College of Engineering, Seoul, South Korea
| | - Hyunsoo Kim
- Institute of Medical and Biological Engineering, MRC, Seoul National University, Seoul, South Korea
| | - Areum Sohn
- Institute of Medical and Biological Engineering, MRC, Seoul National University, Seoul, South Korea
| | - Yoseop Kim
- Interdisciplinary Program of Bioengineering, Seoul National University College of Engineering, Seoul, South Korea
| | - Youngsoo Kim
- Interdisciplinary Program of Bioengineering, Seoul National University College of Engineering, Seoul, South Korea. .,Institute of Medical and Biological Engineering, MRC, Seoul National University, Seoul, South Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea. .,Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
29
|
Zhang N, An J, Qin H, Wang Y, Fang Z, Ji Y, Ye M. A Mass-Spectrometry-Based Antibody-Free Approach Enables the Quantification of D-Dimer in Plasma. J Proteome Res 2020; 19:3143-3152. [PMID: 32519545 DOI: 10.1021/acs.jproteome.0c00148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
D-dimer is an important marker of different coagulation diseases, such as venous thromboembolism (including deep vein thrombosis and pulmonary embolism) and disseminated intravascular coagulation. Though it is frequently used in many clinical diagnostic situations, the D-dimer assays currently lack standardization due to its inherent heterogeneity which makes the antibody-based methods have different quantitative results and cutoffs to define an abnormal value. In this study, we report the first antibody-free D-dimer quantification method. In the method, a cross-linked peptide of fibrin D domain carboxyl terminal cross-linked by the factor XIIIa was used to represent the D-dimer. By using a filter-aided sample preparation and a nickel immobilized metal affinity chromatography enrichment strategy, the complexity of the plasma sample was significantly reduced, and the cross-linked peptide was enriched effectively for analysis with parallel reaction monitoring in mass spectrometry. The linear range of this method was 3.125-400 nmol/L which spans over two magnitudes. Recovery and reproducibility of the method were found to be good. To further demonstrate the performance of our method, D-dimer concentrations of 25 human plasma samples were analyzed, and the results had a good correlation between with the commercial D-dimer assay kit used in hospitals. This method was completely antibody-free and has the potential to promote the standardization of D-dimer analysis.
Collapse
Affiliation(s)
- Na Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun An
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinqun Ji
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Dalian Medical University, Dailan 116011, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| |
Collapse
|
30
|
Li Z, Li H, Deng D, Liu R, Lv Y. Mass Spectrometric Assay of Alpha-Fetoprotein Isoforms for Accurate Serological Evaluation. Anal Chem 2020; 92:4807-4813. [DOI: 10.1021/acs.analchem.9b03995] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ziyan Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Hongmei Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Dongyan Deng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
31
|
Kim H, Kim Y, Han B, Jang JY, Kim Y. Clinically Applicable Deep Learning Algorithm Using Quantitative Proteomic Data. J Proteome Res 2019; 18:3195-3202. [DOI: 10.1021/acs.jproteome.9b00268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Balaceanu LA. Biomarkers vs imaging in the early detection of hepatocellular carcinoma and prognosis. World J Clin Cases 2019; 7:1367-1382. [PMID: 31363465 PMCID: PMC6656675 DOI: 10.12998/wjcc.v7.i12.1367] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/07/2019] [Accepted: 05/03/2019] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the 5th most frequently diagnosed cancer in the world, according to the World Health Organization. The incidence of HCC is between 3/100000 and 78.1/100000, with a high incidence reported in areas with viral hepatitis B and hepatitis C, thus affecting Asia and Africa predominantly. Several international clinical guidelines address HCC diagnosis and are structured according to the geographical area involved. All of these clinical guidelines, however, share a foundation of diagnosis by ultrasound surveillance and contrast imaging techniques, particularly computed tomography, magnetic resonance imaging, and sometimes contrast-enhanced ultrasound. The primary objective of this review was to systematically summarize the recent published studies on the clinical utility of serum biomarkers in the early diagnosis of HCC and for the prognosis of this disease.
Collapse
Affiliation(s)
- Lavinia Alice Balaceanu
- Department of Internal Medicine, Carol Davila University of Medicine and Pharmacy, Sf. Ioan Clinical Emergency Hospital, Bucharest 42122, Romania
| |
Collapse
|
33
|
Kim KH, Kim JY, Yoo JS. Mass spectrometry analysis of glycoprotein biomarkers in human blood of hepatocellular carcinoma. Expert Rev Proteomics 2019; 16:553-568. [PMID: 31145639 DOI: 10.1080/14789450.2019.1626235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kwang Hoe Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jin Young Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jong Shin Yoo
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
34
|
Lee J, Kim H, Sohn A, Yeo I, Kim Y. Cost-Effective Automated Preparation of Serum Samples for Reproducible Quantitative Clinical Proteomics. J Proteome Res 2019; 18:2337-2345. [PMID: 30985128 DOI: 10.1021/acs.jproteome.9b00023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Reproducible sample preparation remains a significant challenge in large-scale clinical research using selected reaction monitoring-mass spectrometry (SRM-MS), which enables a highly sensitive multiplexed assay. Although automated liquid-handling platforms have tremendous potential for addressing this issue, the high cost of their consumables is a drawback that renders routine operation expensive. Here we evaluated the performance of a liquid-handling platform in preparing serum samples compared with a standard experiment while reducing the outlay for consumables, such as tips, wasted reagents, and reagent stock plates. A total of 26 multiplex assays were quantified by SRM-MS using four sets of 24 pooled human serum aliquots; the four sets used a fixed number (1, 4, 8, or 24) of tips to dispense digestion reagents. This study demonstrated that the use of 4 or 8 tips is comparable to 24 tips (standard experiment), as evidenced by their coefficients of variation: 13.5% (for 4 and 8 tips) versus 12.0% (24 tips). Thus we can save 37% of the total experimental cost compared with the standard experiment, maintaining nearly equivalent reproducibility. The routine operation of cost-effective liquid-handling platforms can enable researchers to process large-scale samples with high throughput, adding credibility to their findings by minimizing human error.
Collapse
Affiliation(s)
| | - Hyunsoo Kim
- Institute of Medical and Biological Engineering, MRC , Seoul National University , Seoul , Korea
| | | | - Injoon Yeo
- Interdisciplinary Program of Bioengineering , Seoul National University College of Engineering , Seoul , Korea
| | - Youngsoo Kim
- Institute of Medical and Biological Engineering, MRC , Seoul National University , Seoul , Korea.,Interdisciplinary Program of Bioengineering , Seoul National University College of Engineering , Seoul , Korea
| |
Collapse
|
35
|
Hu H, Xu L, Chen Y, Luo SJ, Wu YZ, Xu SH, Liu MT, Lin F, Mei Y, Yang Q, Qiang YY, Lin YW, Deng YJ, Lin T, Sha YQ, Huang BJ, Zhang SJ. The Upregulation of Trophinin-Associated Protein (TROAP) Predicts a Poor Prognosis in Hepatocellular Carcinoma. J Cancer 2019; 10:957-967. [PMID: 30854102 PMCID: PMC6400818 DOI: 10.7150/jca.26666] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose: Trophinin-associated protein (TROAP) is a cytoplasmic protein that plays a significant role in the processes of embryo transplantation and microtubule regulation. However, the relevant survival analysis and cancer progression analysis have not yet been reported. Methods: Eighteen matched pairs of tumor and adjacent non-tumor samples were evaluated to detect the TROAP mRNA level. Immunohistochemistry (IHC) was used to evaluate the TROAP expression in 108 hepatocellular carcinoma patients who underwent surgical resection. Meanwhile, data from the TCGA database was statistically evaluated. Results: In the present study, we detected a significant increase in the TROAP mRNA level in tumor tissues when compared with adjacent non-tumor tissues. Moreover, the upregulation of TROAP was associated with increased serum AFP and GGT; the greater the tumor number was, the larger the tumor size, differentiation grade, and cancer embolus in clinical analysis. In HCC patients, elevated TROAP expression in the primary tumor was positively related to clinical severity, such as poor overall survival and disease-free survival. In addition, both univariate and multivariate survival analysis validated that TROAP expression was a promising independent risk factor for overall survival and disease-free survival in HCC patients. Furthermore, the results derived from the analysis of data from the TCGA database were consistent with previous results. Altogether, our results show that TROAP is a novel crucial regulator of HCC progression and is a potential therapeutic biomarker for HCC patients. Conclusions: Elevated TROAP expression predicted a poor prognosis, and TROAP may serve as a potential biomarker for application in oncotherapy.
Collapse
Affiliation(s)
- Hao Hu
- Department of Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, P. R. China
| | - Liang Xu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Yan Chen
- Department of Chinese Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, P. R. China
| | - Shao-Ju Luo
- Department of Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, P. R. China
| | - Ying-Zi Wu
- Department of Chinese Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, P. R. China
| | - Shi-Hua Xu
- Department of Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, P. R. China
| | - Meng-Ting Liu
- Department of Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, P. R. China
| | - Fen Lin
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Yan Mei
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Qin Yang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Yuan-Yuan Qiang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P. R. China
| | - You-Wu Lin
- Department of Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, P. R. China
| | - Yuan-Jiang Deng
- Department of Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, P. R. China
| | - Tong Lin
- Department of Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, P. R. China
| | - Yong-Qiang Sha
- Department of Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, P. R. China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Shi-Jun Zhang
- Department of Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, P. R. China
| |
Collapse
|