1
|
Al Khleifat A, Iacoangeli A, Jones AR, van Vugt JJFA, Moisse M, Shatunov A, Zwamborn RAJ, van der Spek RAA, Cooper-Knock J, Topp S, van Rheenen W, Kenna B, Van Eijk KR, Kenna K, Byrne R, López V, Opie-Martin S, Vural A, Campos Y, Weber M, Smith B, Fogh I, Silani V, Morrison KE, Dobson R, van Es MA, McLaughlin RL, Vourc’h P, Chio A, Corcia P, de Carvalho M, Gotkine M, Panades MP, Mora JS, Shaw PJ, Landers JE, Glass JD, Shaw CE, Basak N, Hardiman O, Robberecht W, Van Damme P, van den Berg LH, Veldink JH, Al-Chalabi A. Telomere length analysis in amyotrophic lateral sclerosis using large-scale whole genome sequence data. Front Cell Neurosci 2022; 16:1050596. [PMID: 36589292 PMCID: PMC9799999 DOI: 10.3389/fncel.2022.1050596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the loss of upper and lower motor neurons, leading to progressive weakness of voluntary muscles, with death following from neuromuscular respiratory failure, typically within 3 to 5 years. There is a strong genetic contribution to ALS risk. In 10% or more, a family history of ALS or frontotemporal dementia is obtained, and the Mendelian genes responsible for ALS in such families have now been identified in about 50% of cases. Only about 14% of apparently sporadic ALS is explained by known genetic variation, suggesting that other forms of genetic variation are important. Telomeres maintain DNA integrity during cellular replication, differ between sexes, and shorten naturally with age. Sex and age are risk factors for ALS and we therefore investigated telomere length in ALS. Methods Samples were from Project MinE, an international ALS whole genome sequencing consortium that includes phenotype data. For validation we used donated brain samples from motor cortex from people with ALS and controls. Ancestry and relatedness were evaluated by principal components analysis and relationship matrices of DNA microarray data. Whole genome sequence data were from Illumina HiSeq platforms and aligned using the Isaac pipeline. TelSeq was used to quantify telomere length using whole genome sequence data. We tested the association of telomere length with ALS and ALS survival using Cox regression. Results There were 6,580 whole genome sequences, reducing to 6,195 samples (4,315 from people with ALS and 1,880 controls) after quality control, and 159 brain samples (106 ALS, 53 controls). Accounting for age and sex, there was a 20% (95% CI 14%, 25%) increase of telomere length in people with ALS compared to controls (p = 1.1 × 10-12), validated in the brain samples (p = 0.03). Those with shorter telomeres had a 10% increase in median survival (p = 5.0×10-7). Although there was no difference in telomere length between sporadic ALS and familial ALS (p=0.64), telomere length in 334 people with ALS due to expanded C9orf72 repeats was shorter than in those without expanded C9orf72 repeats (p = 5.0×10-4). Discussion Although telomeres shorten with age, longer telomeres are a risk factor for ALS and worsen prognosis. Longer telomeres are associated with ALS.
Collapse
Affiliation(s)
- Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Alfredo Iacoangeli
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Ashley R. Jones
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Joke J. F. A. van Vugt
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Matthieu Moisse
- Department of Neurosciences, Experimental Neurology, KU Leuven—University of Leuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Aleksey Shatunov
- Institute of Medicine, North-Eastern Federal University, Yakutsk, Russia
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Ramona A. J. Zwamborn
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Rick A. A. van der Spek
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Simon Topp
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Wouter van Rheenen
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Brendan Kenna
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Kristel R. Van Eijk
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Kevin Kenna
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Ross Byrne
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Victoria López
- Computational Biology Unit, Instituto de Salud Carlos III, Madrid, Spain
| | - Sarah Opie-Martin
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Atay Vural
- School of Medicine, Translational Medicine Research Center-NDAL, Koc University, Istanbul, Turkey
| | - Yolanda Campos
- Computational Biology Unit, Instituto de Salud Carlos III, Madrid, Spain
| | - Markus Weber
- School of Medicine, Translational Medicine Research Center-NDAL, Koc University, Istanbul, Turkey
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Bradley Smith
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Isabella Fogh
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| | - Karen E. Morrison
- Faculty of Medicine, Health and Life Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Richard Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Institute of Health Informatics, University College London, London, United Kingdom
| | - Michael A. van Es
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Russell L. McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Adriano Chio
- Department of Neuroscience, ALS Centre, University of Torino, Turin, Italy
- Azienda Ospedaliera Citta della Salute e della Scienza, Turin, Italy
| | - Philippe Corcia
- Centre SLA, CHRU de Tours, Tours, France
- Federation des Centres SLA Tours and Limoges, LITORALS, Tours, France
| | - Mamede de Carvalho
- Physiology Institute, Faculty of Medicine, Instituto de Medicina Molecular, University of Lisbon, Lisbon, Portugal
| | - Marc Gotkine
- Department of Neurology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - John E. Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jonathan D. Glass
- Department of Neurology, Center for Neurodegenerative Diseases, Emory University, Atlanta, GA, United States
| | - Christopher E. Shaw
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
- King’s College Hospital, London, United Kingdom
| | - Nazli Basak
- School of Medicine, Translational Medicine Research Center-NDAL, Koc University, Istanbul, Turkey
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Wim Robberecht
- Department of Neurosciences, Experimental Neurology, KU Leuven—University of Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology, KU Leuven—University of Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Leonard H. van den Berg
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Jan H. Veldink
- Department of Neurology, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
- King’s College Hospital, London, United Kingdom
| |
Collapse
|
2
|
Al Khleifat A, Iacoangeli A, Shatunov A, Fang T, Sproviero W, Jones AR, Opie-Martin S, Morrison KE, Shaw PJ, Shaw CE, Powell JF, Dobson R, Newhouse SJ, Al-Chalabi A. Telomere length is greater in ALS than in controls: a whole genome sequencing study. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:229-234. [PMID: 30931641 PMCID: PMC6567548 DOI: 10.1080/21678421.2019.1586951] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/06/2019] [Accepted: 02/10/2019] [Indexed: 12/30/2022]
Abstract
Background: Amyotrophic lateral sclerosis is a neurodegenerative disease of motor neurons resulting in progressive paralysis and death, typically within 3-5 years. Although the heritability of ALS is about 60%, only about 11% is explained by common gene variants, suggesting that other forms of genetic variation are important. Telomeres maintain DNA integrity during cellular replication and shorten naturally with age. Gender and age are risk factors for ALS and also associated with telomere length. We therefore investigated telomere length in ALS. Methods: We estimated telomere length by applying a bioinformatics analysis to whole genome sequence data of leukocyte-derived DNA from people with ALS and age and gender-matched matched controls in a UK population. We tested the association of telomere length with ALS and ALS survival. Results: There were 1241 people with ALS and 335 controls. The median age for ALS was 62.5 years and for controls, 60.1 years, with a male-female ratio of 62:38. Accounting for age and sex, there was a 9% increase of telomere length in ALS compared to matched controls. Those with longer telomeres had a 16% increase in median survival. Of nine SNPs associated with telomere length, two were also associated with ALS: rs8105767 near the ZNF208 gene (p = 1.29 × 10-4) and rs6772228 (p = 0.001), which is in an intron for the PXK gene. Conclusions: Longer telomeres in leukocyte-derived DNA are associated with ALS, and with increased survival in those with ALS.
Collapse
Affiliation(s)
- Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Alfredo Iacoangeli
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
| | - Aleksey Shatunov
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Ton Fang
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - William Sproviero
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Ashley R. Jones
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Sarah Opie-Martin
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Karen E. Morrison
- Faculty of Medicine, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Christopher E. Shaw
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- King’s College Hospital, London, UK
- Psychology and Neuroscience, United Kingdom Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, King’s College London, London, UK, and
| | - John F. Powell
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Richard Dobson
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Farr Institute of Health Informatics Research, UCL Institute of Health Informatics, University College London, London, UK
| | - Steven J. Newhouse
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Farr Institute of Health Informatics Research, UCL Institute of Health Informatics, University College London, London, UK
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- King’s College Hospital, London, UK
| |
Collapse
|
11
|
Bagasra O, Steiner RM, Ballas SK, Castro O, Dornadula G, Embury S, Jungkind D, Bobroski L, Kutlar A, Burchott S. Viral burden and disease progression in HIV-1-infected patients with sickle cell anemia. Am J Hematol 1998; 59:199-207. [PMID: 9798657 DOI: 10.1002/(sici)1096-8652(199811)59:3<199::aid-ajh4>3.0.co;2-l] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The spleen and lymph nodes are major sites of human immunodeficiency virus type 1 (HIV-1) replication, mutation, and genetic variation in vivo. If a major portion of the lymphatic tissue, such as the spleen, is removed or otherwise is unavailable for invasion by the HIV-1 virus, will the course of the infection be altered, resulting in a prolonged symptom-free interval or even increased survival? The spleen of most adults with sickle cell anemia (SS) is nonfunctional due to recurrent episodes of microinfarction. If autosplenectomized SS patients are exposed to HIV-1, they may be ideal candidates to examine the question of whether absence of splenic function at the time of infection will positively alter the course of HIV-1-related disease. All SS patients with a diagnosis of HIV-1 infection at five university sickle cell centers were included in the patient cohort. Patients in active treatment or in follow-up (group A, n = 11) underwent a series of quantitative viral studies to determine their HIV-1 viral burden. The studies included the branched-DNA signal amplification assay, quantitative DNA-polymerase chain reaction (PCR), quantitative reverse transcription (RT)-initiated-PCR, and in situ PCR. All patients who died of the complications of the acquired immunodeficiency syndrome (AIDS) or of SS, lost to follow-up, or were otherwise unavailable for study (Group B: n = 7) were included in the total patient group. None of the patients in group B underwent quantitative viral studies. In addition, a control population (group C, n = 36) of HIV-1-infected African Americans without SS, of similar age and gender to the SS patients, were compared with the study population for outcomes. In eight of 11 active patients (group A), the CD4+ T-lymphocyte counts were normal and viral burdens were low for an average of 10.25 years following diagnosis. These eight patients all from group A were the only long-term nonprogressors (44%) among a total of 18 SS patients (groups A and B). In group C (control), only five patients of 36 were long-term nonprogressors (13.9%). Five patients (28%) of the total SS group (groups A and B) succumbed to AIDS. One of the five was from Group A. The evaluation of a limited number of adult individuals suggests that a significant proportion of HIV-1-seropositive SS patients (44%) may be asymptomatic long-term nonprogressors. In these patients, the CD4+ T-lymphocyte counts remained high and their viral burdens were remarkably lower than in non-SS HIV-1-seropositive individuals. Whereas this study does not prove an "autosplenectomy" hypothesis, it suggests that in patients with both SS and HIV-1 infection, the retroviral disease may be ameliorated by host factors of which absence of splenic function prior to HIV-1 infection may be one.
Collapse
Affiliation(s)
- O Bagasra
- Center for Human Virology and The Cardeza Foundation of the Department of Medicine, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|