1
|
Lynch CA, Guo Y, Mei A, Kreisel D, Gelman AE, Jacobsen EA, Krupnick AS. Solving the Conundrum of Eosinophils in Alloimmunity. Transplantation 2022; 106:1538-1547. [PMID: 34966103 PMCID: PMC9234098 DOI: 10.1097/tp.0000000000004030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Eosinophils are bone-marrow-derived granulocytes known for their ability to facilitate clearance of parasitic infections and their association with asthma and other inflammatory diseases. The purpose of this review is to discuss the currently available human observational and animal experimental data linking eosinophils to the immunologic response in solid organ transplantation. First, we present observational human studies that demonstrate a link between transplantation and eosinophils yet were unable to define the exact role of this cell population. Next, we describe published experimental models and demonstrate a defined mechanistic role of eosinophils in downregulating the alloimmune response to murine lung transplants. The overall summary of this data suggests that further studies are needed to define the role of eosinophils in multiple solid organ allografts and points to the possibility of manipulating this cell population to improve graft survival.
Collapse
Affiliation(s)
- Cherie Alissa Lynch
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Arizona
| | - Yizhan Guo
- Department of Surgery, University of Maryland, Baltimore Maryland
| | - Alex Mei
- Department of Surgery, University of Maryland, Baltimore Maryland
| | | | | | - Elizabeth A. Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Arizona
| | | |
Collapse
|
2
|
Iasella CJ, Hoji A, Popescu I, Wei J, Snyder ME, Zhang Y, Xu W, Iouchmanov V, Koshy R, Brown M, Fung M, Langelier C, Lendermon EA, Dugger D, Shah R, Lee J, Johnson B, Golden J, Leard LE, Kleinhenz ME, Kilaru S, Hays SR, Singer JP, Sanchez PG, Morrell MR, Pilewski JM, Greenland JR, Chen K, McDyer JF. Type-1 immunity and endogenous immune regulators predominate in the airway transcriptome during chronic lung allograft dysfunction. Am J Transplant 2021; 21:2145-2160. [PMID: 33078555 PMCID: PMC8607839 DOI: 10.1111/ajt.16360] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 01/25/2023]
Abstract
Chronic lung allograft dysfunction (CLAD) remains the major complication limiting long-term survival among lung transplant recipients (LTRs). Limited understanding of CLAD immunopathogenesis and a paucity of biomarkers remain substantial barriers for earlier detection and therapeutic interventions for CLAD. We hypothesized the airway transcriptome would reflect key immunologic changes in disease. We compared airway brush-derived transcriptomic signatures in CLAD (n = 24) versus non-CLAD (n = 21) LTRs. A targeted assessment of the proteome using concomitant bronchoalveolar lavage (BAL) fluid for 24 cytokines/chemokines and alloimmune T cell responses was performed to validate the airway transcriptome. We observed an airway transcriptomic signature of differential genes expressed (DGEs) in CLAD marked by Type-1 immunity and striking upregulation of two endogenous immune regulators: indoleamine 2, 3 dioxygenase 1 (IDO-1) and tumor necrosis factor receptor superfamily 6B (TNFRSF6B). Advanced CLAD staging was associated with a more intense airway transcriptome signature. In a validation cohort using the identified signature, we found an area under the curve (AUC) of 0.77 for CLAD LTRs. Targeted proteomic analyses revealed a predominant Type-1 profile with detection of IFN-γ, TNF-α, and IL-1β as dominant CLAD cytokines, correlating with the airway transcriptome. The airway transcriptome provides novel insights into CLAD immunopathogenesis and biomarkers that may impact diagnosis of CLAD.
Collapse
Affiliation(s)
- Carlo J. Iasella
- Department of Pharmacy and Therapeutics, University of
Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania
| | - Aki Hoji
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Iulia Popescu
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Jianxin Wei
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Mark E. Snyder
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Yingze Zhang
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Wei Xu
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Vera Iouchmanov
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Ritchie Koshy
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Mark Brown
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Monica Fung
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Charles Langelier
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Elizabeth A. Lendermon
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Daniel Dugger
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Rupal Shah
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Joyce Lee
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Bruce Johnson
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Jeffrey Golden
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Lorriana E. Leard
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Mary Ellen Kleinhenz
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Silpa Kilaru
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Steven R. Hays
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Jonathan P. Singer
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Pablo G. Sanchez
- Department of Cardiothoracic Surgery, University of
Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Matthew R. Morrell
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - Joseph M. Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - John R. Greenland
- Division of Pulmonary, Critical Care, Allergy and Sleep
Medicine, University of California San Francisco, San Francisco, California
| | - Kong Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| | - John F. McDyer
- Division of Pulmonary, Allergy, and Critical Care Medicine,
Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
Pennsylvania
| |
Collapse
|
4
|
Onyema OO, Guo Y, Hata A, Kreisel D, Gelman AE, Jacobsen EA, Krupnick AS. Deciphering the role of eosinophils in solid organ transplantation. Am J Transplant 2020; 20:924-930. [PMID: 31647606 PMCID: PMC7842192 DOI: 10.1111/ajt.15660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 01/25/2023]
Abstract
Eosinophils are rare granulocytes that belong to the innate arm of the immune system. This cell population is traditionally defined as a destructive and cytotoxic mediator in asthma and helminth infection. Limited data in transplantation have suggested that eosinophils play a similar role in potentiating deleterious organ inflammation and immunologic rejection. Contrary to this long-held notion, recent data have uncovered the possibility that eosinophils play an alternative role in immune homeostasis, defense against a wide range of pathogens, as well as downregulation of deleterious inflammation. Specifically, translational data from small animal models of lung transplantation have demonstrated a critical role for eosinophils in the downregulation of alloimmunity. These findings shed new light on the unique immunologic features of the lung allograft and demonstrate that environmental polarization may alter the phenotype and function of leukocyte populations previously thought to be static in nature. In this review, we provide an update on eosinophils in the homeostasis of the lung as well as other solid organs.
Collapse
Affiliation(s)
- Oscar Okwudiri Onyema
- Department of Surgery, Carter Center for Immunology, University of Virginia, Charlottesville, Virginia, USA
| | - Yizhan Guo
- Department of Surgery, Carter Center for Immunology, University of Virginia, Charlottesville, Virginia, USA
| | - Atsushi Hata
- Department of Surgery, Carter Center for Immunology, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel Kreisel
- Department of Surgery, Washington University in St Louis, Missouri, USA
| | - Andrew E. Gelman
- Department of Surgery, Washington University in St Louis, Missouri, USA
| | - Elizabeth A. Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Alexander Sasha Krupnick
- Department of Surgery, Carter Center for Immunology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|