1
|
Abstract
The circulation of the lung is unique both in volume and function. For example, it is the only organ with two circulations: the pulmonary circulation, the main function of which is gas exchange, and the bronchial circulation, a systemic vascular supply that provides oxygenated blood to the walls of the conducting airways, pulmonary arteries and veins. The pulmonary circulation accommodates the entire cardiac output, maintaining high blood flow at low intravascular arterial pressure. As compared with the systemic circulation, pulmonary arteries have thinner walls with much less vascular smooth muscle and a relative lack of basal tone. Factors controlling pulmonary blood flow include vascular structure, gravity, mechanical effects of breathing, and the influence of neural and humoral factors. Pulmonary vascular tone is also altered by hypoxia, which causes pulmonary vasoconstriction. If the hypoxic stimulus persists for a prolonged period, contraction is accompanied by remodeling of the vasculature, resulting in pulmonary hypertension. In addition, genetic and environmental factors can also confer susceptibility to development of pulmonary hypertension. Under normal conditions, the endothelium forms a tight barrier, actively regulating interstitial fluid homeostasis. Infection and inflammation compromise normal barrier homeostasis, resulting in increased permeability and edema formation. This article focuses on reviewing the basics of the lung circulation (pulmonary and bronchial), normal development and transition at birth and vasoregulation. Mechanisms contributing to pathological conditions in the pulmonary circulation, in particular when barrier function is disrupted and during development of pulmonary hypertension, will also be discussed.
Collapse
Affiliation(s)
- Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Larissa A. Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Dempsie Y, Maclean MR. Role of the serotonin transporter in pulmonary arterial hypertension. Expert Rev Clin Pharmacol 2014; 1:749-57. [PMID: 24410605 DOI: 10.1586/17512433.1.6.749] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pulmonary arterial hypertension is a disease in which pulmonary arterial pressure is raised, leading to right heart failure. Survival is poor despite current therapeutic strategies. The 'serotonin hypothesis of pulmonary arterial hypertension' arose in the 1960s following an 'epidemic' of pulmonary arterial hypertension in women taking the indirect serotinergic agonist aminorex as an anorexigen. In the 1980s, the hypothesis was revisited following the occurrence of pulmonary arterial hypertension associated with the use of fenfluramines as anorexigens; these are also indirect serotinergic agents. Research has identified changes in serotonin synthesis, serotonin receptor activation and serotonin uptake via the serotonin transporter in experimental and clinical pulmonary arterial hypertension. This review will discuss our current understanding of this serotonin hypothesis with particular reference to the role of the serotonin transporter.
Collapse
Affiliation(s)
- Yvonne Dempsie
- Integrative and Systems Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|
3
|
Laughlin MH, Davis MJ, Secher NH, van Lieshout JJ, Arce-Esquivel AA, Simmons GH, Bender SB, Padilla J, Bache RJ, Merkus D, Duncker DJ. Peripheral circulation. Compr Physiol 2013; 2:321-447. [PMID: 23728977 DOI: 10.1002/cphy.c100048] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood flow (BF) increases with increasing exercise intensity in skeletal, respiratory, and cardiac muscle. In humans during maximal exercise intensities, 85% to 90% of total cardiac output is distributed to skeletal and cardiac muscle. During exercise BF increases modestly and heterogeneously to brain and decreases in gastrointestinal, reproductive, and renal tissues and shows little to no change in skin. If the duration of exercise is sufficient to increase body/core temperature, skin BF is also increased in humans. Because blood pressure changes little during exercise, changes in distribution of BF with incremental exercise result from changes in vascular conductance. These changes in distribution of BF throughout the body contribute to decreases in mixed venous oxygen content, serve to supply adequate oxygen to the active skeletal muscles, and support metabolism of other tissues while maintaining homeostasis. This review discusses the response of the peripheral circulation of humans to acute and chronic dynamic exercise and mechanisms responsible for these responses. This is accomplished in the context of leading the reader on a tour through the peripheral circulation during dynamic exercise. During this tour, we consider what is known about how each vascular bed controls BF during exercise and how these control mechanisms are modified by chronic physical activity/exercise training. The tour ends by comparing responses of the systemic circulation to those of the pulmonary circulation relative to the effects of exercise on the regional distribution of BF and mechanisms responsible for control of resistance/conductance in the systemic and pulmonary circulations.
Collapse
Affiliation(s)
- M Harold Laughlin
- Department of Medical Pharmacology and Physiology, and the Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Dempsie Y, MacRitchie NA, White K, Morecroft I, Wright AF, Nilsen M, Loughlin L, Mair KM, MacLean MR. Dexfenfluramine and the oestrogen-metabolizing enzyme CYP1B1 in the development of pulmonary arterial hypertension. Cardiovasc Res 2013; 99:24-34. [PMID: 23519266 PMCID: PMC3687748 DOI: 10.1093/cvr/cvt064] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 02/13/2013] [Accepted: 03/11/2013] [Indexed: 12/20/2022] Open
Abstract
AIMS Pulmonary arterial hypertension (PAH) occurs more frequently in women than men. Oestrogen and the oestrogen-metabolising enzyme cytochrome P450 1B1 (CYP1B1) play a role in the development of PAH. Anorectic drugs such as dexfenfluramine (Dfen) have been associated with the development of PAH. Dfen mediates PAH via a serotonergic mechanism and we have shown serotonin to up-regulate expression of CYP1B1 in human pulmonary artery smooth muscle cells (PASMCs). Thus here we assess the role of CYP1B1 in the development of Dfen-induced PAH. METHODS AND RESULTS Dfen (5 mg kg(-1) day(-1) PO for 28 days) increased right ventricular pressure and pulmonary vascular remodelling in female mice only. Mice dosed with Dfen showed increased whole lung expression of CYP1B1 and Dfen-induced PAH was ablated in CYP1B1(-/-) mice. In line with this, Dfen up-regulated expression of CYP1B1 in PASMCs from PAH patients (PAH-PASMCs) and Dfen-mediated proliferation of PAH-PASMCs was ablated by pharmacological inhibition of CYP1B1. Dfen increased expression of tryptophan hydroxylase 1 (Tph1; the rate-limiting enzyme in the synthesis of serotonin) in PAH-PASMCs and both Dfen-induced proliferation and Dfen-induced up-regulation of CYP1B1 were ablated by inhibition of Tph1. 17β-Oestradiol increased expression of both Tph1 and CYP1B1 in PAH-PASMCs, and Dfen and 17β-oestradiol had synergistic effects on proliferation of PAH-PASMCs. Finally, ovariectomy protected against Dfen-induced PAH in female mice. CONCLUSION CYP1B1 is critical in the development of Dfen-induced PAH in mice in vivo and proliferation of PAH-PASMCs in vitro. CYP1B1 may provide a novel therapeutic target for PAH.
Collapse
MESH Headings
- Animals
- Arterial Pressure
- Aryl Hydrocarbon Hydroxylases/antagonists & inhibitors
- Aryl Hydrocarbon Hydroxylases/deficiency
- Aryl Hydrocarbon Hydroxylases/genetics
- Aryl Hydrocarbon Hydroxylases/metabolism
- Cell Proliferation
- Cells, Cultured
- Cytochrome P-450 CYP1B1
- Dexfenfluramine
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Estradiol/pharmacology
- Familial Primary Pulmonary Hypertension
- Female
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/enzymology
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/prevention & control
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Norfenfluramine/toxicity
- Ovariectomy
- Pulmonary Artery/enzymology
- Pulmonary Artery/physiopathology
- Serotonin/metabolism
- Sex Factors
- Tryptophan Hydroxylase/metabolism
- Ventricular Function, Right
- Ventricular Pressure
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Margaret R. MacLean
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow University, West Medical Building, Glasgow G12 8QQ, UK
| |
Collapse
|
5
|
Desbuards N, Antier D, Rochefort GY, Apfeldorfer CS, Schenck E, Hanton G, Hyvelin JM. Dexfenfluramine discontinuous treatment does not worsen hypoxia-induced pulmonary vascular remodeling but activates RhoA/ROCK pathway: consequences on pulmonary hypertension. Eur J Pharmacol 2008; 602:355-63. [PMID: 19049806 DOI: 10.1016/j.ejphar.2008.11.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 10/23/2008] [Accepted: 11/10/2008] [Indexed: 11/17/2022]
Abstract
The anorectic drug, dexfenfluramine has been associated with an increase in the relative risk of developing pulmonary hypertension. 5-hydroxytryptamine (5-HT) is a mitogen for smooth muscle cell, an effect that relies on 5-HT transporter expression and which has been proposed to explain pulmonary side effect of dexfenfluramine, and more particularly its effect on vascular remodeling. However recent data supported a major role of pulmonary artery vasoconstriction through the RhoA/Rho-kinase pathway. We questioned whether or not anorectic treatment aggravates pulmonary hypertension through vascular remodeling and if RhoA/Rho-kinase (ROCK) was potentially involved. In rats exposed to hypoxia, concomitant dexfenfluramine treatment (5 mg/kg/day, i.v.) for 4 weeks had no effect on pulmonary hypertension development. When exposure to 2 weeks of chronic hypoxia followed discontinuation of dexfenfluramine treatment (dexfenfluramine-hypoxic rats), echocardiographic parameters of pulmonary artery flow and right ventricle were further altered (P<0.05) as well as right ventricle systolic pressure was further increased (P<0.001) when compared to hypoxic rats treated with vehicle (hypoxic rats). However, the total number of muscularized distal pulmonary arteries artery was similar in dexfenfluramine-hypoxic vs. hypoxic rats (P>0.05). Western blot, RT-PCR and immunofluorescence analysis revealed a greater expression of 5-HT transporter and ROCK, as well as a greater activation of RhoA in dexfenfluramine-hypoxic rats compared to hypoxic rats. These data show that increased 5-HT transporter expression that follows dexfenfluramine discontinuation is not associated to a greater vascular remodeling despite worsening the development of pulmonary hypertension. Furthermore dexfenfluramine discontinuation promotes a greater RhoA/ROCK pathway activation. This pathway, involved in many cardiovascular diseases, might explain the cardiac and pulmonary toxicity of serotoninergic agonists.
Collapse
Affiliation(s)
- Nicolas Desbuards
- Laboratoire de Physiopathologie de la Paroi Artérielle, LABPART EA3852, IFR 135, Université François Rabelais, Tours Cedex 1, France
| | | | | | | | | | | | | |
Collapse
|
6
|
Dempsie Y, MacLean MR. Pulmonary hypertension: therapeutic targets within the serotonin system. Br J Pharmacol 2008; 155:455-62. [PMID: 18536742 DOI: 10.1038/bjp.2008.241] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by a sustained and progressive elevation in pulmonary arterial pressure and pulmonary vascular remodelling leading to right heart failure and death. Prognosis is poor and novel therapeutic approaches are needed. The serotonin hypothesis of PAH originated in the 1960s after an outbreak of the disease was reported among patients taking the anorexigenic drugs aminorex and fenfluramine. These are indirect serotonergic agonists and serotonin transporter substrates. Since then many advances have been made in our understanding of the role of serotonin in the pathobiology of PAH. The rate-limiting enzyme in the synthesis of serotonin is tryptophan hydroxylase (Tph). Serotonin is synthesized, through Tph1, in the endothelial cells of the pulmonary artery and can then act on underlying pulmonary arterial smooth muscle cells and pulmonary arterial fibroblasts in a paracrine fashion causing constriction and remodelling. These effects of serotonin can be mediated through both the serotonin transporter and serotonin receptors. This review will discuss our current understanding of 'the serotonin hypothesis' of PAH and highlight possible therapeutic targets within the serotonin system.
Collapse
Affiliation(s)
- Y Dempsie
- Division of Neuroscience and Biomedical Systems, Institute of Biomedical Sciences, University of Glasgow, Scotland, UK.
| | | |
Collapse
|
7
|
Converging Evidence in Support of the Serotonin Hypothesis of Dexfenfluramine-Induced Pulmonary Hypertension With Novel Transgenic Mice. Circulation 2008; 117:2928-37. [DOI: 10.1161/circulationaha.108.767558] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Control of pulmonary vascular tone during exercise in health and pulmonary hypertension. Pharmacol Ther 2008; 119:242-63. [PMID: 18586325 DOI: 10.1016/j.pharmthera.2008.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 04/29/2008] [Indexed: 11/24/2022]
Abstract
Despite the importance of the pulmonary circulation as a determinant of exercise capacity in health and disease, studies into the regulation of pulmonary vascular tone in the healthy lung during exercise are scarce. This review describes the current knowledge of the role of various endogenous vasoactive mechanisms in the control of pulmonary vascular tone at rest and during exercise. Recent studies demonstrate an important role for endothelial factors (NO and endothelin) and neurohumoral factors (noradrenaline, acetylcholine). Moreover, there is evidence that natriuretic peptides, reactive oxygen species and phosphodiesterase activity can influence resting pulmonary vascular tone, but their role in the control of pulmonary vascular tone during exercise remains to be determined. K-channels are purported end-effectors in control of pulmonary vascular tone. However, K(ATP) channels do not contribute to regulation of pulmonary vascular tone, while the role of K(V) and K(Ca) channels at rest and during exercise remains to be determined. Pulmonary hypertension is associated with alterations in pulmonary vascular function and structure, resulting in blunted pulmonary vasodilatation during exercise and impaired exercise capacity. Although there is a paucity of studies pertaining to the regulation of pulmonary vascular tone during exercise in idiopathic pulmonary hypertension, the few studies that have been performed in models of pulmonary hypertension secondary to left ventricular dysfunction suggest altered control of pulmonary vascular tone during exercise. Since the increased pulmonary vascular tone during exercise limits exercise capacity, future studies are needed to investigate the vasomotor mechanisms that are responsible for the blunted exercise-induced pulmonary vasodilatation in pulmonary hypertension.
Collapse
|
9
|
Doggrell SA. The role of 5-HT on the cardiovascular and renal systems and the clinical potential of 5-HT modulation. Expert Opin Investig Drugs 2003; 12:805-23. [PMID: 12720492 DOI: 10.1517/13543784.12.5.805] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The main peripheral sources of 5-hydroxytryptamine (5-HT) are as a neurotransmitter and local hormone in the gastrointestinal tract, and stored in circulating platelets and pulmonary neuroepithelial bodies. 5-HT has been shown to have many possible physiological and pathophysiological roles on the cardiovascular and renal systems. Thus, 5-HT may contribute to valvular heart disease, coronary artery disease, pulmonary hypertension, pulmonary embolism, pre-eclampsia, peripheral vascular disease and diabetic nephropathy. Consequently, modulators of the 5-HT system have diverse clinical potential. For instance, selective 5-HT subtype 3 receptor (5-HT(3)) antagonists may have potential in the treatment of the pain associated with myocardial infarction. MCI-9042 (sarpogrelate) or other 5-HT(2A) antagonists may have clinical potential for the treatment of vasospastic angina, ischaemic heart disease, reperfusion injury and hindlimb ischaemia. Several modulators of 5-HT (5-HT transporter inhibitors, 5-HT(1B) and (2B) antagonists) may have potential alone or in combination in the treatment of pulmonary hypertension. In hypertension, agonists at the 5-HT(7) and antagonists at the 5-HT(2B) may reduce blood pressure, and in diabetes, sarpogrelate may protect against nephropathy.
Collapse
Affiliation(s)
- Sheila A Doggrell
- School of Biomedical Sciences, University of Queensland, QLD 4072, Australia.
| |
Collapse
|
10
|
Abstract
Anorectic drugs are widely used for the treatment of obesity. They are thought to decrease appetite through their effects on catecholamine or 5-hydroxytryptamine (5-HT) levels in the brain. Their use has been associated with epidemics of pulmonary hypertension and the development of valvular heart disease, hypertension, stroke and digital or mesenteric ischemia. Understanding the mechanism of the cardiovascular toxicity of anorectic drugs is important because of the modern epidemic of obesity and the resulting plethora of new anorexigens, many of which share similar mechanisms with those that have previously caused cardiovascular disease. In addition, the mechanism by which anorexigens cause vascular disease has relevance to the etiology and treatment of pulmonary and systemic hypertension. Recent discoveries have clarified how the anorexigens cause vasoconstriction and hypertension. Most anorexigens directly inhibit voltage-gated K+ (KV) channels in vascular smooth muscle cells (SMCs). This reduced K+ efflux leads to depolarization, the opening of voltage-sensitive Ca2+ channels, an increase in intracellular Ca2+ and vasoconstriction. Endothelial dysfunction appears to be a predisposing factor for the development of anorectic-induced vascular complications. Vasoconstriction is weak at clinically relevant doses of anorectic drugs. However, when nitric oxide synthase is inhibited, vasoconstriction is significantly enhanced. Anorexigens are the only drugs in widespread clinical use that have KV-channel-blocking properties and it is probable that much of their cardiovascular toxicity relates to this mechanism. Investigators need to examine new anorexigens and other therapeutic molecules for inhibitory effects on KV channels, as this effect may be a marker of drugs that will elicit vascular complications.
Collapse
Affiliation(s)
- Evangelos Michelakis
- Department of Medicine (Cardiology), University of Alberta, 2C2.36 Walter Mackenzie Health Sciences Centre, Edmonton, AB, Canada T6G 2B7.
| |
Collapse
|
11
|
Yildiz O, Senöz S, Oktenli C. High-dose dexfenfluramine may cause alveolitis and pulmonary fibrosis in rats. Chest 2000; 118:568. [PMID: 10936168 DOI: 10.1378/chest.118.2.568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|