1
|
Ge J, Shao H, Ding H, Huang Y, Wu X, Sun J, Que J. Single Cell Analysis of Lung Lymphatic Endothelial Cells and Lymphatic Responses during Influenza Infection. JOURNAL OF RESPIRATORY BIOLOGY AND TRANSLATIONAL MEDICINE 2024; 1:10003. [PMID: 38529320 PMCID: PMC10962217 DOI: 10.35534/jrbtm.2024.10003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Tissue lymphatic vessels network plays critical roles in immune surveillance and tissue homeostasis in response to pathogen invasion, but how lymphatic system per se is remolded during infection is less understood. Here, we observed that influenza infection induces a significant increase of lymphatic vessel numbers in the lung, accompanied with extensive proliferation of lymphatic endothelial cells (LECs). Single-cell RNA sequencing illustrated the heterogeneity of LECs, identifying a novel PD-L1+ subpopulation that is present during viral infection but not at steady state. Specific deletion of Pd-l1 in LECs elevated the expansion of lymphatic vessel numbers during viral infection. Together these findings elucidate a dramatic expansion of lung lymphatic network in response to viral infection, and reveal a PD-L1+ LEC subpopulation that potentially modulates lymphatic vessel remolding.
Collapse
Affiliation(s)
- Jian Ge
- Columbia Center for Human Development & Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hongxia Shao
- Columbia Center for Human Development & Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Haihe Hospital, Tianjin University, Tianjin 300350, China
| | - Hongxu Ding
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ 85724 USA
| | - Yuefeng Huang
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xuebing Wu
- Department of Medicine, Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Jianwen Que
- Columbia Center for Human Development & Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
2
|
Chakraborty A, Kim A, AlAbdullatif S, Campbell JD, Alekseyev YO, Kaplan U, Dambal V, Ligresti G, Trojanowska M. Endothelial Erg Regulates Expression of Pulmonary Lymphatic Junctional and Inflammation Genes in Mouse Lungs Impacting Lymphatic Transport. RESEARCH SQUARE 2024:rs.3.rs-3808970. [PMID: 38343832 PMCID: PMC10854286 DOI: 10.21203/rs.3.rs-3808970/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The ETS transcription factor ERG is a master regulator of endothelial gene specificity and highly enriched in the capillary, vein, and arterial endothelial cells. ERG expression is critical for endothelial barrier function, permeability, and vascular inflammation. A dysfunctional vascular endothelial ERG has been shown to impair lung capillary homeostasis, contributing to pulmonary fibrosis as previously observed in IPF lungs. Our preliminary observations indicate that lymphatic endothelial cells (LEC) in the human IPF lung also lack ERG. To understand the role of ERG in pulmonary LECs, we developed LEC-specific inducible Erg-CKO and Erg-GFP-CKO conditional knockout (CKO) mice under Prox1 promoter. Whole lung microarray analysis, flow cytometry, and qPCR confirmed an inflammatory and pro-lymphvasculogenic predisposition in Erg-CKO lung. FITC-Dextran tracing analysis showed an increased pulmonary interstitial lymphatic fluid transport from the lung to the axial lymph node. Single-cell transcriptomics confirmed that genes associated with cell junction integrity were downregulated in Erg-CKO pre-collector and collector LECs. Integrating Single-cell transcriptomics and CellChatDB helped identify LEC specific communication pathways contributing to pulmonary inflammation, trans-endothelial migration, inflammation, and Endo-MT in Erg-CKO lung. Our findings suggest that downregulation of lymphatic Erg crucially affects LEC function, LEC permeability, pulmonary LEC communication pathways and lymphatic transcriptomics.
Collapse
Affiliation(s)
- Adri Chakraborty
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alex Kim
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Salam AlAbdullatif
- Division of Computational Biomedicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Joshua D Campbell
- Division of Computational Biomedicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yuriy O Alekseyev
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ulas Kaplan
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Vrinda Dambal
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Giovanni Ligresti
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Maria Trojanowska
- Arthritis & Autoimmune Diseases Research Centre, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
3
|
Zhao S, Cui J, Wang Y, Xu D, Su Y, Ma J, Gong X, Bai W, Wang J, Cao R. Three-dimensional visualization of the lymphatic, vascular and neural network in rat lung by confocal microscopy. J Mol Histol 2023; 54:715-723. [PMID: 37755618 DOI: 10.1007/s10735-023-10160-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
In order to demonstrate the intricate interconnection of pulmonary lymphatic vessels, blood vessels, and nerve fibers, the rat lung was selected as the target and sliced at the thickness of 100 μm for multiply immunofluorescence staining with lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), alpha smooth muscle actin (α-SMA), phalloidin, cluster of differentiation 31 (CD31), and protein gene product 9.5 (PGP9.5) antibodies. Taking the advantages of the thicker tissue section and confocal microscopy, the labeled pulmonary lymphatic vessels, blood vessels, and nerve fibers were demonstrated in rather longer distance, which was more convenient to reconstruct a three-dimensional (3D) view for analyzing their spatial correlation in detail. It was clear that LYVE-1+ lymphatic vessels were widely distributed in pulmonary lobules and closely to the lobar bronchus. Through 3D reconstruction, it was also demonstrated that LYVE-1+ lymphatic vessels ran parallel to or around the α-SMA+ venules, phalloidin+ arterioles and CD31+ capillaries, with PGP9.5+ nerve fibers traversing alongside or wrapping around them, forming a lymphatic, vascular and neural network in the lung. By this study, we provide a detailed histological view to highlight the spatial correlation of pulmonary lymphatic, vascular and neural network, which may help us for insight into the functional role of this network under the physiological and pathological conditions.
Collapse
Affiliation(s)
- Shitong Zhao
- Department of Traditional Chinese Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jingjing Cui
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuqing Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dongsheng Xu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuxin Su
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jie Ma
- Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, 100038, China
| | - Xuefeng Gong
- Department of Traditional Chinese Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Wanzhu Bai
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jia Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Rui Cao
- Department of Traditional Chinese Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
4
|
Trivedi A, Reed HO. The lymphatic vasculature in lung function and respiratory disease. Front Med (Lausanne) 2023; 10:1118583. [PMID: 36999077 PMCID: PMC10043242 DOI: 10.3389/fmed.2023.1118583] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
The lymphatic vasculature maintains tissue homeostasis via fluid drainage in the form of lymph and immune surveillance due to migration of leukocytes through the lymphatics to the draining lymph nodes. Lymphatic endothelial cells (LECs) form the lymphatic vessels and lymph node sinuses and are key players in shaping immune responses and tolerance. In the healthy lung, the vast majority of lymphatic vessels are found along the bronchovascular structures, in the interlobular septa, and in the subpleural space. Previous studies in both mice and humans have shown that the lymphatics are necessary for lung function from the neonatal period through adulthood. Furthermore, changes in the lymphatic vasculature are observed in nearly all respiratory diseases in which they have been analyzed. Recent work has pointed to a causative role for lymphatic dysfunction in the initiation and progression of lung disease, indicating that these vessels may be active players in pathologic processes in the lung. However, the mechanisms by which defects in lung lymphatic function are pathogenic are understudied, leaving many unanswered questions. A more comprehensive understanding of the mechanistic role of morphological, functional, and molecular changes in the lung lymphatic endothelium in respiratory diseases is a promising area of research that is likely to lead to novel therapeutic targets. In this review, we will discuss our current knowledge of the structure and function of the lung lymphatics and the role of these vessels in lung homeostasis and respiratory disease.
Collapse
Affiliation(s)
- Anjali Trivedi
- Weill Cornell Medical Center, New York, NY, United States
| | - Hasina Outtz Reed
- Weill Cornell Medical Center, New York, NY, United States
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Hasina Outtz Reed,
| |
Collapse
|
5
|
Shankar N, Thapa S, Shrestha AK, Sarkar P, Gaber MW, Barrios R, Shivanna B. Hyperoxia Disrupts Lung Lymphatic Homeostasis in Neonatal Mice. Antioxidants (Basel) 2023; 12:620. [PMID: 36978868 PMCID: PMC10045755 DOI: 10.3390/antiox12030620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Inflammation causes bronchopulmonary dysplasia (BPD), a common lung disease of preterm infants. One reason this disease lacks specific therapies is the paucity of information on the mechanisms regulating inflammation in developing lungs. We address this gap by characterizing the lymphatic phenotype in an experimental BPD model because lymphatics are major regulators of immune homeostasis. We hypothesized that hyperoxia (HO), a major risk factor for experimental and human BPD, disrupts lymphatic endothelial homeostasis using neonatal mice and human dermal lymphatic endothelial cells (HDLECs). Exposure to 70% O2 for 24-72 h decreased the expression of prospero homeobox 1 (Prox1) and vascular endothelial growth factor c (Vegf-c) and increased the expression of heme oxygenase 1 and NAD(P)H dehydrogenase [quinone]1 in HDLECs, and reduced their tubule formation ability. Next, we determined Prox1 and Vegf-c mRNA levels on postnatal days (P) 7 and 14 in neonatal murine lungs. The mRNA levels of these genes increased from P7 to P14, and 70% O2 exposure for 14 d (HO) attenuated this physiological increase in pro-lymphatic factors. Further, HO exposure decreased VEGFR3+ and podoplanin+ lymphatic vessel density and lymphatic function in neonatal murine lungs. Collectively, our results validate the hypothesis that HO disrupts lymphatic endothelial homeostasis.
Collapse
Affiliation(s)
- Nithyapriya Shankar
- Division of Neonatology, Department of Pediatrics, Texas Children’s Hospital, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| | - Shyam Thapa
- Division of Neonatology, Department of Pediatrics, Texas Children’s Hospital, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| | - Amrit Kumar Shrestha
- Division of Neonatology, Department of Pediatrics, Texas Children’s Hospital, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| | - Poonam Sarkar
- Division of Hematology-Oncology, Department of Pediatrics, Texas Children’s Hospital, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| | - M. Waleed Gaber
- Division of Hematology-Oncology, Department of Pediatrics, Texas Children’s Hospital, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| | - Roberto Barrios
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Binoy Shivanna
- Division of Neonatology, Department of Pediatrics, Texas Children’s Hospital, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| |
Collapse
|
6
|
Engelbrecht E, Kooistra T, Knipe RS. The Vasculature in Pulmonary Fibrosis. CURRENT TISSUE MICROENVIRONMENT REPORTS 2022; 3:83-97. [PMID: 36712832 PMCID: PMC9881604 DOI: 10.1007/s43152-022-00040-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 02/02/2023]
Abstract
Purpose of Review The current paradigm of idiopathic pulmonary fibrosis (IPF) pathogenesis involves recurrent injury to a sensitive alveolar epithelium followed by impaired repair responses marked by fibroblast activation and deposition of extracellular matrix. Multiple cell types are involved in this response with potential roles suggested by advances in single-cell RNA sequencing and lung developmental biology. Notably, recent work has better characterized the cell types present in the pulmonary endothelium and identified vascular changes in patients with IPF. Recent Findings Lung tissue from patients with IPF has been examined at single-cell resolution, revealing reductions in lung capillary cells and expansion of a population of vascular cells expressing markers associated with bronchial endothelium. In addition, pre-clinical models have demonstrated a fundamental role for aging and vascular permeability in the development of pulmonary fibrosis. Summary Mounting evidence suggests that the endothelium undergoes changes in the context of fibrosis, and these changes may contribute to the development and/or progression of pulmonary fibrosis. Additional studies will be needed to further define the functional role of these vascular changes.
Collapse
Affiliation(s)
| | - Tristan Kooistra
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Rachel S. Knipe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
7
|
Liu Z, Zhang C, Hao J, Chen G, Liu L, Xiong Y, Chang Y, Li H, Shimosawa T, Yang F, Xu Q. Eplerenone ameliorates lung fibrosis in unilateral ureteral obstruction rats by inhibiting lymphangiogenesis. Exp Ther Med 2022; 24:623. [PMID: 36160894 PMCID: PMC9468786 DOI: 10.3892/etm.2022.11560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic kidney disease (CKD) involves progressive and irreversible loss of renal function, often causing complications and comorbidities and impairing the function of various organs. In particular, lung injury is observed not only in advanced CKD but also in early-stage CKD. The present study investigated the potential involvement of mineralocorticoid receptors (MRs) and lymphatic vessels in lung injury using a 180-day unilateral ureteral obstruction (UUO) model for CKD. Changes in lung associated with lymphangiogenesis and inflammatory were analyzed in UUO rats. The pathology of the lung tissue was observed by hematoxylin and eosin and Masson's staining. Detection of the expression of lymphatic vessel endothelial hyaluronic acid receptor-1 (LYVE-1), Podoplanin, vascular endothelial growth factor receptor-3 (VEGFR-3) and VEGF C to investigate lymphangiogenesis. The mRNA and protein expression levels of IL-1β, monocyte chemotactic protein 1, tumor necrosis factor-α, nuclear factor κB, phosphorylated serum and glucocorticoid-induced protein kinase-1 and MR were evaluated using western blot, reverse transcription-quantitative PCR, immunohistochemical staining and immunofluorescence staining. In the present study, long-term UUO caused kidney damage, which also led to lung inflammation, accompanied by lymphangiogenesis. However, treatment with eplerenone, an MR blocker, significantly reduced the severity of lung injury and lymphangiogenesis. Therefore, lymphangiogenesis contributed to lung fibrosis in UUO rats due to activation of MRs. In addition, transdifferentiation of lymphatic epithelial cells into myofibroblasts may also be involved in lung fibrosis. Collectively, these findings provided a potential mechanism for lung fibrosis in CKD and suggested that the use of eplerenone decreased kidney damage and lung fibrosis.
Collapse
Affiliation(s)
- Ziqian Liu
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Cuijuan Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Juan Hao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Gege Chen
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Lingjin Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Yunzhao Xiong
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Yi Chang
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Hui Li
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Narita, Chiba 108‑8329, Japan
| | - Fan Yang
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Qingyou Xu
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, Shijiazhuang, Hebei 050091, P.R. China
| |
Collapse
|
8
|
Wallis TJM, Gudmundsson E, Pontoppidan K, Mogulkoc N, Savaş R, Unat ÖS, Vedwan K, Battison S, Thompson FJ, Brereton CJ, Marshall BG, Fletcher SV, Richeldi L, Jacob J, Jones MG. Temporal progression of mediastinal lymphadenopathy in idiopathic pulmonary fibrosis. Eur Respir J 2022; 59:2200024. [PMID: 35115340 PMCID: PMC7615162 DOI: 10.1183/13993003.00024-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/16/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Tim J M Wallis
- National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Katarina Pontoppidan
- National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Nesrin Mogulkoc
- Dept of Respiratory Medicine, Ege University Hospital, Izmir, Turkey
| | - Recep Savaş
- Dept of Radiology, Ege University Hospital, Izmir, Turkey
| | - Ömer Selim Unat
- Dept of Respiratory Medicine, Ege University Hospital, Izmir, Turkey
| | - Katharine Vedwan
- Dept of Cardiothoracic Radiology, University Hospital Southampton, Southampton, UK
| | - Sobana Battison
- Dept of Cardiothoracic Radiology, University Hospital Southampton, Southampton, UK
| | - Fiona J Thompson
- National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Christopher J Brereton
- National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ben G Marshall
- National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sophie V Fletcher
- National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Luca Richeldi
- National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Joseph Jacob
- Centre for Medical Image Computing, University College London, London, UK
- UCL Respiratory, University College London, London, UK
| | - Mark G Jones
- National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
9
|
Solari E, Marcozzi C, Ottaviani C, Negrini D, Moriondo A. Draining the Pleural Space: Lymphatic Vessels Facing the Most Challenging Task. BIOLOGY 2022; 11:419. [PMID: 35336793 PMCID: PMC8945018 DOI: 10.3390/biology11030419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 01/06/2023]
Abstract
Lymphatic vessels exploit the mechanical stresses of their surroundings together with intrinsic rhythmic contractions to drain lymph from interstitial spaces and serosal cavities to eventually empty into the blood venous stream. This task is more difficult when the liquid to be drained has a very subatmospheric pressure, as it occurs in the pleural cavity. This peculiar space must maintain a very low fluid volume at negative hydraulic pressure in order to guarantee a proper mechanical coupling between the chest wall and lungs. To better understand the potential for liquid drainage, the key parameter to be considered is the difference in hydraulic pressure between the pleural space and the lymphatic lumen. In this review we collected old and new findings from in vivo direct measurements of hydraulic pressures in anaesthetized animals with the aim to better frame the complex physiology of diaphragmatic and intercostal lymphatics which drain liquid from the pleural cavity.
Collapse
Affiliation(s)
| | | | | | | | - Andrea Moriondo
- Department of Medicine and Surgery, School of Medicine, University of Insubria, 21100 Varese, Italy; (E.S.); (C.M.); (C.O.); (D.N.)
| |
Collapse
|
10
|
OUP accepted manuscript. Eur J Cardiothorac Surg 2022; 62:6535926. [DOI: 10.1093/ejcts/ezac123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 11/12/2022] Open
|
11
|
Probst CK, Montesi SB, Medoff BD, Shea BS, Knipe RS. Vascular permeability in the fibrotic lung. Eur Respir J 2020; 56:13993003.00100-2019. [PMID: 32265308 PMCID: PMC9977144 DOI: 10.1183/13993003.00100-2019] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 03/26/2020] [Indexed: 12/26/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is thought to result from aberrant tissue repair processes in response to chronic or repetitive lung injury. The origin and nature of the injury, as well as its cellular and molecular targets, are likely heterogeneous, which complicates accurate pre-clinical modelling of the disease and makes therapeutic targeting a challenge. Efforts are underway to identify central pathways in fibrogenesis which may allow targeting of aberrant repair processes regardless of the initial injury stimulus. Dysregulated endothelial permeability and vascular leak have long been studied for their role in acute lung injury and repair. Evidence that these processes are of importance to the pathogenesis of fibrotic lung disease is growing. Endothelial permeability is increased in non-fibrosing lung diseases, but it resolves in a self-limited fashion in conditions such as bacterial pneumonia and acute respiratory distress syndrome. In progressive fibrosing diseases such as IPF, permeability appears to persist, however, and may also predict mortality. In this hypothesis-generating review, we summarise available data on the role of endothelial permeability in IPF and focus on the deleterious consequences of sustained endothelial hyperpermeability in response to and during pulmonary inflammation and fibrosis. We propose that persistent permeability and vascular leak in the lung have the potential to establish and amplify the pro-fibrotic environment. Therapeutic interventions aimed at recognising and "plugging" the leak may therefore be of significant benefit for preventing the transition from lung injury to fibrosis and should be areas for future research.
Collapse
Affiliation(s)
- Clemens K. Probst
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sydney B. Montesi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Benjamin D. Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Barry S. Shea
- Division of Pulmonary and Critical Care Medicine, Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Rachel S. Knipe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
12
|
Kaminskas LM, Landersdorfer CB, Bischof RJ, Leong N, Ibrahim J, Davies AN, Pham S, Beck S, Montgomery AB, Surber MW. Aerosol Pirfenidone Pharmacokinetics after Inhaled Delivery in Sheep: a Viable Approach to Treating Idiopathic Pulmonary Fibrosis. Pharm Res 2019; 37:3. [PMID: 31823096 DOI: 10.1007/s11095-019-2732-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 11/06/2019] [Indexed: 01/01/2023]
Abstract
PURPOSE Inhaled delivery of pirfenidone to the lungs of patients with idiopathic pulmonary fibrosis holds promise to eliminate oral-observed side effects while enhancing efficacy. This study aimed to comprehensively describe the pulmonary pharmacokinetics of inhaled aerosol pirfenidone in healthy adult sheep. METHODS Pirfenidone concentrations were evaluated in plasma, lung-derived lymph and epithelial lining fluid (ELF) with data subjected to non-compartmental pharmacokinetic analysis. RESULTS Compartmental pharmacokinetic evaluation indicated that a 49 mg lung-deposited dose delivered an ELF Cmax of 62 ± 23 mg/L, and plasma Cmax of 3.1 ± 1.7 mg/L. Further analysis revealed that plasma pirfenidone reached Tmax faster and at higher concentrations than in lymph. These results suggested inhaled pirfenidone was cleared from the alveolar interstitium via blood faster than the drug could equilibrate between the lung interstitial fluid and lung lymphatics. However, the data also suggested that a 'reservoir' of pirfenidone feeds into lung lymph at later time points (after it has largely been cleared from plasma), prolonging lung lymphatic exposure. CONCLUSIONS This study indicates inhaled pirfenidone efficiently deposits in ELF and is cleared from the lungs by initial absorption into plasma, followed by later equilibrium with lung interstitial and lymph fluid.
Collapse
Affiliation(s)
- Lisa M Kaminskas
- School of Biomedical Sciences, University of Queensland, QLD, St Lucia, 4072, Australia.
| | - Cornelia B Landersdorfer
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | | | | | | | - Andrew N Davies
- Allergenix Pty Ltd, Melbourne, VIC, 3051, Australia
- Biomedicine Discovery Institute, Monash University, Peninsula Campus, Frankston, VIC, 3199, Australia
| | - Stephen Pham
- Avalyn Pharma Inc., 701 Pike Street, Suite 1500, Seattle, WA, 98101, USA
| | - Steven Beck
- Avalyn Pharma Inc., 701 Pike Street, Suite 1500, Seattle, WA, 98101, USA
| | - A Bruce Montgomery
- Avalyn Pharma Inc., 701 Pike Street, Suite 1500, Seattle, WA, 98101, USA
| | - Mark W Surber
- Avalyn Pharma Inc., 701 Pike Street, Suite 1500, Seattle, WA, 98101, USA.
| |
Collapse
|
13
|
Impact of mediastinal lymph node enlargement on the prognosis of idiopathic pulmonary fibrosis. PLoS One 2018; 13:e0201154. [PMID: 30044866 PMCID: PMC6059471 DOI: 10.1371/journal.pone.0201154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/10/2018] [Indexed: 01/08/2023] Open
Abstract
Background Mediastinal lymph node enlargement (LNE) is common in idiopathic pulmonary fibrosis (IPF) and is known to be associated with the severity of lung fibrosis. However, the relationship between mediastinal LNE and the prognosis of IPF has not been determined to date. Methods This study included patients with IPF from the interstitial lung disease registry at Seoul National University Bundang Hospital, from January 2012 to March 2016. Two thoracic radiologists independently reviewed mediastinal LNE and lung parenchymal fibrosis and ground glass opacities in chest computed tomography scans of each patient, which were obtained upon diagnosis. Mortality and admission rates were analyzed. Results In total, 132 patients (104 [78.8%] male; median age, 72 years; range, 51–84 years) were enrolled and 73 (55.3%) patients had mediastinal LNE (short axis ≥ 10 mm in diameter). Mortality was significantly higher among patients with LNE than among those without LNE (hazard ratio 2.26 [95% confidence interval 1.20–4.23], p = 0.011). Of the patients with LNE, 24.7% experienced acute exacerbation and 43.8% experienced hospital admission for respiratory causes, in comparison with 16.9% and 40.0% of patients without LNE respectively. Although patients with LNE had a tendency to have increased rate of acute exacerbation, it was not statistically significant. Conclusion Mediastinal LNE in IPF is associated with increased mortality and its occurrence may be considered a poor prognostic factor in patients with IPF.
Collapse
|
14
|
Kinoshita Y, Watanabe K, Ishii H, Kushima H, Fujita M, Nabeshima K. Significant increases in the density and number of lymphatic vessels in pleuroparenchymal fibroelastosis. Histopathology 2018; 73:417-427. [PMID: 29675827 DOI: 10.1111/his.13634] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/13/2018] [Indexed: 01/08/2023]
Abstract
AIMS Some investigators have detected fibrinous exudate or immature organisation in the alveolar spaces prior to the development of subpleural elastofibrosis in patients with pleuroparenchymal fibroelastosis (PPFE). We hypothesised that PPFE progress is associated with an impaired lymphatic drainage system, resulting in the failed resolution of intra-alveolar exudate. The aim of this study is to investigate the pulmonary lymphatic vessels in PPFE, histologically. METHODS AND RESULTS We retrospectively reviewed our medical records from 1995 to 2017, and selected autopsied or surgically biopsied patients with PPFE (n = 18), pulmonary apical cap (n = 18), and IPF (n = 26). We detected lymphatic endothelial cells by using immunostained specimens, calculating the percentage of lymphatic vessel area in the non-aerated area (lymphatic vessel density) and the number of lymphatic vessels per non-aerated area (per mm2 ) (lymphatic vessel number). These parameters in PPFE were compared with those in apical cap, IPF, and normal lung tissue. The lymphatic vessel density in PPFE patients [2.97%; interquartile range (IQR) 2.61-3.86] was significantly higher than that in normal lung (0.91%; IQR 0.84-1.07), pulmonary apical cap (0.67%; IQR 0.58-0.83), and IPF (0.91%; IQR 0.68-1.25) (P < 0.01 in any comparison). The lymphatic vessel number in PPFE was also significantly higher than that in normal lung, pulmonary apical cap, and IPF. Among PPFE patients, the increase in lymphatic vessel density was found to be correlated with the characteristic physiology of PPFE, such as a flattened chest cage on computed tomography and high residual volume/total lung capacity ratio on spirometry. CONCLUSIONS Significant increase in the density and number of lymphatic vessels is a supportive characteristic that enables the differentiation of PPFE from IPF and apical cap.
Collapse
Affiliation(s)
- Yoshiaki Kinoshita
- Department of Respiratory Medicine, Fukuoka University Hospital, Fukuoka, Japan.,Department of Pathology, Fukuoka University School of Medicine and Hospital, Fukuoka, Japan
| | - Kentaro Watanabe
- Department of Respiratory Medicine, Fukuoka University Hospital, Fukuoka, Japan.,General Medical Research Centre, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Hiroshi Ishii
- Department of Respiratory Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Hisako Kushima
- Department of Respiratory Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Masaki Fujita
- Department of Respiratory Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Kazuki Nabeshima
- Department of Pathology, Fukuoka University School of Medicine and Hospital, Fukuoka, Japan
| |
Collapse
|
15
|
Weber E, Sozio F, Borghini A, Sestini P, Renzoni E. Pulmonary lymphatic vessel morphology: a review. Ann Anat 2018; 218:110-117. [PMID: 29679722 DOI: 10.1016/j.aanat.2018.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/07/2018] [Accepted: 02/28/2018] [Indexed: 01/02/2023]
Abstract
Our understanding of lymphatic vessels has been advanced by the recent identification of relatively specific lymphatic endothelium markers, including Prox-1, VEGFR3, podoplanin and LYVE-1. The use of lymphatic markers has led to the observation that, contrary to previous assumptions, human lymphatic vessels extend deep inside the pulmonary lobule, either in association with bronchioles, intralobular arterioles or small pulmonary veins. Pulmonary lymphatic vessels may thus be classified into pleural, interlobular (in interlobular septa) and intralobular. Intralobular lymphatic vessels may be further subdivided in: bronchovascular (associated with a bronchovascular bundle), perivascular (associated with a blood vessel), peribronchiolar (associated with a bronchiole), and interalveolar (in interalveolar septa). Most of the intralobular lymphatic vessels are in close contact with a blood vessel, either alone or within a bronchovascular bundle. A minority is associated with a bronchiole, and small lymphatics are occasionally present even in interalveolar septa, seemingly independent of blood vessels or bronchioles. The lymphatics of the interlobular septa often contain valves, are usually associated with the pulmonary veins, and connect with the pleural lymphatics. The large lymphatics associated with bronchovascular bundles have similar characteristics to pleural and interlobular lymphatics and may be considered conducting vessels. The numerous small perivascular lymphatics and the few peribronchiolar ones that are found inside the lobule are probably the absorbing compartment of the lung responsible for maintaining the alveolar interstitium relatively dry in order to provide a minimal thickness of the air-blood barrier and thus optimize gas diffusion. These lymphatic populations could be differentially involved in the pathogenesis of diseases preferentially involving distinct lung compartments.
Collapse
Affiliation(s)
- E Weber
- Dept. of Molecular and Developmental Medicine, University of Siena, via A.Moro 2, 53100 Siena, Italy
| | - F Sozio
- Dept. of Molecular and Developmental Medicine, University of Siena, via A.Moro 2, 53100 Siena, Italy
| | - A Borghini
- Dept. of Molecular and Developmental Medicine, University of Siena, via A.Moro 2, 53100 Siena, Italy
| | - P Sestini
- Dept. of Medicine, Surgery and Neuroscience, University of Siena, viale Bracci 16, 53100 Siena, Italy
| | - E Renzoni
- ILD Unit Royal Brompton Hpospital,Sydney Street SW3 6LR, London, UK.
| |
Collapse
|
16
|
Distinct Profiles of CD163-Positive Macrophages in Idiopathic Interstitial Pneumonias. J Immunol Res 2018; 2018:1436236. [PMID: 29507864 PMCID: PMC5817286 DOI: 10.1155/2018/1436236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/14/2017] [Indexed: 12/27/2022] Open
Abstract
Background The types of cells most significantly linked to individual subtypes of idiopathic interstitial pneumonias (IIPs) remain unclear. Few studies have examined CD163+ macrophages in IIPs. Objective We retrospectively aimed to immunohistochemically characterize the CD163+ macrophages in IIPs. Methods Paraffin-embedded lung tissue samples were obtained from 47 patients with IIPs, including idiopathic pulmonary fibrosis (IPF), idiopathic nonspecific interstitial pneumonia (NSIP), and cryptogenic organizing pneumonia (COP), and 12 normal controls were immunohistochemically analyzed, using primary antibodies against CD68 and CD163 as indicators of pan and M2 macrophages, respectively. Results CD68+ macrophage density was significantly increased in the 3 subtypes of IIPs relative to that in the control group, although no difference was detected within the different IIPs. CD163+ macrophage density was significantly increased in NSIP and COP samples relative to that in IPF samples. The density ratio of CD163+ macrophages to CD68+ macrophages was significantly decreased in IPF/UIP samples relative to that in the others, while the densities in NSIP and COP were significantly higher than those in control cases. Conclusion CD163+ macrophages show distinct profiles among IIPs, and the standardized numerical density is decreased in IPF cases that have poor prognoses.
Collapse
|
17
|
Kropski JA, Richmond BW, Gaskill CF, Foronjy RF, Majka SM. Deregulated angiogenesis in chronic lung diseases: a possible role for lung mesenchymal progenitor cells (2017 Grover Conference Series). Pulm Circ 2017; 8:2045893217739807. [PMID: 29040010 PMCID: PMC5731726 DOI: 10.1177/2045893217739807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chronic lung disease (CLD), including pulmonary fibrosis (PF) and chronic obstructive pulmonary disease (COPD), is the fourth leading cause of mortality worldwide. Both are debilitating pathologies that impede overall tissue function. A common co-morbidity in CLD is vasculopathy, characterized by deregulated angiogenesis, remodeling, and loss of microvessels. This substantially worsens prognosis and limits survival, with most current therapeutic strategies being largely palliative. The relevance of angiogenesis, both capillary and lymph, to the pathophysiology of CLD has not been resolved as conflicting evidence depicts angiogenesis as both reparative or pathologic. Therefore, we must begin to understand and model the underlying pathobiology of pulmonary vascular deregulation, alone and in response to injury induced disease, to define cell interactions necessary to maintain normal function and promote repair. Capillary and lymphangiogenesis are deregulated in both PF and COPD, although the mechanisms by which they co-regulate and underlie early pathogenesis of disease are unknown. The cell-specific mechanisms that regulate lung vascular homeostasis, repair, and remodeling represent a significant gap in knowledge, which presents an opportunity to develop targeted therapies. We have shown that that ABCG2pos multipotent adult mesenchymal stem or progenitor cells (MPC) influence the function of the capillary microvasculature as well as lymphangiogenesis. A balance of both is required for normal tissue homeostasis and repair. Our current models suggest that when lymph and capillary angiogenesis are out of balance, the non-equivalence appears to support the progression of disease and tissue remodeling. The angiogenic regulatory mechanisms underlying CLD likely impact other interstitial lung diseases, tuberous sclerosis, and lymphangioleiomyomatosis.
Collapse
Affiliation(s)
- Jonathan A Kropski
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bradley W Richmond
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christa F Gaskill
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert F Foronjy
- 3 5718 Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Susan M Majka
- 1 12328 Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,2 74498 Department of Medicine, Division of Pulmonary and Critical Care Medicine, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
18
|
Stump B, Cui Y, Kidambi P, Lamattina AM, El-Chemaly S. Lymphatic Changes in Respiratory Diseases: More than Just Remodeling of the Lung? Am J Respir Cell Mol Biol 2017; 57:272-279. [PMID: 28443685 DOI: 10.1165/rcmb.2016-0290tr] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Advances in our ability to identify lymphatic endothelial cells and differentiate them from blood endothelial cells have led to important progress in the study of lymphatic biology. Over the past decade, preclinical and clinical studies have shown that there are changes to the lymphatic vasculature in nearly all lung diseases. Efforts to understand the contribution of lymphatics and their growth factors to disease initiation, progression, and resolution have led to seminal findings establishing critical roles for lymphatics in lung biology spanning from the first breath after birth to asthma, tuberculosis, and lung transplantation. However, in other diseases, it remains unclear if lymphatics are part of the overall lung remodeling process or real contributors to disease pathogenesis. The goal of this Translational Review is to highlight some of the advances in our understanding of the role(s) of lymphatics in lung disease and shed light on the critical needs and unanswered questions that might lead to novel translational applications.
Collapse
Affiliation(s)
- Benjamin Stump
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ye Cui
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pranav Kidambi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anthony M Lamattina
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
19
|
Maisel K, Sasso MS, Potin L, Swartz MA. Exploiting lymphatic vessels for immunomodulation: Rationale, opportunities, and challenges. Adv Drug Deliv Rev 2017; 114:43-59. [PMID: 28694027 PMCID: PMC6026542 DOI: 10.1016/j.addr.2017.07.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/29/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022]
Abstract
Lymphatic vessels are the primary route of communication from peripheral tissues to the immune system; as such, they represent an important component of local immunity. In addition to their transport functions, new immunomodulatory roles for lymphatic vessels and lymphatic endothelial cells have come to light in recent years, demonstrating that lymphatic vessels help shape immune responses in a variety of ways: promoting tolerance to self-antigens, archiving antigen for later presentation, dampening effector immune responses, and resolving inflammation, among others. In addition to these new biological insights, the growing field of immunoengineering has begun to explore therapeutic approaches to utilize or exploit the lymphatic system for immunotherapy.
Collapse
Affiliation(s)
- Katharina Maisel
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Maria Stella Sasso
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Lambert Potin
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA; École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Melody A Swartz
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA; Ben May Institute for Cancer Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
20
|
Yamashita M, Niisato M, Hanasaka T, Iwama N, Takahashi T, Sugai T, Ono M, Yamauchi K. Development of Lymphatic Capillary Network Along the Alveolar Walls of Autopsied Human Lungs with Pneumonia. Lymphat Res Biol 2016; 14:210-219. [PMID: 27617628 DOI: 10.1089/lrb.2015.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Limited information is available regarding the lymphatic vasculature during pneumonia. OBJECTIVE To characterize lymphatic vasculatures in autopsied cadavers with pneumonia. METHODS Paraffin-embedded lung tissues obtained from 20 autopsied cadavers with complicated pneumonia and 10 control cadavers without pneumonia were used for immunohistochemical analyses using primary antibodies against podoplanin, vascular endothelial growth factor receptor-3 (VEGFR-3), CD34, vascular endothelial growth factor (VEGF)-C, VEGF-D, CD73, and CD163. RESULTS There was no difference in the vascular density of podoplanin+ usual lymphatics between the individuals with and without pneumonia. In half of the cadavers with pneumonia, however, a network of podoplanin+ cells lying together in a side-by-side bead-like arrangement appeared along the alveolar septa; however, this was absent in the control cadavers. The podoplanin+ cells in the network were characterized by a weaker expression of podoplanin, relative to usual lymphatics, and the occasional presence of ductal structures. Although podoplanin+ cells were not coexpressed with VEGFR-3, a part of the network was connected to CD73+ afferent lymphatics. The network showed an intertwined relationship with CD34+ capillaries, suggesting that the network represents lymphatic capillaries. The number of CD163+ macrophages was significantly increased in individuals with the network than those without the network, while a significant decrease in neutrophils was observed. VEGF-C expressed in CD163+ macrophages and type II epithelial cells was observed in the cadavers with the network. CONCLUSION The development of lymphatic capillary networks along the alveolar septa rather than the usual lymphangiogenesis was noted in autopsied individuals with pneumonia.
Collapse
Affiliation(s)
- Masahiro Yamashita
- 1 Department of Pulmonary Medicine, Allergy and Rheumatology, Iwate Medical University School of Medicine , Morioka, Japan .,2 Department of Pathology, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Miyuki Niisato
- 1 Department of Pulmonary Medicine, Allergy and Rheumatology, Iwate Medical University School of Medicine , Morioka, Japan
| | - Tomohito Hanasaka
- 3 Technical Support Center for Life Science Research, Iwate Medical University , Iwate, Japan
| | - Noriyuki Iwama
- 4 Department of Pathology, Tohoku Rosai Hospital , Sendai, Japan
| | - Tohru Takahashi
- 5 Department of Pathology, Ishinomaki Red Cross Hospital , Ishinomaki, Japan
| | - Tamotsu Sugai
- 6 Department of Pathology, Iwate Medical University School of Medicine , Morioka, Japan
| | - Masao Ono
- 2 Department of Pathology, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Kohei Yamauchi
- 1 Department of Pulmonary Medicine, Allergy and Rheumatology, Iwate Medical University School of Medicine , Morioka, Japan
| |
Collapse
|
21
|
Yamashita M. Lymphangiogenesis and Lesion Heterogeneity in Interstitial Lung Diseases. CLINICAL MEDICINE INSIGHTS-CIRCULATORY RESPIRATORY AND PULMONARY MEDICINE 2016; 9:111-21. [PMID: 26823655 PMCID: PMC4725607 DOI: 10.4137/ccrpm.s33856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/03/2015] [Accepted: 11/23/2015] [Indexed: 01/26/2023]
Abstract
The lymphatic system has several physiological roles, including fluid homeostasis and the activation of adaptive immunity by fluid drainage and cell transport. Lymphangiogenesis occurs in adult tissues during various pathologic conditions. In addition, lymphangiogenesis is closely linked to capillary angiogenesis, and the balanced interrelationship between capillary angiogenesis and lymphangiogenesis is essential for maintaining homeostasis in tissues. Recently, an increasing body of information regarding the biology of lymphatic endothelial cells has allowed us to immunohistochemically characterize lymphangiogenesis in several lung diseases. Particular interest has been given to the interstitial lung diseases. Idiopathic interstitial pneumonias (IIPs) are characterized by heterogeneity in pathologic changes and lesions, as typified by idiopathic pulmonary fibrosis/usual interstitial pneumonia. In IIPs, lymphangiogenesis is likely to have different types of localized functions within each disorder, corresponding to the heterogeneity of lesions in terms of inflammation and fibrosis. These functions include inhibitory absorption of interstitial fluid and small molecules and maturation of fibrosis by excessive interstitial fluid drainage, caused by an unbalanced relationship between capillary angiogenesis and lymphangiogenesis and trafficking of antigen-presenting cells and induction of fibrogenesis via CCL21 and CCR7 signals. Better understanding for regional functions of lymphangiogenesis might provide new treatment strategies tailored to lesion heterogeneity in these complicated diseases.
Collapse
Affiliation(s)
- Masahiro Yamashita
- Department of Pulmonary Medicine, Allergy and Rheumatology, Iwate Medical University School of Medicine, Morioka, Japan
| |
Collapse
|
22
|
Yamashita M, Mouri T, Niisato M, Nitanai H, Kobayashi H, Ogasawara M, Endo R, Konishi K, Sugai T, Sawai T, Yamauchi K. Lymphangiogenic factors are associated with the severity of hypersensitivity pneumonitis. BMJ Open Respir Res 2015; 2:e000085. [PMID: 26448865 PMCID: PMC4593170 DOI: 10.1136/bmjresp-2015-000085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/08/2015] [Indexed: 11/06/2022] Open
Abstract
Background Antigen presenting cells play a pivotal role in the adaptive immune response in hypersensitivity pneumonitis (HP). It was hypothesised that lymphangiogenesis is involved in the pathophysiology of HP via cell transport. Objective To determine the clinical significance of lymphangiogenic factors in HP. Methods Levels of vascular endothelial growth factors (VEGF)-A, VEGF-C, VEGF-D and CCL21 in the serum and bronchoalveolar lavage fluid (BALF) were measured in 29 healthy volunteers, 14 patients with idiopathic pulmonary fibrosis (IPF) and 26 patients with HP by ELISA. Additionally, immunohistochemical analyses were performed using lung specimens of patients with HP (n=8) and IPF (n=10). Results BALF VEGF-D levels were significantly elevated in patients with HP compared to the other groups. BALF VEGF–D levels in patients with HP correlated significantly with the BALF total cell and lymphocyte counts (r=0.485, p=0.014 and r=0.717, p<0.0001, respectively). BALF VEGF-C and CCL21 levels were increased in patients with HP compared to healthy volunteers, but not patients with IPF. BALF CCL21 levels were negatively correlated with the forced expiratory volume in 1 s percentage and diffuse capacity of the lung for carbon monoxide (r=−0.662, p=0.007 and r=−0.671, p=0.024, respectively). According to the immunohistochemical analyses, CCL21 was expressed in the lymphatic endothelium in both conditions and CCR7+ cells were aggregated around lymphatics in patients with HP, but not in patients with IPF. Conclusions Lymphangiogenic factors might be associated with the inflammatory and functional severity of HP. The increased BALF VEGF-D levels were associated with lymphatic alveolitis intensity, and CCL21 with lung function impairment.
Collapse
Affiliation(s)
- Masahiro Yamashita
- Department of Pulmonary Medicine, Allergy and Rheumatology , Iwate Medical University School of Medicine , Morioka , Japan
| | - Takashi Mouri
- Department of Pulmonary Medicine, Allergy and Rheumatology , Iwate Medical University School of Medicine , Morioka , Japan ; Department of Respiratory Medicine , Iwate Prefectural Chubu Hospital , Kitakami , Japan
| | - Miyuki Niisato
- Department of Pulmonary Medicine, Allergy and Rheumatology , Iwate Medical University School of Medicine , Morioka , Japan
| | - Hiroo Nitanai
- Department of Pulmonary Medicine, Allergy and Rheumatology , Iwate Medical University School of Medicine , Morioka , Japan
| | - Hitoshi Kobayashi
- Department of Pulmonary Medicine, Allergy and Rheumatology , Iwate Medical University School of Medicine , Morioka , Japan
| | - Masahito Ogasawara
- Department of Pharmacology , Ehime University Graduate School of Medicine , Toon , Japan
| | - Ryujin Endo
- Department of Gastroenterology and Hepatology , Iwate Medical University School of Medicine , Morioka , Japan
| | - Kazuki Konishi
- Department of Pulmonary Medicine , Morioka Tsunagi Onsen Hospital , Morioka , Japan
| | - Tamotsu Sugai
- Department of Pathology , Iwate Medical University School of Medicine , Morioka , Japan
| | - Takashi Sawai
- Department of Pathology , Iwate Medical University School of Medicine , Morioka , Japan
| | - Kohei Yamauchi
- Department of Pulmonary Medicine, Allergy and Rheumatology , Iwate Medical University School of Medicine , Morioka , Japan
| |
Collapse
|
23
|
Cui Y, Wilder J, Rietz C, Gigliotti A, Tang X, Shi Y, Guilmette R, Wang H, George G, Nilo de Magaldi E, Chu SG, Doyle-Eisele M, McDonald JD, Rosas IO, El-Chemaly S. Radiation-induced impairment in lung lymphatic vasculature. Lymphat Res Biol 2015; 12:238-50. [PMID: 25412238 DOI: 10.1089/lrb.2014.0012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The lymphatic vasculature has been shown to play important roles in lung injury and repair, particularly in lung fibrosis. The effects of ionizing radiation on lung lymphatic vasculature have not been previously reported. METHODS AND RESULTS C57Bl/6 mice were immobilized in a lead shield exposing only the thoracic cavity, and were irradiated with a single dose of 14 Gy. Animals were sacrificed and lungs collected at different time points (1, 4, 8, and 16 weeks) following radiation. To identify lymphatic vessels in lung tissue sections, we used antibodies that are specific for lymphatic vessel endothelial receptor 1 (LYVE-1), a marker of lymphatic endothelial cells (LEC). To evaluate LEC cell death and oxidative damage, lung tissue sections were stained for LYVE-1 and with TUNEL staining, or 8-oxo-dG respectively. Images were imported into ImageJ v1.36b and analyzed. Compared to a non-irradiated control group, we observed a durable and progressive decrease in the density, perimeter, and area of lymphatic vessels over the study period. The decline in the density of lymphatic vessels was observed in both subpleural and interstitial lymphatics. Histopathologically discernible pulmonary fibrosis was not apparent until 16 weeks after irradiation. Furthermore, there was significantly increased LEC apoptosis and oxidative damage at one week post-irradiation that persisted at 16 weeks. CONCLUSIONS There is impairment of lymphatic vasculature after a single dose of ionizing radiation that precedes architectural distortion and fibrosis, suggesting important roles for the lymphatic circulation in the pathogenesis of the radiation-induced lung injury.
Collapse
Affiliation(s)
- Ye Cui
- 1 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital , Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cui Y, Osorio JC, Risquez C, Wang H, Shi Y, Gochuico BR, Morse D, Rosas IO, El-Chemaly S. Transforming growth factor-β1 downregulates vascular endothelial growth factor-D expression in human lung fibroblasts via the Jun NH2-terminal kinase signaling pathway. Mol Med 2014; 20:120-34. [PMID: 24515257 DOI: 10.2119/molmed.2013.00123] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/03/2014] [Indexed: 01/28/2023] Open
Abstract
Vascular endothelial growth factor (VEGF)-D, a member of the VEGF family, induces both angiogenesis and lymphangiogenesis by activating VEGF receptor-2 (VEGFR-2) and VEGFR-3 on the surface of endothelial cells. Transforming growth factor (TGF)-β1 has been shown to stimulate VEGF-A expression in human lung fibroblast via the Smad3 signaling pathway and to induce VEGF-C in human proximal tubular epithelial cells. However, the effects of TGF-β1 on VEGF-D regulation are unknown. To investigate the regulation of VEGF-D, human lung fibroblasts were studied under pro-fibrotic conditions in vitro and in idiopathic pulmonary fibrosis (IPF) lung tissue. We demonstrate that TGF-β1 downregulates VEGF-D expression in a dose- and time-dependent manner in human lung fibroblasts. This TGF-β1 effect can be abolished by inhibitors of TGF-β type I receptor kinase and Jun NH2-terminal kinase (JNK), but not by Smad3 knockdown. In addition, VEGF-D knockdown in human lung fibroblasts induces G1/S transition and promotes cell proliferation. Importantly, VEGF-D protein expression is decreased in lung homogenates from IPF patients compared with control lung. In IPF lung sections, fibroblastic foci show very weak VEGF-D immunoreactivity, whereas VEGF-D is abundantly expressed within alveolar interstitial cells in control lung. Taken together, our data identify a novel mechanism for downstream signal transduction induced by TGF-β1 in lung fibroblasts, through which they may mediate tissue remodeling in IPF.
Collapse
Affiliation(s)
- Ye Cui
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Juan C Osorio
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Cristobal Risquez
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hao Wang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ying Shi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Danielle Morse
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ivan O Rosas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
25
|
Kambouchner M, Bernaudin JF. [Lymphatics in non-tumoral pulmonary diseases. Review]. REVUE DE PNEUMOLOGIE CLINIQUE 2013; 69:170-174. [PMID: 23474099 DOI: 10.1016/j.pneumo.2012.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 12/25/2012] [Indexed: 06/01/2023]
Abstract
Whereas lymphatics in pulmonary non-tumoral diseases have been less studied than blood microcirculation, they clearly play a significant role. This review is a short update on lymphatics in various non-tumoral pulmonary diseases, from asthma to interstitial pneumonitis, excluding lymphangioleiomyomatosis. A lymphatic remodelling has been evidenced in asthma as well as in acute or chronic (UIP as NSIP) interstitial lung diseases. Such a remodelling can be explained as a side effect of local changes in fluidics but could also be an active player in the fibrosing process. Moreover the association of juxta-alveloar lymphatics and granulomas provides new insights in the emergence of these lesions in pulmonary sarcoidosis.
Collapse
Affiliation(s)
- M Kambouchner
- Service d'anatomie pathologique, hôpital Avicenne, 93009 Bobigny, France
| | | |
Collapse
|