1
|
Zhang W, Qiu T, Metelmann IB, Fritz AV, Rucker AJ, Du W, Sef D, Jiao W. Dynamic associations between adverse events after lung transplantation and allograft ischaemic time. Eur J Cardiothorac Surg 2024; 66:ezae425. [PMID: 39626309 DOI: 10.1093/ejcts/ezae425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/08/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVES The effect of allograft ischaemic time (AIT) on postoperative events after lung transplantation remains unclear. This study aims to assess the feasibility of extending the duration of AIT. METHODS The United Network for Organ Sharing database was queried for adult lung transplantation from 4 May 2005 to 30 June 2020. Patients were divided as per AIT into standard ischaemic time (<6 h) and prolonged ischaemic time (≥6 h) groups using propensity score matching and evaluated on a continuous scale using restricted cubic splines. The primary outcome was overall 1-year and 5-year survival. RESULTS Among 11 438 propensity-matched recipients, standard ischaemic time and prolonged ischaemic time showed no differences in overall 1-year (P = 0.29) or 5-year (P = 0.29) survival. Prolonged ischaemic time independently predicted early postoperative ventilator support for >48 h (OR = 1.33, 95% CI 1.22-1.44), dialysis (OR = 1.55, 95% CI 1.30-1.84), primary graft dysfunction (PGD; OR = 1.28, 95% CI 1.09-1.50), acute rejection (OR = 1.42, 95% CI 1.24-1.62), and interestingly, decreased 5-year bronchiolitis obliterans syndrome (HR = 0.91, 95% CI 0.85-0.97). In relative risk curves, 1-year mortality, prolonged ventilation, dialysis and PGD steadily increased per hour as AIT extended. The risk of acute rejection and 5-year bronchiolitis obliterans syndrome also showed significant changes between 5 and 8 h of AIT. In contrast, 5-year mortality remained constant despite rising AIT. CONCLUSIONS Prolonged AIT worsened early outcomes such as PGD, but improved bronchiolitis obliterans syndrome freedom at later time points. Despite this, both short- and long-term survival were similar between prolonged ischaemic time and standard ischaemic time patients. Dynamic risk changes in post-transplant events should be noted for prolonged ischaemia lung use.
Collapse
Affiliation(s)
- Wenxi Zhang
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tong Qiu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Isabella B Metelmann
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, Leipzig University, Leipzig, Germany
| | - Ashley V Fritz
- Division of Cardiovascular and Thoracic Anesthesiology, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - A Justin Rucker
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Wenxing Du
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Davorin Sef
- Department of Cardiac Surgery, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Wenjie Jiao
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Dugbartey GJ. Therapeutic benefits of nitric oxide in lung transplantation. Biomed Pharmacother 2023; 167:115549. [PMID: 37734260 DOI: 10.1016/j.biopha.2023.115549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023] Open
Abstract
Lung transplantation is an evolutionary procedure from its experimental origin in the twentieth century and is now recognized as an established and routine life-saving intervention for a variety of end-stage pulmonary diseases refractory to medical management. Despite the success and continuous refinement in lung transplantation techniques, the widespread application of this important life-saving intervention is severely hampered by poor allograft quality offered from donors-after-brain-death. This has necessitated the use of lung allografts from donors-after-cardiac-death (DCD) as an additional source to expand the pool of donor lungs. Remarkably, the lung exhibits unique properties that may make it ideally suitable for DCD lung transplantation. However, primary graft dysfunction (PGD), allograft rejection and other post-transplant complications arising from unavoidable ischemia-reperfusion injury (IRI) of transplanted lungs, increase morbidity and mortality of lung transplant recipients annually. In the light of this, nitric oxide (NO), a selective pulmonary vasodilator, has been identified as a suitable agent that attenuates lung IRI and prevents PGD when administered directly to lung donors prior to donor lung procurement, or to recipients during and after transplantation, or administered indirectly by supplementing lung preservation solutions. This review presents a historical account of clinical lung transplantation and discusses the lung as an ideal organ for DCD. Next, the author highlights IRI and its clinical effects in lung transplantation. Finally, the author discusses preservation solutions suitable for lung transplantation, and the protective effects and mechanisms of NO in experimental and clinical lung transplantation.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Accra College of Medicine, Magnolia St, JVX5+FX9, East Legon, Accra, Ghana.
| |
Collapse
|
3
|
He X, Luo Z, Han Y, Yu J, Fang S, Guo L. Correlation analysis of the peripheral blood lymphocyte count and occurrence of pneumonia after lung transplantation. Transpl Immunol 2023; 78:101822. [PMID: 36921729 DOI: 10.1016/j.trim.2023.101822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Infections are the most common complication in patients after lung transplantation and the main cause of death at all stages after transplantation; therefore, awareness regarding the occurrence of infectious pneumonia after lung transplantation is vital. This study aimed to explore the correlation between the absolute lymphocyte and T-lymphocyte subpopulation counts in the peripheral blood and the occurrence of pneumonia after lung transplantation and to predict the risk of pneumonia development after lung transplantation. MATERIALS Patients who underwent lung transplantation with long-term follow-up between June 2018 and December 2021 were prospectively included. The patients were divided into pneumonia and non-pneumonia groups. Demographic and clinical characteristics, and the levels of leukocytes, neutrophils, platelets, C-reactive protein (CRP), procalcitonin (PCT), serum albumin, peripheral blood T lymphocytes, and CD4+ and CD8+ T cells in the peripheral blood were measured in both groups. RESULTS We included 22 patients with post-lung transplants in the analysis. Of the 104 collected samples, 26 (56.5%) were pathogenically positive, 16 (61.5%) had bacterial infections, 7 samples (26.9%) had fungal infections, and 8 (30.8%) had viral infections. Patients with pneumonia had higher levels of peripheral blood neutrophils (P = 0.01), platelets (P = 0.03), and CRP (P < 0.001) than did those without pneumonia. Logistic regression analysis showed that the levels of peripheral blood neutrophils, total T lymphocytes, CRP, and PCT were associated with the development of pneumonia after transplantation (P < 0.05), as documented by their area under the curve (AUC) values of 0.702, 0.792, 0.899, and 0.789, respectively. The AUC for the combined receiver operating characteristic curve for predicting the development of pneumonia was 0.943, with a sensitivity of 91.3% and specificity of 93.1%. There was no significant difference in T-lymphocyte counts in patients with lung transplants between the pneumonia and non-pneumonia groups who were treated with two anti-rejection agents. In contrast, the absolute lymphocyte, total T-lymphocyte, and CD4+ and CD8+ T-cell counts in patients who developed pneumonia after treatment with three anti-rejection agents were lower than those in patients who did not develop pneumonia (P < 0.05). CONCLUSION Bacterial pneumonia is more common after lung transplantation than after fungal or viral infections. Peripheral blood T-lymphocyte counts combined with neutrophil, CRP, and PCT levels had good predictive value for the development of pneumonia after lung transplantation. Monitoring of patients should be strengthened by implementing peripheral blood T-lymphocyte counts to improve the early identification and prevention of pneumonia after lung transplantation.
Collapse
Affiliation(s)
- Xing He
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China; Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zeli Luo
- Department of Pulmonary and Critical Care Medicine, Wenjiang Hospital of Sichuan Provincial People's, Chengdu, China
| | - Yicen Han
- Department of Pulmonary and Critical Care Medicine, Chengdu Second People's Hospital, Chengdu, China
| | - Jia Yu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China; Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Siyu Fang
- Medical School of University of Electronic Science and Technology of China, Chengdu, China; Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
4
|
Kopanczyk R, Lester J, Long MT, Kossbiel BJ, Hess AS, Rozycki A, Nunley DR, Habib A, Taylor A, Awad H, Bhatt AM. The Future of Cardiothoracic Surgical Critical Care Medicine as a Medical Science: A Call to Action. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:47. [PMID: 36676669 PMCID: PMC9867461 DOI: 10.3390/medicina59010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Cardiothoracic surgical critical care medicine (CT-CCM) is a medical discipline centered on the perioperative care of diverse groups of patients. With an aging demographic and an increase in burden of chronic diseases the utilization of cardiothoracic surgical critical care units is likely to escalate in the coming decades. Given these projections, it is important to assess the state of cardiothoracic surgical intensive care, to develop goals and objectives for the future, and to identify knowledge gaps in need of scientific inquiry. This two-part review concentrates on CT-CCM as its own subspeciality of critical care and cardiothoracic surgery and provides aspirational goals for its practitioners and scientists. In part one, a list of guiding principles and a call-to-action agenda geared towards growth and promotion of CT-CCM are offered. In part two, an evaluation of selected scientific data is performed, identifying gaps in CT-CCM knowledge, and recommending direction to future scientific endeavors.
Collapse
Affiliation(s)
- Rafal Kopanczyk
- Department of Anesthesiology, Division of Critical Care, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jesse Lester
- Department of Anesthesiology, Division of Critical Care, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Micah T. Long
- Department of Anesthesiology, University of Wisconsin Hospitals & Clinics, Madison, WI 53792, USA
| | - Briana J. Kossbiel
- Department of Anesthesiology, Division of Critical Care, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Aaron S. Hess
- Department of Anesthesiology and Pathology & Laboratory Medicine, University of Wisconsin Hospitals & Clinics, Madison, WI 53792, USA
| | - Alan Rozycki
- Department of Pharmacology, The Ohio State Wexner Medical Center, Columbus, OH 43210, USA
| | - David R. Nunley
- Department of Pulmonary, Critical Care & Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Alim Habib
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Ashley Taylor
- Department of Anesthesiology, Division of Critical Care, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Hamdy Awad
- Department of Anesthesiology, Division of Cardiothoracic and Vascular Anesthesia, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Amar M. Bhatt
- Department of Anesthesiology, Division of Critical Care, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Chan JK, Chadwick EA, Taniguchi D, Ahmadipour M, Suzuki T, Romero D, Amon C, Waddell TK, Karoubi G, Bazylak A. Cell Inertia: Predicting Cell Distributions in Lung Vasculature to Optimize Re-endothelialization. Front Bioeng Biotechnol 2022; 10:891407. [PMID: 35573256 PMCID: PMC9092599 DOI: 10.3389/fbioe.2022.891407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 12/05/2022] Open
Abstract
We created a transient computational fluid dynamics model featuring a particle deposition probability function that incorporates inertia to quantify the transport and deposition of cells in mouse lung vasculature for the re-endothelialization of the acellular organ. Our novel inertial algorithm demonstrated a 73% reduction in cell seeding efficiency error compared to two established particle deposition algorithms when validated with experiments based on common clinical practices. We enhanced the uniformity of cell distributions in the lung vasculature by increasing the injection flow rate from 3.81 ml/min to 9.40 ml/min. As a result, the cell seeding efficiency increased in both the numerical and experimental results by 42 and 66%, respectively.
Collapse
Affiliation(s)
- Jason K.D. Chan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Eric A. Chadwick
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Daisuke Taniguchi
- Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Mohammadali Ahmadipour
- Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering (BME), University of Toronto, Toronto, ON, Canada
| | - Takaya Suzuki
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - David Romero
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Cristina Amon
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering (BME), University of Toronto, Toronto, ON, Canada
| | - Thomas K. Waddell
- Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering (BME), University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Golnaz Karoubi
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Aimy Bazylak
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
- *Correspondence: Aimy Bazylak,
| |
Collapse
|
6
|
Lee ACH, Edobor A, Wigakumar T, Lysandrou M, Johnston LK, McMullen P, Mirle V, Diaz A, Piech R, Rose R, Jendrisak M, di Sabato D, Shanmugarajah K, Fung J, Donington J, Madariaga ML. Donor leukocyte trafficking during human ex vivo lung perfusion. Clin Transplant 2022; 36:e14670. [PMID: 35396887 PMCID: PMC9540615 DOI: 10.1111/ctr.14670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/09/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022]
Abstract
Background Ex vivo lung perfusion (EVLP) is used to assess and preserve lungs prior to transplantation. However, its inherent immunomodulatory effects are not completely understood. We examine perfusate and tissue compartments to determine the change in immune cell composition in human lungs maintained on EVLP. Methods Six human lungs unsuitable for transplantation underwent EVLP. Tissue and perfusate samples were obtained during cold storage and at 1‐, 3‐ and 6‐h during perfusion. Flow cytometry, immunohistochemistry, and bead‐based immunoassays were used to measure leukocyte composition and cytokines. Mean values between baseline and time points were compared by Student's t test. Results During the 1st hour of perfusion, perfusate neutrophils increased (+22.2 ± 13.5%, p < 0.05), monocytes decreased (−77.5 ± 8.6%, p < 0.01) and NK cells decreased (−61.5 ± 22.6%, p < 0.01) compared to cold storage. In contrast, tissue neutrophils decreased (−22.1 ± 12.2%, p < 0.05) with no change in monocytes and NK cells. By 6 h, perfusate neutrophils, NK cells, and tissue neutrophils were similar to baseline. Perfusate monocytes remained decreased, while tissue monocytes remained unchanged. There was no significant change in B cells or T cell subsets. Pro‐inflammatory cytokines (IL‐1b, G‐CSF, IFN‐gamma, CXCL2, CXCL1 granzyme A, and granzyme B) and lymphocyte activating cytokines (IL‐2, IL‐4, IL‐6, IL‐8) increased during perfusion. Conclusions Early mobilization of innate immune cells occurs in both perfusate and tissue compartments during EVLP, with neutrophils and NK cells returning to baseline and monocytes remaining depleted after 6 h. The immunomodulatory effect of EVLP may provide a therapeutic window to decrease the immunogenicity of lungs prior to transplantation.
Collapse
Affiliation(s)
| | - Arianna Edobor
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | | | - Maria Lysandrou
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Laura K Johnston
- Office of Shared Research Facilities, University of Chicago, Chicago, Illinois, USA
| | - Phillip McMullen
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Vikranth Mirle
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Ashley Diaz
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Ryan Piech
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Rebecca Rose
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | | | - Diego di Sabato
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | | | - John Fung
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Jessica Donington
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
7
|
Ahmadipour M, Taniguchi D, Duchesneau P, Aoki FG, Phillips G, Sinderby C, Waddell TK, Karoubi G. Use of High-Rate Ventilation Results in Enhanced Recellularization of Bioengineered Lung Scaffolds. Tissue Eng Part C Methods 2021; 27:661-671. [PMID: 34847779 DOI: 10.1089/ten.tec.2021.0182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While transplantation is a viable treatment option for end-stage lung diseases, this option is highly constrained by the availability of organs and postoperative complications. A potential solution is the use of bioengineered lungs generated from repopulated acellular scaffolds. Effective recellularization, however, remains a challenge. In this proof-of-concept study, mice lung scaffolds were decellurized and recellurized using human bronchial epithelial cells (BEAS2B). We present a novel liquid ventilation protocol enabling control over tidal volume and high rates of ventilation. The use of a physiological tidal volume (300 μL) for mice and a higher ventilation rate (40 breaths per minute vs. 1 breath per minute) resulted in higher cell numbers and enhanced cell surface coverage in mouse lung scaffolds as determined via histological evaluation, genomic polymerase chain reaction (PCR) analysis, and immunohistochemistry. A biomimetic lung bioreactor system was designed to include the new ventilation protocol and allow for simultaneous vascular perfusion. We compared the lungs cultured in our dual system to lungs cultured with a bioreactor allowing vascular perfusion only and showed that our system significantly enhances cell numbers and surface coverage. In summary, our results demonstrate the importance of the physical environment and forces for lung recellularization. Impact statement New bioreactor systems are required to further enhance the regeneration process of bioengineered lungs. This proof-of-concept study describes a novel ventilation protocol that allows for control over ventilation parameters such as rate and tidal volume. Our data show that a higher rate of ventilation is correlated with higher cell numbers and increased surface coverage. We designed a new biomimetic bioreactor system that allows for ventilation and simultaneous perfusion. Compared to a traditional perfusion only system, recellularization was enhanced in lungs recellularized with our new biomimetic bioreactor.
Collapse
Affiliation(s)
- MohammadAli Ahmadipour
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Daisuke Taniguchi
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Pascal Duchesneau
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Fabio Gava Aoki
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada.,Institute of Science and Technology (ICT), Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | | | - Christer Sinderby
- Department of Medicine and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Critical Care, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, St. Michael's Hospital, Toronto, Ontario, Canada.,Institute for Biomedical Engineering and Science Technology (iBEST) at Ryerson University and St-Michael's Hospital, Toronto, Ontario, Canada
| | - Thomas K Waddell
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, and University of Toronto, Toronto, Ontario, Canada
| | - Golnaz Karoubi
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Interleukin-18: A Novel Participant in the Occurrence, Development, and Drug Therapy of Obliterative Bronchiolitis Postlung Transplantation. DISEASE MARKERS 2021; 2021:5586312. [PMID: 34367377 PMCID: PMC8337162 DOI: 10.1155/2021/5586312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/15/2021] [Indexed: 12/03/2022]
Abstract
Background Obliterative bronchiolitis (OB) was a main cause of deterioration of long-term prognosis in lung transplant recipients after the first posttransplant year. Proinflammatory cytokine interleukin-18 (IL-18) strengthened both the natural immunity and acquired immunity and played an important role in organ transplantation. The roles of IL-18 in the occurrence, development, and drug treatment of OB remained unclear. Methods Small interfering RNA (siRNA) against mouse IL-18 (siRNA-IL-18) was used to silence IL-18 expression. Mouse heterotopic tracheal transplantation model was used to simulate OB. Recipient mice were divided into 5 groups (n = 12) according to donor mouse strains and drug treatment: isograft group, allograft group, allograft+tacrolimus group, allograft+azithromycin group, and allograft+tacrolimus+azithromycin group. The luminal obliteration rates were pathological evaluation. Expressions of cytokines and MMPs were detected by real-time PCR, western blot, and enzyme chain immunosorbent assay (ELISA). Results The luminal obliteration rates of IL-18 of the siRNA-IL-18 group were significantly lower than those of the negative control group (p < 0.0001) and the blank control group (p = 0.0002). mRNA expressions of IFN-γ, EMMPRIN, MMP-8, and MMP-9 of the siRNA-IL-18 group were significantly lower than those of the negative and blank control groups. No tracheal occlusion occurred in grafts of the isograft group. The rates of tracheal occlusion of the allograft group, allograft+tacrolimus group, allograft+azithromycin group, and allograft+tacrolimus+azithromycin group were 72.17 ± 4.66%, 40.33 ± 3.00%, 38.50 ± 2.08%, and 23.33 ± 3.24%, respectively. There were significant differences between the 4 groups (p < 0.001). Serum protein expressions of IL-17 (p = 0.0017), IL-18 (p = 0.0036), IFN-γ (p = 0.0102), and MMP-9 (p = 0.0194) were significantly decreased in the allograft+tacrolimus+azithromycin group compared to the allograft group. Conclusions IL-18 could be a novel molecular involved in the occurrence, development, and drug treatment of OB.
Collapse
|
9
|
Lung Transplantation, Pulmonary Endothelial Inflammation, and Ex-Situ Lung Perfusion: A Review. Cells 2021; 10:cells10061417. [PMID: 34200413 PMCID: PMC8229792 DOI: 10.3390/cells10061417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
Lung transplantation (LTx) is the gold standard treatment for end-stage lung disease; however, waitlist mortality remains high due to a shortage of suitable donor lungs. Organ quality can be compromised by lung ischemic reperfusion injury (LIRI). LIRI causes pulmonary endothelial inflammation and may lead to primary graft dysfunction (PGD). PGD is a significant cause of morbidity and mortality post-LTx. Research into preservation strategies that decrease the risk of LIRI and PGD is needed, and ex-situ lung perfusion (ESLP) is the foremost technological advancement in this field. This review addresses three major topics in the field of LTx: first, we review the clinical manifestation of LIRI post-LTx; second, we discuss the pathophysiology of LIRI that leads to pulmonary endothelial inflammation and PGD; and third, we present the role of ESLP as a therapeutic vehicle to mitigate this physiologic insult, increase the rates of donor organ utilization, and improve patient outcomes.
Collapse
|
10
|
Ischemia-Reperfusion Injury in Lung Transplantation. Cells 2021; 10:cells10061333. [PMID: 34071255 PMCID: PMC8228304 DOI: 10.3390/cells10061333] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 02/08/2023] Open
Abstract
Lung transplantation has been established worldwide as the last treatment for end-stage respiratory failure. However, ischemia–reperfusion injury (IRI) inevitably occurs after lung transplantation. The most severe form of IRI leads to primary graft failure, which is an important cause of morbidity and mortality after lung transplantation. IRI may also induce rejection, which is the main cause of mortality in recipients. Despite advances in donor management and graft preservation, most donor grafts are still unsuitable for transplantation. Although the pulmonary endothelium is the primary target site of IRI, the pathophysiology of lung IRI remains incompletely understood. It is essential to understand the mechanism of pulmonary IRI to improve the outcomes of lung transplantation. Therefore, we reviewed the state-of-the-art in the management of pulmonary IRI after lung transplantation. Recently, the ex vivo lung perfusion (EVLP) system has been clinically introduced worldwide. Various promising therapeutic strategies for the protection of the endothelium against IRI, including EVLP, inhalation therapy with therapeutic gases and substances, fibrinolytic treatment, and mesenchymal stromal cell therapy, are awaiting clinical application. We herein review the latest advances in the field of pulmonary IRI in lung transplantation.
Collapse
|
11
|
Kitano K, Ohata K, Economopoulos KP, Gorman DE, Gilpin SE, Becerra DC, Ott HC. Orthotopic Transplantation of Human Bioartificial Lung Grafts in a Porcine Model: A Feasibility Study. Semin Thorac Cardiovasc Surg 2021; 34:752-759. [PMID: 33713829 DOI: 10.1053/j.semtcvs.2021.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022]
Abstract
Lung transplantation is the only treatment for end-stage lung disease; however, donor organ shortage and intense immunosuppression limit its broad clinical impact. Bioengineering of lungs with patient-derived cells could overcome these problems. We created bioartificial lungs by seeding human-derived cells onto porcine lung matrices and performed orthotopic transplantation to assess feasibility and in vivo function. Porcine decellularized lung scaffolds were seeded with human airway epithelial cells and human umbilical vein endothelial cells. Following in vitro culture, the bioartificial lungs were orthotopically transplanted into porcine recipients with planned 1-day survival (n = 3). Lungs were assessed with histology and in vivo function. Orthotopic transplantation of cadaveric lungs was performed as control. Engraftment of endothelial and epithelial cells in the grafts were histologically demonstrated. Technically successful orthotopic anastomoses of the vasculatures and airway were achieved in all animals. Perfusion and ventilation of the lung grafts were confirmed intraoperatively. The gas exchange function was evident immediately after transplantation; PO2 gradient between pulmonary artery and vein were 178 ± 153 mm Hg in the bioartificial lung group and 183 ± 117 mm Hg in the control group. At time of evaluation 24 hours after reperfusion, the pulmonary arteries were found to be occluded with thrombus in all bioartificial lungs. Engineering and orthotopic transplantation of bioartificial lungs with human cells were technically feasible in a porcine model. Early gas exchange function was evident. Further progress in optimizing recellularization and maturation of the grafts will be necessary for sustained perfusability and function.
Collapse
Affiliation(s)
- Kentaro Kitano
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Thoracic Surgery, The University of Tokyo Hospital, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Keiji Ohata
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Daniel E Gorman
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sarah E Gilpin
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - David C Becerra
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Harald C Ott
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
12
|
Li Y, Wu Q, Li L, Chen F, Bao J, Li W. Decellularization of porcine whole lung to obtain a clinical-scale bioengineered scaffold. J Biomed Mater Res A 2021; 109:1623-1632. [PMID: 33682365 DOI: 10.1002/jbm.a.37158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/02/2021] [Accepted: 02/19/2021] [Indexed: 02/05/2023]
Abstract
Whole-organ engineering is emerging as an alternative source for xenotransplantation in end-stage diseases. Utilization of decellularized whole lung scaffolds created by detergent perfusion is an effective strategy for organ replacement. In the current study, we attempted to decellularize porcine whole lungs to generate an optimal and reproducible decellularized matrix for future clinical use. Porcine whole lungs were decellularized via perfusion of various detergents (sodium dodecyl sulfate (SDS)/Triton X-100, sodium lauryl ether sulfate (SLES)/Triton X-100, dextrose/SDS/Triton X-100 and dextrose/SLES/Triton X-100) through the pulmonary artery and bronchus of the lung. The decellularized scaffolds were evaluated for decellularization efficiency, extracellular matrix (ECM) component preservation, xenoantigen removal and compatibility. The resulting lung scaffolds obtained from treatment with the dextrose/SLES/Triton X-100 cocktail showed minimal residual cellular components and xenoantigens, including DNA and protein, and good preservation of ECM composition. Evaluation of the porcine lung ECM by specific staining and immunofluorescence confirmed that the three-dimensional ultrastructure of the ECM was noticeably preserved in the SLES-treated groups. In addition, the decellularized lung scaffolds originating from the dextrose/SLES/Triton X-100 cocktail supported cell adhesion and growth. In summary, the novel detergent SLES alleviated the damage to retain a better-preserved ECM than SDS. Sequential Triton X-100 perfusion eliminated SLES. Moreover, performing dextrose perfusion in advance further protected scaffold components, especially collagen. We developed an optimal dextrose/SLES/Triton X-100 cocktail method that can be used for the decellularization of porcine whole lung to obtain a clinical-scale bioengineered scaffold.
Collapse
Affiliation(s)
- Yi Li
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiong Wu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Li
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Chen
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ji Bao
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Li
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Davidsen JR, Laursen CB, Højlund M, Lund TK, Jeschke KN, Iversen M, Kalhauge A, Bendstrup E, Carlsen J, Perch M, Henriksen DP, Schultz HHL. Lung Ultrasound to Phenotype Chronic Lung Allograft Dysfunction in Lung Transplant Recipients. A Prospective Observational Study. J Clin Med 2021; 10:jcm10051078. [PMID: 33807615 PMCID: PMC7961975 DOI: 10.3390/jcm10051078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS) are two distinct phenotypes of chronic lung allograft dysfunction (CLAD) in lung transplant (LTx) recipients. Contrary to BOS, RAS can radiologically present with a pleuroparenchymal fibroelastosis (PPFE) pattern. This study investigates lung ultrasound (LUS) to identify potential surrogate markers of PPFE in order to distinguish CLAD phenotype RAS from BOS. Methods: A prospective cohort study performed at a National Lung Transplantation Center during June 2016 to December 2017. Patients were examined with LUS and high-resolution computed tomography of the thorax (HRCT). Results: Twenty-five CLAD patients (72% males, median age of 54 years) were included, corresponding to 19/6 BOS/RAS patients. LUS-identified pleural thickening was more pronounced in RAS vs. BOS patients (5.6 vs. 2.9 mm) compatible with PPFE on HRCT. LUS-identified pleural thickening as an indicator of PPFE in RAS patients’ upper lobes showed a sensitivity of 100% (95% CI; 54–100%), specificity of 100% (95% CI; 82–100%), PPV of 100% (95% CI; 54–100%), and NPV of 100% (95% CI; 82–100%). Conclusion: Apical pleural thickening detected by LUS and compatible with PPFE on HRCT separates RAS from BOS in patients with CLAD. We propose LUS as a supplementary tool for initial CLAD phenotyping.
Collapse
Affiliation(s)
- Jesper Rømhild Davidsen
- South Danish Center for Interstitial Lung Diseases (SCILS), Odense University Hospital, 5000 Odense, Denmark;
- Department of Respiratory Medicine, Odense University Hospital, 5000 Odense, Denmark
- Odense Respiratory Research Unit (ODIN), Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
- Odense Patient Data Explorative Network, Odense University Hospital, 5000 Odense, Denmark
- Correspondence: ; Tel.: +45-215-712-92
| | - Christian B. Laursen
- South Danish Center for Interstitial Lung Diseases (SCILS), Odense University Hospital, 5000 Odense, Denmark;
- Department of Respiratory Medicine, Odense University Hospital, 5000 Odense, Denmark
- Odense Respiratory Research Unit (ODIN), Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Mikkel Højlund
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000 Odense, Denmark (D.P.H.)
| | - Thomas Kromann Lund
- Department of Cardiology, Section for Lung Transplantation, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (T.K.L.); (M.I.); (J.C.); (M.P.); (H.H.L.S.)
| | - Klaus Nielsen Jeschke
- Department of Respiratory Medicine, Copenhagen University Hospital, Hvidovre Hospital, 2650 Hvidovre, Denmark;
| | - Martin Iversen
- Department of Cardiology, Section for Lung Transplantation, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (T.K.L.); (M.I.); (J.C.); (M.P.); (H.H.L.S.)
| | - Anna Kalhauge
- Department of Radiology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Elisabeth Bendstrup
- Center for Rare Lung Diseases, Department Respiratory Diseases and Allergy, Aarhus University Hospital, 8200 Aarhus, Denmark;
| | - Jørn Carlsen
- Department of Cardiology, Section for Lung Transplantation, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (T.K.L.); (M.I.); (J.C.); (M.P.); (H.H.L.S.)
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Michael Perch
- Department of Cardiology, Section for Lung Transplantation, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (T.K.L.); (M.I.); (J.C.); (M.P.); (H.H.L.S.)
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Daniel Pilsgaard Henriksen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000 Odense, Denmark (D.P.H.)
| | - Hans Henrik Lawaetz Schultz
- Department of Cardiology, Section for Lung Transplantation, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (T.K.L.); (M.I.); (J.C.); (M.P.); (H.H.L.S.)
| |
Collapse
|
14
|
Ahmadipour M, Duchesneau P, Taniguchi D, Waddell TK, Karoubi G. Negative Pressure Cell Delivery Augments Recellularization of Decellularized Lungs. Tissue Eng Part C Methods 2021; 27:1-11. [PMID: 33307958 DOI: 10.1089/ten.tec.2020.0251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
For end-stage lung disease, lung transplantation remains the only treatment but is limited by the availability of organs. Production of bioengineered lungs via recellularization is an alternative but is hindered by inadequate repopulation. We present a cell delivery method via the generation of negative pressure. Decellularized lungs were seeded with human bronchial epithelial cells using gravity-based perfusion or negative pressure (via air removal). After delivery, lungs were maintained in static conditions for 18 h, and cell surface coverage was qualitatively assessed using histology and analyzed by subjective scoring and an image analysis software. Negative pressure seeded lungs had higher cell surface coverage area, and this effect was maintained following 5 days of culture. Enhanced coverage via negative pressure cell delivery was also observed when vasculature seeded with endothelial cells. Our findings show that negative pressure cell delivery is a superior approach for the recellularization of the bioengineered lung. Impact statement New strategies are required to overcome the shortage of organ donors for lung transplantation. Recellularization of acellular biological scaffolds is an exciting potential alternative. Adequate recellularization, however, remains a significant challenge. This proof of concept study describes a novel cell delivery approach, which further enhances the recellularization of decellularized lungs. Organs seeded and cultured with this method possess higher cell surface coverage and number compared to those seeded via traditional gravity-based perfusion approaches.
Collapse
Affiliation(s)
- Mohammadali Ahmadipour
- Latner Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Pascal Duchesneau
- Latner Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Daisuke Taniguchi
- Latner Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Thomas K Waddell
- Latner Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Golnaz Karoubi
- Latner Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
15
|
Abstract
: With current antiretroviral therapy, the lifespan of newly diagnosed persons with HIV (PWH) approaches that of uninfected persons. However, metabolic abnormalities related to both the disease and the virus itself, along with comorbidities of aging, have resulted in end-organ disease and organ failure as a major cause of morbidity and mortality. Solid organ transplantation is a life-saving therapy for PWH who have organ failure, and the approval of the HIV Organ Policy Equity Act has opened and expanded opportunities for PWH to donate and receive organs. The current environment of organ transplantation for PWH will be reviewed and future directions of research and treatment will be discussed.
Collapse
|
16
|
Resch T, Cardini B, Oberhuber R, Weissenbacher A, Dumfarth J, Krapf C, Boesmueller C, Oefner D, Grimm M, Schneeberger S. Transplanting Marginal Organs in the Era of Modern Machine Perfusion and Advanced Organ Monitoring. Front Immunol 2020; 11:631. [PMID: 32477321 PMCID: PMC7235363 DOI: 10.3389/fimmu.2020.00631] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
Organ transplantation is undergoing profound changes. Contraindications for donation have been revised in order to better meet the organ demand. The use of lower-quality organs and organs with greater preoperative damage, including those from donation after cardiac death (DCD), has become an established routine but increases the risk of graft malfunction. This risk is further aggravated by ischemia and reperfusion injury (IRI) in the process of transplantation. These circumstances demand a preservation technology that ameliorates IRI and allows for assessment of viability and function prior to transplantation. Oxygenated hypothermic and normothermic machine perfusion (MP) have emerged as valid novel modalities for advanced organ preservation and conditioning. Ex vivo prolonged lung preservation has resulted in successful transplantation of high-risk donor lungs. Normothermic MP of hearts and livers has displayed safe (heart) and superior (liver) preservation in randomized controlled trials (RCT). Normothermic kidney preservation for 24 h was recently established. Early clinical outcomes beyond the market entry trials indicate bioenergetics reconditioning, improved preservation of structures subject to IRI, and significant prolongation of the preservation time. The monitoring of perfusion parameters, the biochemical investigation of preservation fluids, and the assessment of tissue viability and bioenergetics function now offer a comprehensive assessment of organ quality and function ex situ. Gene and protein expression profiling, investigation of passenger leukocytes, and advanced imaging may further enhance the understanding of the condition of an organ during MP. In addition, MP offers a platform for organ reconditioning and regeneration and hence catalyzes the clinical realization of tissue engineering. Organ modification may include immunological modification and the generation of chimeric organs. While these ideas are not conceptually new, MP now offers a platform for clinical realization. Defatting of steatotic livers, modulation of inflammation during preservation in lungs, vasodilatation of livers, and hepatitis C elimination have been successfully demonstrated in experimental and clinical trials. Targeted treatment of lesions and surgical treatment or graft modification have been attempted. In this review, we address the current state of MP and advanced organ monitoring and speculate about logical future steps and how this evolution of a novel technology can result in a medial revolution.
Collapse
Affiliation(s)
- Thomas Resch
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Benno Cardini
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Rupert Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Annemarie Weissenbacher
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Dumfarth
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Krapf
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia Boesmueller
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Oefner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Grimm
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Sefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
17
|
Yanagiya M, Kitano K, Yotsumoto T, Takai D, Asahina H, Nagayama K, Nakajima J. Effect of normal saline flush injection into a bronchus on lung decellularization. J Thorac Dis 2019; 11:5321-5327. [PMID: 32030249 PMCID: PMC6988010 DOI: 10.21037/jtd.2019.11.59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/12/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND The aim of this study was to evaluate effect of normal saline flush injection into bronchus on creation of decellularized lung scaffolds. METHODS Pigs were used: 3 lung grafts for decellularization with pre-treatment of normal saline injection into a bronchus, 3 for decellularization without pre-treatment and 3 treated as normal controls. We compared the characteristics of lung scaffolds created by each method. RESULTS The pretreatment procedure significantly reduced the DNA content of lung grafts, suggesting effective removal of cellular components. However, this pretreatment also reduced the elastin contents of lung grafts. CONCLUSIONS Considering this characteristic of saline pretreatment, we must continue to look for better methods to produce ideal decellularized lung grafts.
Collapse
Affiliation(s)
- Masahiro Yanagiya
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kentaro Kitano
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takuma Yotsumoto
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Daiya Takai
- Department of Clinical Laboratory, The University of Tokyo, Tokyo, Japan
| | - Hiromichi Asahina
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kazuhiro Nagayama
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Jun Nakajima
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Li Y, Shu P, Tang L, Yang X, Fan J, Zhang X. FK506 combined with GM6001 prevents tracheal obliteration in a mouse model of heterotopic tracheal transplantation. Transpl Immunol 2019; 57:101244. [PMID: 31526865 DOI: 10.1016/j.trim.2019.101244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/08/2019] [Accepted: 09/13/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Obliterative bronchiolitis (OB) is the major complication limiting the long-term survival of allografts after lung transplantation. In this study, we investigated the effect of tacrolimus (FK506) combined with GM6001,a matrix metalloproteinase (MMP) inhibitor, on the formation of OB using a mouse heterotopic tracheal transplantation model. METHODS Syngeneic tracheal grafts were transplanted heterotopically from BALB/c mice to BALB/c mice. Allografts from C57BL/6 mice were transplanted to BALB/c mice. Isograft group, allograft group, allograft+FK506 group, allograft +GM6001 group and allograft+FK506 + GM6001 group was given respectively intraperitoneal injection of saline, saline, FK506, GM6001 and FK506 + GM6001 once a day. At 28 day after transplantation, OB incidence was determined by hematoxylin-eosin staining and the expressions of MMPs and cytokines were assessed using enzyme linked immunosorbent assay, immunohistochemical assays and western blot assay. RESULTS The tracheal occlusion rates of isograft group, allograft group, allograft+FK506 group, allograft+GM6001 group and allograft+FK506 + GM6001 group were 0, 74.1 ± 9.79%, 34.4 ± 6.04%, 40.3 ± 8.77% and 26.5 ± 5.73% respectively. There were significant differences between the latter two groups (P < .001). The serum MMP-8 and MMP-9 levels of allograft group were significantly higher than those of isograft group (P < .05) and had no significant decrease when treated by FK506. The serum MMP-8 and MMP-9 levels of allograft+FK506 + GM6001 group were significantly lower than those of allograft+FK506 group (P < .05). MMP-8 and MMP-9 protein expression in the grafts of allograft+FK506 + GM6001 group were lower than those of allograft+FK506 group verified by immunohistochemical staining and western blotting. CONCLUSION FK506 combined with GM6001 could alleviate tracheal obliteration in mouse heterotopic tracheal transplantation model, due to its inhibitory effect on MMPs.
Collapse
Affiliation(s)
- Yiqian Li
- Department of pharmacy, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Ping Shu
- Department of pharmacy, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Liang Tang
- Department of central Laboratory, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Xiaojun Yang
- Department of central Laboratory, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Junwei Fan
- Department of general Surgery, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China.
| | - Xiaoqing Zhang
- Department of pharmacy, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China; The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China.
| |
Collapse
|
19
|
Young KA, Dilling DF. The Future of Lung Transplantation. Chest 2018; 155:465-473. [PMID: 30171860 DOI: 10.1016/j.chest.2018.08.1036] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/10/2018] [Accepted: 08/15/2018] [Indexed: 12/17/2022] Open
Abstract
The field of lung transplant has made significant advances over the last several decades. Despite these advances, morbidity and mortality remain high when compared with other solid organ transplants. As the field moves forward, the speed by which progress can be made will in part be determined by our ability to overcome several stumbling blocks, including donor shortage, proper selection of candidates, primary graft dysfunction, and chronic lung allograft dysfunction. The advances and developments surrounding these factors will have a significant impact on shaping the field within the coming years. In this review, we look at the current climate (ripe for expanding the donor pool), new technology (ex vivo lung perfusion and bioengineered lungs), cutting-edge innovation (novel biomarkers and new ways to treat infected donors), and evidence-based medicine to discuss current trends and predict future developments for what we hope is a bright future for the field of lung transplantation.
Collapse
Affiliation(s)
- Katherine A Young
- Department of Pulmonary and Critical Care, Loyola University Medical Center, Maywood, IL
| | - Daniel F Dilling
- Department of Pulmonary and Critical Care, Loyola University Medical Center, Maywood, IL.
| |
Collapse
|
20
|
Panchabhai TS, Chaddha U, McCurry KR, Bremner RM, Mehta AC. Historical perspectives of lung transplantation: connecting the dots. J Thorac Dis 2018; 10:4516-4531. [PMID: 30174905 DOI: 10.21037/jtd.2018.07.06] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lung transplantation is now a treatment option for many patients with end-stage lung disease. Now 55 years since the first human lung transplant, this is a good time to reflect upon the history of lung transplantation, to recognize major milestones in the field, and to learn from others' unsuccessful transplant experiences. James Hardy was instrumental in developing experimental thoracic transplantation, performing the first human lung transplant in 1963. George Magovern and Adolph Yates carried out the second human lung transplant a few days later. With a combined survival of only 26 days for these first 2 lung transplant recipients, the specialty of lung transplantation clearly had a long way to go. The first "successful" lung transplant, in which the recipient survived for 10.5 months, was reported by Fritz Derom in 1971. Ten years later, Bruce Reitz and colleagues performed the first successful en bloc transplantation of the heart and one lung with a single distal tracheal anastomosis. In 1988, Alexander Patterson performed the first successful double lung transplant. The modern technique of sequential double lung transplantation and anastomosis performed at the mainstem bronchus level was originally described by Henri Metras in 1950, but was not reintroduced into the field until Pasque reported it again in 1990. Since then, lung transplantation has seen landmark changes: evolving immunosuppression regimens, clarifying the definition of primary graft dysfunction (PGD), establishing the lung allocation score (LAS), introducing extracorporeal membrane oxygenation (ECMO) as a bridge to transplant, allowing donation after cardiac death, and implementing ex vivo perfusion, to name a few. This article attempts to connect the historical dots in this field of research, with the hope that our effort helps summarize what has been achieved, and identifies opportunities for future generations of transplant pulmonologists and surgeons alike.
Collapse
Affiliation(s)
- Tanmay S Panchabhai
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Udit Chaddha
- Department of Pulmonary and Critical Care Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Kenneth R McCurry
- Department of Cardiothoracic Surgery, Sydell and Arnold Miller Family Heart and Vascular Institute
| | - Ross M Bremner
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Atul C Mehta
- Department of Pulmonary Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
21
|
Palleschi A, Benazzi E, Rossi CF, Torelli R, Passamonti SM, Pellegrini C, Lucianetti A, Tarsia P, Meloni F, Parigi P, Nosotti M. Lung Allocation Score System: First Italian Experience. Transplant Proc 2018; 51:190-193. [PMID: 30736973 DOI: 10.1016/j.transproceed.2018.02.214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/06/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Lung transplantation is an established therapeutic option for patients with end-stage pulmonary disease. In May 2005, the lung allocation score (LAS) was introduced in the United States to maximize the benefit to the recipient population and reduce waiting list mortality. The LAS has been applied in a region of Italy since March 2016 on a provisional basis. The aims of the study were describing waiting list characteristics and short-term outcomes after lung transplantation before and after LAS introduction. METHODS All the patients who received transplants between January 1, 2011, and March 15, 2017, were included in our retrospective study. The study population was divided into 2 cohorts (historical cohort and post-LAS cohort) and a comparison among the main perioperative data was performed. RESULTS The historical cohort consisted of 415 patients on the waiting list with 91 deaths and 199 lung transplants; the post-LAS cohort consisted of 134 patients with 10 deaths on the waiting list and 51 transplants. Median waiting time and mortality on the list decreased from 223 to 106 days (P = .03) and from 11.2% to 7.5% (P > .05), respectively. The transplantation rate increased from 25% to 38% (P = .001) and the probability to receive a transplant in the first year in the post-LAS era increased significantly (P = .004). CONCLUSIONS The results of the introduction of the LAS system in our region are encouraging and have not shown any adverse short-term effects. The regional coordination decided to prolong the experimental application of LAS in order to accumulate more data and to evaluate medium-term outcomes.
Collapse
Affiliation(s)
- A Palleschi
- Thoracic Surgery and Lung Transplantation Unit, Ca' Granda Foundation Ospedale Maggiore Policlinico, Milan, Italy
| | - E Benazzi
- Nord Italia Transplant Program, Ca' Granda Foundation Ospedale Maggiore Policlinico, Milan, Italy
| | - C F Rossi
- Thoracic Surgery and Lung Transplantation Unit, Ca' Granda Foundation Ospedale Maggiore Policlinico, Milan, Italy.
| | - R Torelli
- Nord Italia Transplant Program, Ca' Granda Foundation Ospedale Maggiore Policlinico, Milan, Italy
| | - S M Passamonti
- Nord Italia Transplant Program, Ca' Granda Foundation Ospedale Maggiore Policlinico, Milan, Italy
| | - C Pellegrini
- Cardiac Surgery Department, University of Pavia, San Matteo Policlinico Hospital, Pavia, Italy
| | - A Lucianetti
- General Surgery and Abdominal Transplant Unit, "Papa Giovanni XXIII" Hospital, Bergamo, Italy
| | - P Tarsia
- Department of Pulmonology, Ca' Granda Foundation Ospedale Maggiore Policlinico, Milan, Italy
| | - F Meloni
- Department of Pulmonology, Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - P Parigi
- Department of Pulmonology, "Papa Giovanni XXIII" Hospital, Bergamo, Italy
| | - M Nosotti
- Thoracic Surgery and Lung Transplantation Unit, Ca' Granda Foundation Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
22
|
Effects of Warm Versus Cold Ischemic Donor Lung Preservation on the Underlying Mechanisms of Injuries During Ischemia and Reperfusion. Transplantation 2018; 102:760-768. [DOI: 10.1097/tp.0000000000002140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
23
|
Pak O, Sydykov A, Kosanovic D, Schermuly RT, Dietrich A, Schröder K, Brandes RP, Gudermann T, Sommer N, Weissmann N. Lung Ischaemia-Reperfusion Injury: The Role of Reactive Oxygen Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:195-225. [PMID: 29047088 DOI: 10.1007/978-3-319-63245-2_12] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lung ischaemia-reperfusion injury (LIRI) occurs in many lung diseases and during surgical procedures such as lung transplantation. The re-establishment of blood flow and oxygen delivery into the previously ischaemic lung exacerbates the ischaemic injury and leads to increased microvascular permeability and pulmonary vascular resistance as well as to vigorous activation of the immune response. These events initiate the irreversible damage of the lung with subsequent oedema formation that can result in systemic hypoxaemia and multi-organ failure. Alterations in the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been suggested as crucial mediators of such responses during ischaemia-reperfusion in the lung. Among numerous potential sources of ROS/RNS within cells, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, xanthine oxidases, nitric oxide synthases and mitochondria have been investigated during LIRI. Against this background, we aim to review here the extensive literature about the ROS-mediated cellular signalling during LIRI, as well as the effectiveness of antioxidants as treatment option for LIRI.
Collapse
Affiliation(s)
- Oleg Pak
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Akylbek Sydykov
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Djuro Kosanovic
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Ralph T Schermuly
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Alexander Dietrich
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336, Munich, Germany
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Thomas Gudermann
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336, Munich, Germany
| | - Natascha Sommer
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany.
| |
Collapse
|
24
|
|
25
|
Cotter EKH, Banayan JM, Song TH, Chaney MA, Ko H, Cantu E, Diamond J, Weiss SJ, Cypel M, Keshavjee S. Lung in a Box: Ex Vivo Lung Transplantation. J Cardiothorac Vasc Anesth 2017; 32:1971-1981. [PMID: 29449154 DOI: 10.1053/j.jvca.2017.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Indexed: 12/18/2022]
Affiliation(s)
| | - Jennifer M Banayan
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL
| | - Tae H Song
- Department of Surgery, The University of Chicago, Chicago, IL
| | - Mark A Chaney
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL.
| | - Hanjo Ko
- Department of Anesthesiology and Critical Care, University of Pennsylvania Health System, Philadelphia, PA
| | - Edward Cantu
- Department of Cardiovascular Surgery, University of Pennsylvania Health System, Philadelphia, PA
| | - Joshua Diamond
- Department of Medicine, University of Pennsylvania Health System, Philadelphia, PA
| | - Stuart J Weiss
- Department of Anesthesiology and Critical Care, University of Pennsylvania Health System, Philadelphia, PA
| | - Marcelo Cypel
- ECLS Program University Health Network, Division of Thoracic Surgery, University of Toronto, Toronto ON, Canada
| | - Shaf Keshavjee
- University Health Network, Toronto Lung Transplant Program, University of Toronto, Toronto ON Canada
| |
Collapse
|
26
|
Targeting Circulating Leukocytes and Pyroptosis During Ex Vivo Lung Perfusion Improves Lung Preservation. Transplantation 2017; 101:2841-2849. [PMID: 28452921 DOI: 10.1097/tp.0000000000001798] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
27
|
Abstract
Perioperative management of patients undergoing lung transplantation is challenging and requires constant communication among the surgical, anesthesia, perfusion, and nursing teams. Although all aspects of anesthetic management are important, certain intraoperative strategies (mechanical ventilation, fluid management, extracorporeal mechanical support deployment) have tremendous impact on the subsequent evolution of the lung transplant recipient, especially with respect to allograft function, and should be carefully considered. This review highlights some of the intraoperative anesthetic challenges and opportunities during lung transplantation.
Collapse
Affiliation(s)
- Alina Nicoara
- Division of Cardiothoracic Anesthesia, Department of Anesthesiology, Duke University Medical Center, 2301 Erwin Road, HAFS Building, Box 3094, Durham, NC 27710, USA.
| | - John Anderson-Dam
- Department of Anesthesiology and Perioperative Medicine, Ronald Reagan UCLA Medical Center, David Geffen School of Medicine, University of California, 757 Westwood Boulevard, Suite 3325, Los Angeles, CA 90095, USA
| |
Collapse
|
28
|
Zurbano L, Zurbano F. [What the family doctor must know about lung transplant (Part 1)]. Semergen 2017; 43:457-462. [PMID: 28129961 DOI: 10.1016/j.semerg.2016.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/29/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
Abstract
Lung transplant is a therapeutic, medical-surgical procedure indicated for pulmonary diseases (except lung cancer), that are terminal and irreversible with current medical treatment. More than 3,500 lung transplants have been performed in Spain, with a rate of over 6 per million and increasing. In this review, an analysis is made of the types of transplants, their indications and contraindications, the procedures, immunosuppressive treatments, their side effects and medical interactions, current prophylaxis. A list of easily accessible literature references is also include, the majority being by national authors.
Collapse
Affiliation(s)
- L Zurbano
- Unidad de Trasplante Pulmonar, Servicio de Neumología, Hospital Universitario Marqués de Valdecilla, Santander, España
| | - F Zurbano
- Unidad de Trasplante Pulmonar, Servicio de Neumología, Hospital Universitario Marqués de Valdecilla, Santander, España.
| |
Collapse
|
29
|
Influence of IL-18 and IL-10 Polymorphisms on Tacrolimus Elimination in Chinese Lung Transplant Patients. DISEASE MARKERS 2017; 2017:7834035. [PMID: 28246425 PMCID: PMC5299197 DOI: 10.1155/2017/7834035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 11/01/2016] [Indexed: 12/26/2022]
Abstract
Aims. The influence of interleukin-10 (IL-10) and interleukin-18 (IL-18) polymorphisms on tacrolimus pharmacokinetics had been described in liver and kidney transplantation. The expression of cytokines varied in different kinds of transplantation. The influence of IL-10 and IL-18 genetic polymorphisms on the pharmacokinetic parameters of tacrolimus remains unclear in lung transplantation. Methods. 51 lung transplant patients at Shanghai Pulmonary Hospital were included. IL-18 polymorphisms (rs5744247 and rs1946518), IL-10 polymorphisms (rs1800896, rs1800872, and rs3021097), and CYP3A5 rs776746 were genotyped. Dose-adjusted trough blood concentrations (C/D ratio, mg/kg body weight) in lung transplant patients during the first 4 postoperative weeks were calculated. Results. IL-18 rs5744247 allele C and rs1946518 allele A were associated with fast tacrolimus metabolism. Combined analysis showed that the numbers of low IL-18 mRNA expression alleles had positive correlation with tacrolimus C/D ratios in lung transplant recipients. The influence of IL-18 polymorphisms on tacrolimus C/D ratios was observed in CYP3A5 expresser recipients, but not in CYP3A5 nonexpresser recipients. No clinical significance of tacrolimus C/D ratios difference of IL-10 polymorphisms was found in our data. Conclusions. IL-18 polymorphisms may influence tacrolimus elimination in lung transplantation patients.
Collapse
|
30
|
|
31
|
Bonneau E, Tétreault N, Robitaille R, Boucher A, De Guire V. Metabolomics: Perspectives on potential biomarkers in organ transplantation and immunosuppressant toxicity. Clin Biochem 2016; 49:377-84. [DOI: 10.1016/j.clinbiochem.2016.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/23/2015] [Accepted: 01/07/2016] [Indexed: 12/27/2022]
|
32
|
Nathan SD, King CS. Organ Donors: Making the Most of What Is Offered. Chest 2015; 148:303-305. [PMID: 26238828 DOI: 10.1378/chest.15-1269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Steven D Nathan
- Advanced Lung Disease and Lung Transplant Clinic, Inova Fairfax Hospital Falls Church, VA.
| | - Christopher S King
- Advanced Lung Disease and Lung Transplant Clinic, Inova Fairfax Hospital Falls Church, VA
| |
Collapse
|
33
|
|
34
|
Kawamura T, Momozane T, Sanosaka M, Sugimura K, Iida O, Fuchino H, Funaki S, Shintani Y, Inoue M, Minami M, Kawahara N, Takemori H, Okumura M. Carnosol Is a Potent Lung Protective Agent: Experimental Study on Mice. Transplant Proc 2015; 47:1657-61. [DOI: 10.1016/j.transproceed.2015.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 12/15/2022]
|