1
|
Rosi M, Russell B, Kristensen LG, Farquhar ER, Jain R, Abel D, Sullivan M, Costello SM, Dominguez-Martin MA, Chen Y, Marqusee S, Petzold CJ, Kerfeld CA, DePonte DP, Farahmand F, Gupta S, Ralston CY. An automated liquid jet for fluorescence dosimetry and microsecond radiolytic labeling of proteins. Commun Biol 2022; 5:866. [PMID: 36008591 PMCID: PMC9411504 DOI: 10.1038/s42003-022-03775-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
X-ray radiolytic labeling uses broadband X-rays for in situ hydroxyl radical labeling to map protein interactions and conformation. High flux density beams are essential to overcome radical scavengers. However, conventional sample delivery environments, such as capillary flow, limit the use of a fully unattenuated focused broadband beam. An alternative is to use a liquid jet, and we have previously demonstrated that use of this form of sample delivery can increase labeling by tenfold at an unfocused X-ray source. Here we report the first use of a liquid jet for automated inline quantitative fluorescence dosage characterization and sample exposure at a high flux density microfocused synchrotron beamline. Our approach enables exposure times in single-digit microseconds while retaining a high level of side-chain labeling. This development significantly boosts the method’s overall effectiveness and efficiency, generates high-quality data, and opens up the arena for high throughput and ultrafast time-resolved in situ hydroxyl radical labeling. A high-speed liquid jet delivery system improves the X-ray footprinting and mass spectrometry method to label proteins for structural studies.
Collapse
Affiliation(s)
- Matthew Rosi
- Sonoma State University, Rohnert Park, Sonoma, CA, 94928, US
| | - Brandon Russell
- Sonoma State University, Rohnert Park, Sonoma, CA, 94928, US
| | - Line G Kristensen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | - Erik R Farquhar
- Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, US
| | - Rohit Jain
- Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, US
| | - Donald Abel
- Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, US
| | - Michael Sullivan
- Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, US
| | - Shawn M Costello
- Biophysics Graduate Program, University of California, Berkeley, CA, USA
| | - Maria Agustina Dominguez-Martin
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, US.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | - Yan Chen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.,Department of Chemistry, University of California, Berkeley, CA, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Christopher J Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, US.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | | | - Farid Farahmand
- Sonoma State University, Rohnert Park, Sonoma, CA, 94928, US
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US.
| | - Corie Y Ralston
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US.
| |
Collapse
|
2
|
Chen X, Yeoh YQ, He Y, Zhou C, Horsley JR, Abell AD, Yu J, Guo X. Unravelling Structural Dynamics within a Photoswitchable Single Peptide: A Step Towards Multimodal Bioinspired Nanodevices. Angew Chem Int Ed Engl 2020; 59:22554-22562. [PMID: 32851761 DOI: 10.1002/anie.202004701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/15/2020] [Indexed: 12/13/2022]
Abstract
The majority of the protein structures have been elucidated under equilibrium conditions. The aim herein is to provide a better understanding of the dynamic behavior inherent to proteins by fabricating a label-free nanodevice comprising a single-peptide junction to measure real-time conductance, from which their structural dynamic behavior can be inferred. This device contains an azobenzene photoswitch for interconversion between a well-defined cis, and disordered trans isomer. Real-time conductance measurements revealed three distinct states for each isomer, with molecular dynamics simulations showing each state corresponds to a specific range of hydrogen bond lengths within the cis isomer, and specific dihedral angles in the trans isomer. These insights into the structural dynamic behavior of peptides may rationally extend to proteins. Also demonstrated is the capacity to modulate conductance which advances the design and development of bioinspired electronic nanodevices.
Collapse
Affiliation(s)
- Xinjiani Chen
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Yuan Qi Yeoh
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), School of Physical Sciences, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Yanbin He
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), School of Physical Sciences, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia.,Pharmaceutical Department, Changzhi Medical College, Changzhi, 046000, P. R. China
| | - Chenguang Zhou
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - John R Horsley
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), School of Physical Sciences, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), School of Physical Sciences, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Jingxian Yu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), School of Physical Sciences, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Xuefeng Guo
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China.,Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
3
|
Chen X, Yeoh YQ, He Y, Zhou C, Horsley JR, Abell AD, Yu J, Guo X. Unravelling Structural Dynamics within a Photoswitchable Single Peptide: A Step Towards Multimodal Bioinspired Nanodevices. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xinjiani Chen
- Peking-Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 P. R. China
| | - Yuan Qi Yeoh
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) Institute of Photonics and Advanced Sensing (IPAS) School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Yanbin He
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) Institute of Photonics and Advanced Sensing (IPAS) School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Pharmaceutical Department Changzhi Medical College Changzhi 046000 P. R. China
| | - Chenguang Zhou
- Beijing National Laboratory for Molecular Sciences State Key Laboratory for Structural Chemistry of Unstable and Stable Species College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - John R. Horsley
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) Institute of Photonics and Advanced Sensing (IPAS) School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Andrew D. Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) Institute of Photonics and Advanced Sensing (IPAS) School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Jingxian Yu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) Institute of Photonics and Advanced Sensing (IPAS) School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Xuefeng Guo
- Peking-Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 P. R. China
- Beijing National Laboratory for Molecular Sciences State Key Laboratory for Structural Chemistry of Unstable and Stable Species College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| |
Collapse
|
4
|
Yeh HC, Hsu PY, Tsai AL, Wang LH. Spectroscopic characterization of the oxyferrous complex of prostacyclin synthase in solution and in trapped sol-gel matrix. FEBS J 2008; 275:2305-14. [PMID: 18397321 DOI: 10.1111/j.1742-4658.2008.06385.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prostacyclin synthase (PGIS) is a member of the cytochrome P450 family in which the oxyferrous complexes are generally labile in the absence of substrate. At 4 degrees C, the on-rate constants and off-rate constants of oxygen binding to PGIS in solution are 5.9 x 10(5) m(-1).s(-1) and 29 s(-1), respectively. The oxyferrous complex decays to a ferric form at a rate of 12 s(-1). We report, for the first time, a stable oxyferrous complex of PGIS in a transparent sol-gel monolith. The encapsulated ferric PGIS retained the same spectroscopic features as in solution. The binding capabilities of the encapsulated PGIS were demonstrated by spectral changes upon the addition of O-based, N-based and C-based ligands. The peroxidase activity of PGIS in sol-gel was three orders of magnitude slower than that in solution owing to the restricted diffusion of the substrate in sol-gel. The oxyferrous complex in sol-gel was observable for 24 h at room temperature and displayed a much red-shifted Soret peak. Stabilization of the ferrous-carbon monoxide complex in sol-gel was observed as an enrichment of the 450-nm species over the 420-nm species. This result suggests that the sol-gel method may be applied to other P450s to generate a stable intermediate in the di-oxygen activation.
Collapse
Affiliation(s)
- Hui-Chun Yeh
- Division of Hematology, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|