1
|
Sellami K, Couvert A, Nasrallah N, Maachi R, Abouseoud M, Amrane A. Peroxidase enzymes as green catalysts for bioremediation and biotechnological applications: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150500. [PMID: 34852426 DOI: 10.1016/j.scitotenv.2021.150500] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 05/16/2023]
Abstract
The fast-growing consumer demand drives industrial process intensification, which subsequently creates a significant amount of waste. These products are discharged into the environment and can affect the quality of air, degrade water streams, and alter soil characteristics. Waste materials may contain polluting agents that are especially harmful to human health and the ecosystem, such as the synthetic dyes, phenolic agents, polycyclic aromatic hydrocarbons, volatile organic compounds, polychlorinated biphenyls, pesticides and drug substances. Peroxidases are a class oxidoreductases capable of performing a wide variety of oxidation reactions, ranging from reactions driven by radical mechanisms, to oxygen insertion into CH bonds, and two-electron substrate oxidation. This versatility in the mode of action presents peroxidases as an interesting alternative in cleaning the environment. Herein, an effort has been made to describe mechanisms governing biochemical process of peroxidase enzymes while referring to H2O2/substrate stoichiometry and metabolite products. Plant peroxidases including horseradish peroxidase (HRP), soybean peroxidase (SBP), turnip and bitter gourd peroxidases have revealed notable biocatalytic potentialities in the degradation of toxic products. On the other hand, an introduction on the role played by ligninolytic enzymes such as manganese peroxidase (MnP) and lignin peroxidase (LiP) in the valorization of lignocellulosic materials is addressed. Moreover, sensitivity and selectivity of peroxidase-based biosensors found use in the quantitation of constituents and the development of diagnostic kits. The general merits of peroxidases and some key prospective applications have been outlined as concluding remarks.
Collapse
Affiliation(s)
- Kheireddine Sellami
- Laboratoire de Génie de la Réaction, Faculté de Génie Mécanique et Génie des Procédés, Université des Sciences et de la Technologie Houari Boumediene, Bab Ezzouar, Alger 16111, Algeria; Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France.
| | - Annabelle Couvert
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Noureddine Nasrallah
- Laboratoire de Génie de la Réaction, Faculté de Génie Mécanique et Génie des Procédés, Université des Sciences et de la Technologie Houari Boumediene, Bab Ezzouar, Alger 16111, Algeria
| | - Rachida Maachi
- Laboratoire de Génie de la Réaction, Faculté de Génie Mécanique et Génie des Procédés, Université des Sciences et de la Technologie Houari Boumediene, Bab Ezzouar, Alger 16111, Algeria
| | - Mahmoud Abouseoud
- Laboratoire de Génie de la Réaction, Faculté de Génie Mécanique et Génie des Procédés, Université des Sciences et de la Technologie Houari Boumediene, Bab Ezzouar, Alger 16111, Algeria; Laboratoire de Biomatériaux et Phénomènes de Transport, Faculté des Sciences et de la Technologie, Université Yahia Fares de Médéa, Pôle Universitaire, RN1, Médéa 26000, Algeria
| | - Abdeltif Amrane
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| |
Collapse
|
2
|
Pleshakova YV, Ngun CT, Reshetnikov MV. Biodiagnostics of Soil under a Low Level of Anthropogenic Impact (by the Example of the Urban Settlement of Stepnoe, Saratov Oblast). BIOL BULL+ 2019. [DOI: 10.1134/s1062359019100261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Dubrovskaya E, Pozdnyakova N, Golubev S, Muratova A, Grinev V, Bondarenkova A, Turkovskaya O. Peroxidases from root exudates of Medicago sativa and Sorghum bicolor: Catalytic properties and involvement in PAH degradation. CHEMOSPHERE 2017; 169:224-232. [PMID: 27880920 DOI: 10.1016/j.chemosphere.2016.11.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/30/2016] [Accepted: 11/06/2016] [Indexed: 06/06/2023]
Abstract
Peroxidases from root exudates of sorghum (Sorghum bicolor L. Moench) and alfalfa (Medicago sativa L.) were purified and characterized, and their ability to oxidize native PAHs and PAH-derivatives was evaluated. The obtained data confirm that peroxidases are involved in the rhizosphere degradation of PAHs. Nondenaturing PAGE showed that the peroxidases of both plants were represented by a range of isoforms/isoenzymes (five to eight). Minor forms were lost during further purification, and as a result, the major anionic form from alfalfa root exudates and the major cationic form from those of sorghum were obtained. Both electrophoretically homogeneous peroxidases were monomeric proteins with a molecular weight of about 46-48 kDa. The pH optima and the main catalytic constants for the test substrates were determined. On the basis of their molecular and catalytic properties, the obtained enzymes were found to be typical plant peroxidases. Derivatives of PAHs and potential products of their microbial degradation (9-phenanthrol and 9,10-phenanthrenequinone), unlike the parent PAH (phenanthrene), inhibited the catalytic activity of the peroxidases, possibly indicating greater availability of the enzymes' active centers to these substances. Peroxidase-catalyzed decreases in the concentrations of a number of PAHs and their derivatives were observed. Sorghum peroxidase oxidized anthracene and phenanthrene, while alfalfa peroxidase oxidized only phenanthrene. 1-Hydroxy-2-naphthoic acid was best oxidized by peroxidase of alfalfa. However, quinone derivatives of PAHs were unavailable to sorghum peroxidase, but were oxidized by alfalfa peroxidase. These results indicate that the major peroxidases from root exudates of alfalfa and sorghum can have a role in the rhizosphere degradation of PAHs.
Collapse
|
4
|
Ingrid L, Lounès-Hadj Sahraoui A, Frédéric L, Yolande D, Joël F. Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: Microcosm experiment on aged-contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:549-560. [PMID: 26995451 DOI: 10.1016/j.envpol.2016.02.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/31/2016] [Accepted: 02/01/2016] [Indexed: 06/05/2023]
Abstract
Very few studies reported the potential of arbuscular mycorrhizal symbiosis to dissipate hydrocarbons in aged polluted soils. The present work aims to study the efficiency of arbuscular mycorrhizal colonized wheat plants in the dissipation of alkanes and polycyclic aromatic hydrocarbons (PAHs). Our results demonstrated that the inoculation of wheat with Rhizophagus irregularis allowed a better dissipation of PAHs and alkanes after 16 weeks of culture by comparison to non-inoculated condition. These dissipations observed in the inoculated soil resulted from several processes: (i) a light adsorption on roots (0.5% for PAHs), (ii) a bioaccumulation in roots (5.7% for PAHs and 6.6% for alkanes), (iii) a transfer in shoots (0.4 for PAHs and 0.5% for alkanes) and mainly a biodegradation. Whereas PAHs and alkanes degradation rates were respectively estimated to 12 and 47% with non-inoculated wheat, their degradation rates reached 18 and 48% with inoculated wheat. The mycorrhizal inoculation induced an increase of Gram-positive and Gram-negative bacteria by 56 and 37% compared to the non-inoculated wheat. Moreover, an increase of peroxidase activity was assessed in mycorrhizal roots. Taken together, our findings suggested that mycorrhization led to a better hydrocarbon biodegradation in the aged-contaminated soil thanks to a stimulation of telluric bacteria and hydrocarbon metabolization in mycorrhizal roots.
Collapse
Affiliation(s)
- Lenoir Ingrid
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant [UCEIV], EA4492, 50 rue Ferdinand Buisson, 62228 Calais, France.
| | - Anissa Lounès-Hadj Sahraoui
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant [UCEIV], EA4492, 50 rue Ferdinand Buisson, 62228 Calais, France.
| | - Laruelle Frédéric
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant [UCEIV], EA4492, 50 rue Ferdinand Buisson, 62228 Calais, France.
| | - Dalpé Yolande
- Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada.
| | - Fontaine Joël
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant [UCEIV], EA4492, 50 rue Ferdinand Buisson, 62228 Calais, France.
| |
Collapse
|
5
|
Muratova A, Dubrovskaya E, Golubev S, Grinev V, Chernyshova M, Turkovskaya O. The coupling of the plant and microbial catabolisms of phenanthrene in the rhizosphere of Medicago sativa. JOURNAL OF PLANT PHYSIOLOGY 2015; 188:1-8. [PMID: 26398627 DOI: 10.1016/j.jplph.2015.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 06/05/2023]
Abstract
We studied the catabolism of the polycyclic aromatic hydrocarbon phenanthrene by four rhizobacterial strains and the possibility of enzymatic oxidation of this compound and its microbial metabolites by the root exudates of alfalfa (Medicago sativa L.) in order to detect the possible coupling of the plant and microbial metabolisms under the rhizospheric degradation of the organic pollutant. A comparative study of phenanthrene degradation pathways in the PAH-degrading rhizobacteria Ensifer meliloti, Pseudomonas kunmingensis, Rhizobium petrolearium, and Stenotrophomonas sp. allowed us to identify the key metabolites from the microbial transformation of phenanthrene, including 9,10-phenanthrenequinone, 2-carboxybenzaldehyde, and 1-hydroxy-2-naphthoic, salicylic, and o-phthalic acids. Sterile alfalfa plants were grown in the presence and absence of phenanthrene (0.03 g kg(-1)) in quartz sand under controlled environmental conditions to obtain plant root exudates. The root exudates were collected, concentrated by ultrafiltration, and the activity of oxidoreductases was detected spectrophotometrically by the oxidation rate for various substrates. The most marked activity was that of peroxidase, whereas the presence of oxidase and tyrosinase was detected on the verge of the assay sensitivity. Using alfalfa root exudates as a crude enzyme preparation, we found that in the presence of the synthetic mediator, the plant peroxidase could oxidize phenanthrene and its microbial metabolites. The results indicate the possibility of active participation of plants in the rhizospheric degradation of polycyclic aromatic hydrocarbons and their microbial metabolites, which makes it possible to speak about the coupling of the plant and microbial catabolisms of these contaminants in the rhizosphere.
Collapse
Affiliation(s)
- Anna Muratova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, 13 Prospekt Entuziastov, 410049 Saratov, Russia.
| | - Ekaterina Dubrovskaya
- Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, 13 Prospekt Entuziastov, 410049 Saratov, Russia
| | - Sergey Golubev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, 13 Prospekt Entuziastov, 410049 Saratov, Russia
| | - Vyacheslav Grinev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, 13 Prospekt Entuziastov, 410049 Saratov, Russia
| | - Marina Chernyshova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, 13 Prospekt Entuziastov, 410049 Saratov, Russia
| | - Olga Turkovskaya
- Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, 13 Prospekt Entuziastov, 410049 Saratov, Russia
| |
Collapse
|
6
|
Chen Z, Li H, Peng A, Gao Y. Oxidation of polycyclic aromatic hydrocarbons by horseradish peroxidase in water containing an organic cosolvent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:10696-10705. [PMID: 24894750 DOI: 10.1007/s11356-014-3005-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 05/05/2014] [Indexed: 06/03/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental contaminants that are toxic, mutagenic, and carcinogenic. We investigated the horseradish peroxidase (HRP)-catalyzed oxidation of PAHs in water containing N,N-dimethylformamide. Four PAHs (anthracene, phenanthrene, pyrene, and fluoranthene) were investigated using single-PAH and mixed-PAH systems. The results provide useful information regarding the preferential oxidation of anthracene over other PAHs regardless of the reaction time, enzyme dosage, and hydrogen peroxide concentration. The removal of PAHs was found to be very strongly correlated with the ionization potential (IP), and much greater PAH oxidation was observed at a lower IP. The oxidation of anthracene was specifically pH- and temperature-dependent, with the optimal pH and temperature being 8.0 and 40 °C, respectively. The redox mediators 1-hydroxybenzotriazole and veratryl alcohol promoted the transformation of anthracene by HRP; 9,10-anthraquinone was the main product detected from the anthracene oxidation system. The results of this study not only provide a better understanding of the oxidation of PAHs by utilizing a plant biocatalyst, but also provide a theoretical basis for establishing the HRP-catalyzed treatment of PAH-contaminated wastewater.
Collapse
Affiliation(s)
- Zeyou Chen
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Sciences, Nanjing Agricultural University, Weigang Road 1, Nanjing, 210095, People's Republic of China
| | | | | | | |
Collapse
|
7
|
Liu R, Xiao N, Wei S, Zhao L, An J. Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named Fire Phoenix. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 473-474:350-358. [PMID: 24374595 DOI: 10.1016/j.scitotenv.2013.12.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 06/03/2023]
Abstract
The rhizosphere effect of a special phytoremediating species known as Fire Phoenix on the degradation of polycyclic aromatic hydrocarbons (PAHs) was investigated, including changes of the enzymatic activity and microbial communities in rhizosphere soil. The study showed that the degradation rate of Σ8PAHs by Fire Phoenix was up to 99.40% after a 150-day culture. The activity of dehydrogenase (DHO), peroxidase (POD) and catalase (CAT) increased greatly, especially after a 60-day culture, followed by a gradual reduction with an increase in the planting time. The activity of these enzymes was strongly correlated to the higher degradation performance of Fire Phoenix growing in PAH-contaminated soils, although it was also affected by the basic characteristics of the plant species itself, such as the excessive, fibrous root systems, strong disease resistance, drought resistance, heat resistance, and resistance to barren soil. The activity of polyphenoloxidase (PPO) decreased during the whole growing period in this study, and the degradation rate of Σ8PAHs in the rhizosphere soil after having planted Fire Phoenix plants had a significant (R(2)=0.947) negative correlation with the change in the activity of PPO. Using an analysis of the microbial communities, the results indicated that the structure of microorganisms in the rhizosphere soil could be changed by planting Fire Phoenix plants, namely, there was an increase in microbial diversity compared with the unplanted soil. In addition, the primary advantage of Fire Phoenix was to promote the growth of flora genus Gordonia sp. as the major bacteria that can effectively degrade PAHs.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Nan Xiao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Lixing Zhao
- College of Science, Northeastern University, Shenyang 110004, China
| | - Jing An
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
8
|
In silico bioremediation of polycyclic aromatic hydrocarbon: A frontier in environmental chemistry. J Mol Graph Model 2013; 44:1-8. [DOI: 10.1016/j.jmgm.2013.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 04/24/2013] [Accepted: 04/27/2013] [Indexed: 11/23/2022]
|
9
|
Computational study on the interaction of a ring-hydroxylating dioxygenase from Sphingomonas CHY-1 with PAHs. J Mol Graph Model 2011; 29:915-9. [DOI: 10.1016/j.jmgm.2011.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/19/2011] [Accepted: 03/02/2011] [Indexed: 11/20/2022]
|
10
|
Yu XZ, Wu SC, Wu FY, Wong MH. Enhanced dissipation of PAHs from soil using mycorrhizal ryegrass and PAH-degrading bacteria. JOURNAL OF HAZARDOUS MATERIALS 2011; 186:1206-17. [PMID: 21176862 DOI: 10.1016/j.jhazmat.2010.11.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 11/06/2010] [Accepted: 11/29/2010] [Indexed: 05/22/2023]
Abstract
The major aim of this experiment was to test the effects of a multi-component bioremediation system consisting of ryegrass (Lolium multiflorum), polycyclic aromatic hydrocarbons (PAHs)-degrading bacteria (Acinetobacter sp.), and arbuscular mycorrhizal fungi (Glomus mosseae) for cleaning up PAHs contaminated soil. Higher dissipation rates were observed in combination treatments: i.e., bacteria+ryegrass (BR), mycorrhizae+ryegrass (MR), and bacteria+mycorrhizae+ryegrass (BMR); than bacteria (B) and ryegrass (R) alone. The growth of ryegrass significantly (p<0.05) increased soil peroxidase activities, leading to enhanced dissipation of phenanthrene (PHE) and pyrene (PYR) from soil. Interactions between ryegrass with the two microbes further enhanced the dissipation of PHE and PYR. Mycorrhizal ryegrass (MR) significantly enhanced the dissipation of PYR from soil, PYR accumulation by ryegrass roots and soil peroxidase activities under lower PHE and PYR levels (0 and 50+50 mg kg(-1)). The present results highlighted the contribution of mycorrhiza and PAH-degrading bacteria in phytoremediation of PAH contaminated soil, however more detailed studies are needed.
Collapse
Affiliation(s)
- X Z Yu
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | | | | | | |
Collapse
|
11
|
Muratova AY, Bondarenkova AD, Panchenko LV, Turkovskaya OV. Use of integrated phytoremediation for cleaning-up of oil-sludge-contaminated soil. APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810080090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Karim Z, Husain Q. Removal of anthracene from model wastewater by immobilized peroxidase from Momordica charantia in batch process as well as in a continuous spiral-bed reactor. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2010.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Gao Y, Wu SC, Yu XZ, Wong MH. Dissipation gradients of phenanthrene and pyrene in the Rice rhizosphere. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:2596-2603. [PMID: 20542360 DOI: 10.1016/j.envpol.2010.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 05/11/2010] [Accepted: 05/11/2010] [Indexed: 05/29/2023]
Abstract
An experiment was conducted to reveal the effects of rice cultivation as well as polycyclic aromatic carbohydrates (PAHs) degrading bacterium (Acinetobacter sp.) on the dissipation gradients of two PAHs (PHE and PYR) in the rhizosphere. The results showed that the presence of rice root and bacteria significantly accelerated the dissipation rate of PHE and PYR. The root exudates contributed to the formation of dissipation gradients of PHE and PYR along the vertical direction of roots, with a higher dissipation rate in the rhizosphere and near rhizosphere zone than the soil far away the rhizosphere.
Collapse
Affiliation(s)
- Y Gao
- Croucher Institute for Environmental Sciences and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, PR China
| | | | | | | |
Collapse
|
14
|
Yap CL, Gan S, Ng HK. Application of vegetable oils in the treatment of polycyclic aromatic hydrocarbons-contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2010; 177:28-41. [PMID: 20006435 DOI: 10.1016/j.jhazmat.2009.11.078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 10/21/2009] [Accepted: 11/12/2009] [Indexed: 05/21/2023]
Abstract
A brief review is conducted on the application of vegetable oils in the treatment of PAH-contaminated soils. Three main scopes of treatment strategies are discussed in this work including soil washing by oil, integrated oil-biological treatment and integrated oil-non-biological treatment. For each of these, the arguments supporting vegetable oil application, the applied treatment techniques and their efficiencies, associated factors, as well as the feasibility of the techniques are detailed. Additionally, oil regeneration, the environmental impacts of oil residues in soil and comparison with other commonly employed techniques are also discussed.
Collapse
Affiliation(s)
- C L Yap
- Department of Chemical and Environmental Engineering, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | | | | |
Collapse
|
15
|
Zhou XB, Cébron A, Béguiristain T, Leyval C. Water and phosphorus content affect PAH dissipation in spiked soil planted with mycorrhizal alfalfa and tall fescue. CHEMOSPHERE 2009; 77:709-713. [PMID: 19775720 DOI: 10.1016/j.chemosphere.2009.08.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 08/27/2009] [Accepted: 08/28/2009] [Indexed: 05/28/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) dissipation efficiency can be increased in the plant rhizosphere, but may be affected by various environmental factors. We investigated the effects of the watering regime and phosphorus concentration on PAH dissipation in the rhizosphere of mycorrhizal plants in a pot experiment. Two plant species, alfalfa (Medicago sativa) and tall fescue (Festuca arundinacea), were co-cultured and inoculated with an arbuscular mycorrhizal (AM) fungus (Glomus intraradices) in PAH (phenanthrene (PHE)=500 mg kg(-1), pyrene (PYR)=500 mg kg(-1), dibenzo(a,h)anthracene (DBA)=65 mg kg(-1)) spiked agricultural soil for 6 weeks. Treatments with different phosphorus concentrations and watering regimes were compared. The PHE dissipation reached 90% in all treatments and was not affected by the treatments. The major finding was the significant positive impact of mycorrhizal plants on the dissipation of high molecular weight PAH (DBA) in high-water low-phosphorus treatment. Such an effect was not observed in high-water high-phosphorus and low-water low-phosphorus treatments, where AM colonization was very low. A positive linear relationship was detected between PYR dissipation and the percentage of Gram-positive PAH-ring hydroxylating dioxygenase genes in high-water high-phosphorus treatments, but not in the other two treatments with lower phosphorus concentrations and water contents. Such results indicated that the phosphorus and water regime were important parameters for the dissipation of HMW-PAH.
Collapse
Affiliation(s)
- X B Zhou
- LIMOS, Nancy University, CNRS, BP 70239, 54506 Vandoeuvre-les-Nancy Cedex, France
| | | | | | | |
Collapse
|
16
|
Eker B, Zagorevski D, Zhu G, Linhardt RJ, Dordick JS. ENZYMATIC POLYMERIZATION OF PHENOLS IN ROOM TEMPERATURE IONIC LIQUIDS. JOURNAL OF MOLECULAR CATALYSIS. B, ENZYMATIC 2009; 59:177-184. [PMID: 20161409 PMCID: PMC2785128 DOI: 10.1016/j.molcatb.2009.02.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Soybean peroxidase (SBP) was used to catalyze the polymerization of phenols in room-temperature ionic liquids (RTILs). Phenolic polymers with number average molecular weights ranging from 1200 to 4100 D were obtained depending on the composition of the reaction medium and the nature of the phenol. Specifically, SBP was highly active in methylimidazolium-containing RTILs, including 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM(BF(4))), and 1-butyl-3-methylpyridinium tetrafluoroborate (BMPy(BF(4))) with the ionic liquid content as high as 90% (v/v); the balance being aqueous buffer. Gel permeation chromatography and MALDI-TOF analysis indicated that higher molecular weight polymers can be synthesized in the presence of higher RTIL concentrations, with selective control over polymer size achieved by varying the RTIL concentration. The resulting polyphenols exhibited high thermostability and possessed thermosetting properties.
Collapse
Affiliation(s)
- Bilge Eker
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Dmitri Zagorevski
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Guangyu Zhu
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Robert J. Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, Troy, New York 12180
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, Troy, New York 12180
- Department of Biology, Rensselaer Nanotechnology Center, Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Jonathan S. Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, Troy, New York 12180
- Department of Biology, Rensselaer Nanotechnology Center, Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, Troy, New York 12180
| |
Collapse
|
17
|
Muratova AY, Golubev SN, Merbach W, Turkovskaya OV. Biochemical and physiological peculiarities of the interactions between Sinorhizobium meliloti and Sorghum bicolor in the presence of phenanthrene. Microbiology (Reading) 2009. [DOI: 10.1134/s0026261709030084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Muratova A, Pozdnyakova N, Golubev S, Wittenmayer L, Makarov O, Merbach W, Turkovskaya O. Oxidoreductase activity of Sorghum root exudates in a phenanthrene-contaminated environment. CHEMOSPHERE 2009; 74:1031-1036. [PMID: 19101015 DOI: 10.1016/j.chemosphere.2008.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/31/2008] [Accepted: 11/02/2008] [Indexed: 05/27/2023]
Abstract
The effect of the polycyclic aromatic hydrocarbon (PAH) phenanthrene on the enzymatic activity of root exudates of the phytoremediating plant Sorghum bicolor (L.) Moench was studied. Analysis of sorghum root exudates allowed us to reveal the activities of oxidase, peroxidase, and tyrosinase. The activities of these enzymes were progressive as the soil phenanthrene concentration increased. Using lyophilized samples, we found that as a result of the enzymatic activity of the root exudates, some of the PAHs and products of PAH degradation were oxidized in the reaction mixture supplemented with the mediating agents (ABTS or DL-DOPA) but that no oxidation was observed in the reaction mixtures without the mediators. The revealed enzymatic activity of the sorghum root exudates may indicate the involvement of the root-released oxidoreductases in rhizospheric degradation of PAHs and/or their derivatives. In addition, from the data obtained, the coupling of plant and microbial metabolisms of PAHs in the rhizosphere may be surmised.
Collapse
Affiliation(s)
- Anna Muratova
- Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia.
| | | | | | | | | | | | | |
Collapse
|
19
|
Lee SH, Lee WS, Lee CH, Kim JG. Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. JOURNAL OF HAZARDOUS MATERIALS 2008; 153:892-898. [PMID: 17959304 DOI: 10.1016/j.jhazmat.2007.09.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 09/13/2007] [Indexed: 05/25/2023]
Abstract
Phytoremediation is an emerging technology for the remediation of organic soil pollutants such as phenanthrene and pyrene (polycyclic aromatic hydrocarbons, PAHs). The PAH degradation ability of four native Korean plant species (Panicum bisulcatum, Echinogalus crus-galli, Astragalus membranaceus, and Aeschynomene indica) was compared in the greenhouse. During the 80-day experiment, soil samples were collected and analyzed periodically to determine the residual PAH content and microbial activity. More PAHs were dissipated in planted soil (i.e., with a rhizosphere) than in unplanted soil, and there were more obvious effects of plants on pyrene dissipation than on phenanthrene dissipation. After 80 days, >99 and 77-94% of phenanthrene and pyrene, respectively, had been degraded in planted soil, whereas 99% and 69% had been degraded in unplanted soil. This enhanced dissipation of PAHs in planted soils might be derived from increased microbial activity and plant-released enzymes. During the experimental period, a relatively large amount of phenolic compounds, high microbial activity, and high peroxidase activity were detected in planted soils.
Collapse
Affiliation(s)
- Sang-Hwan Lee
- Office of Environmental Geology, Korea Rural Community & Agriculture Corp, Uiwang, Republic of Korea
| | | | | | | |
Collapse
|
20
|
Pizzul L, Pilar Castillo MD, Stenström J. Characterization of selected actinomycetes degrading polyaromatic hydrocarbons in liquid culture and spiked soil. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-005-9100-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
|
22
|
Nissum M, Schiødt CB, Welinder KG. Reactions of soybean peroxidase and hydrogen peroxide pH 2.4-12.0, and veratryl alcohol at pH 2.4. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1545:339-48. [PMID: 11342058 DOI: 10.1016/s0167-4838(00)00295-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Peroxidase from soybean seed coat (SBP) has properties that makes it particularly suited for practical applications. Therefore, it is essential to know its fundamental enzymatic properties. Stopped-flow techniques were used to investigate the pH dependence of the reaction of SBP and hydrogen peroxide. The reaction is linearly dependent on hydrogen peroxide concentration at acidic and neutral pH with the second order rate constant k(1)=2.0x10(7) M(-1) s(-1), pH 4-8. From pH 9.3 to 10.2 the reaction is biphasic, a novel observation for a peroxidase at alkaline pH. A fast reaction has the characteristics of the reaction at neutral pH, and a slow reaction shows hyperbolic dependence on hydrogen peroxide concentration. At pH >10.5 only the slow reaction is seen. The shift in mechanism is coincident with the change in haem iron co-ordination to a six-coordinate low spin hydroxy ligated alkaline form. The pK(a) value for the alkaline transition was observed at 9.7+/-0.1, 9.6+/-0.1 and 9.9+/-0.2 by spectrophotometric titration, the fast phase amplitude, and decrease in the apparent second order rate constant, respectively. An acidic pK(a) at 3.2+/-0.3 was also determined from the apparent second order rate constant. The reactions of soybean peroxidase compounds I and II with veratryl alcohol at pH 2.44 give very similar second order rate constants, k(2)=(2.5+/-0.1)x10(4) M(-1) s(-1) and k(3)=(2.2+/-0.1)x10(4) M(-1) s(-1), respectively, which is unusual. The electronic absorption spectra of compounds I, II and III at pH 7.07 show characteristic bands at 400 and 651 nm (compound I), 416, 527 and 555 nm (compound II), and 414, 541 and 576 nm (compound III). No additional intermediates were observed.
Collapse
Affiliation(s)
- M Nissum
- Department of Protein Chemistry, Institute of Molecular Biology, University of Copenhagen, Denmark
| | | | | |
Collapse
|
23
|
Abstract
Soybean peroxidase (SBP), an acidic peroxidase isolated from the seed coat, has been shown to be an effective catalyst for the oxidation of a variety of organic compounds. In the present study, we demonstrate that SBP can catalyze halogenation reactions. In the presence of H(2)O(2), SBP catalyzed the oxidation of bromide and iodide but not chloride. Veratryl alcohol (3,4-dimethoxybenzyl alcohol) served as a useful substrate for SBP-catalyzed halogenations yielding the 6-bromo derivative. Halogenation of veratryl alcohol was optimal at pHs below 2.5 with rates of 2.4 µm/min, achieving complete conversions of 150-µm veratryl alcohol in 24 h. The enzyme showed essentially no brominating activity at pHs above 5.5. SBP-catalyzed bromination of veratryl alcohol proceeded with a maximum reaction velocity, (V(max))(apparent), of 5.8 x 10(-1) µm/min, a K(m) of 78 µm and a catalytic efficiency (k(cat)/K(m) of 1.37 x 10(5) M/min at pH 4.0, assuming all of the enzyme's active sites participate in the reaction. SBP also catalyzed the bromination of several other organic substrates including pyrazole to produce a single product 1-bromopyrazole, indole to yield both 5-bromoindole and 5-hydroxyindole, and the decarboxylative bromination of 3,4 dimethoxy-trans-cinnamic acid to trans-2-bromo-1-(3,4 dimethoxyphenyl)ethylene. A catalytic mechanism for SBP-catalyzed bromination has been proposed based on experimental results in this and related studies.
Collapse
|