1
|
Kang B, Wang J, Guo S, Yang L. Mercury-induced toxicity: Mechanisms, molecular pathways, and gene regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173577. [PMID: 38852866 DOI: 10.1016/j.scitotenv.2024.173577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/01/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Abstract
Mercury is a well-known neurotoxicant for humans and wildlife. The epidemic of mercury poisoning in Japan has clearly demonstrated that chronic exposure to methylmercury (MeHg) results in serious neurological damage to the cerebral and cerebellar cortex, leading to the dysfunction of the central nervous system (CNS), especially in infants exposed to MeHg in utero. The occurrences of poisoning have caused a wide public concern regarding the health risk emanating from MeHg exposure; particularly those eating large amounts of fish may experience the low-level and long-term exposure. There is growing evidence that MeHg at environmentally relevant concentrations can affect the health of biota in the ecosystem. Although extensive in vivo and in vitro studies have demonstrated that the disruption of redox homeostasis and microtube assembly is mainly responsible for mercurial toxicity leading to adverse health outcomes, it is still unclear whether we could quantitively determine the occurrence of interaction between mercurial and thiols and/or selenols groups of proteins linked directly to outcomes, especially at very low levels of exposure. Furthermore, intracellular calcium homeostasis, cytoskeleton, mitochondrial function, oxidative stress, neurotransmitter release, and DNA methylation may be the targets of mercury compounds; however, the primary targets associated with the adverse outcomes remain to be elucidated. Considering these knowledge gaps, in this article, we conducted a comprehensive review of mercurial toxicity, focusing mainly on the mechanism, and genes/proteins expression. We speculated that comprehensive analyses of transcriptomics, proteomics, and metabolomics could enhance interpretation of "omics" profiles, which may reveal specific biomarkers obviously correlated with specific pathways that mediate selective neurotoxicity.
Collapse
Affiliation(s)
- Bolun Kang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Jinghan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Shaojuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China.
| |
Collapse
|
2
|
Leal-Nazaré CG, Arrifano GP, Lopes-Araújo A, Santos-Sacramento L, Barthelemy JL, Soares-Silva I, Crespo-Lopez ME, Augusto-Oliveira M. Methylmercury neurotoxicity: Beyond the neurocentric view. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170939. [PMID: 38365040 DOI: 10.1016/j.scitotenv.2024.170939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Mercury is a highly toxic metal widely used in human activities worldwide, therefore considered a global public health problem. Many cases of mercury intoxication have occurred in history and represent a huge challenge nowadays. Of particular importance is its methylated form, methylmercury (MeHg). This mercurial species induces damage to several organs in the human body, especially to the central nervous system. Neurological impairments such as executive, memory, motor and visual deficits are associated with MeHg neurotoxicity. Molecular mechanisms involved in MeHg-induced neurotoxicity include excitotoxicity due to glutamatergic imbalance, disturbance in calcium homeostasis and oxidative balance, failure in synaptic support, and inflammatory response. Although neurons are largely affected by MeHg intoxication, they only represent half of the brain cells. Glial cells represent roughly 50 % of the brain cells and are key elements in the functioning of the central nervous system. Particularly, astrocytes and microglia are deeply involved in MeHg-induced neurotoxicity, resulting in distinct neurological outcomes depending on the context. In this review, we discuss the main findings on astroglial and microglial involvement as mediators of neuroprotective and neurotoxic responses to MeHg intoxication. The literature shows that these responses depend on chemical and morphophysiological features, thus, we present some insights for future investigations, considering the particularities of the context, including time and dose of exposure, brain region, and species of study.
Collapse
Affiliation(s)
- Caio Gustavo Leal-Nazaré
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Gabriela P Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Amanda Lopes-Araújo
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Leticia Santos-Sacramento
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Jean Ludger Barthelemy
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Isabela Soares-Silva
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil.
| | - Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil.
| |
Collapse
|
3
|
de Paula Arrifano G, Crespo-Lopez ME, Lopes-Araújo A, Santos-Sacramento L, Barthelemy JL, de Nazaré CGL, Freitas LGR, Augusto-Oliveira M. Neurotoxicity and the Global Worst Pollutants: Astroglial Involvement in Arsenic, Lead, and Mercury Intoxication. Neurochem Res 2023; 48:1047-1065. [PMID: 35997862 DOI: 10.1007/s11064-022-03725-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/01/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Environmental pollution is a global threat and represents a strong risk factor for human health. It is estimated that pollution causes about 9 million premature deaths every year. Pollutants that can cross the blood-brain barrier and reach the central nervous system are of special concern, because of their potential to cause neurological and development disorders. Arsenic, lead and mercury are usually ranked as the top three in priority lists of regulatory agencies. Against xenobiotics, astrocytes are recognised as the first line of defence in the CNS, being involved in virtually all brain functions, contributing to homeostasis maintenance. Here, we discuss the current knowledge on the astroglial involvement in the neurotoxicity induced by these pollutants. Beginning by the main toxicokinetic characteristics, this review also highlights the several astrocytic mechanisms affected by these pollutants, involving redox system, neurotransmitter and glucose metabolism, and cytokine production/release, among others. Understanding how these alterations lead to neurological disturbances (including impaired memory, deficits in executive functions, and motor and visual disfunctions), by revisiting the current knowledge is essential for future research and development of therapies and prevention strategies.
Collapse
Affiliation(s)
- Gabriela de Paula Arrifano
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Amanda Lopes-Araújo
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Letícia Santos-Sacramento
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Jean L Barthelemy
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Caio Gustavo Leal de Nazaré
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Luiz Gustavo R Freitas
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil
| | - Marcus Augusto-Oliveira
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Corrêa, 01, Belém, PA, 66075-110, Brazil.
| |
Collapse
|
4
|
Sasaki S, Negishi T, Tsuzuki T, Yukawa K. Methylmercury-induced reactive oxygen species-dependent and independent dysregulation of MAP kinase-related signaling pathway in cultured normal rat cerebellar astrocytes. Toxicology 2023; 487:153463. [PMID: 36813253 DOI: 10.1016/j.tox.2023.153463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Methylmercury (MeHg), a global environmental pollutant, could seriously damage the central nervous system (CNS) and cause neurological disorders such as cerebellar symptoms. Although numerous studies have revealed detailed toxicity mechanisms of MeHg in neurons, toxicity in astrocytes is barely known. Here, we tried to shed light on the toxicity mechanisms of MeHg exposure in cultured normal rat cerebellar astrocytes (NRA), focusing on the involvement of reactive oxygen species (ROS) in MeHg toxicity by assessing the effects of major antioxidants Trolox, a free-radical scavenger, N-acetyl-L-cysteine (NAC), a potent thiol-containing antioxidant, and glutathione (GSH), an endogenous thiol-containing antioxidant. Exposure to MeHg at just approximately 2 µM for 96 h increased cell viability, which was accompanied by the increase in intracellular ROS level and at ≥ 5 µM induced significant cell death and lowered ROS level. Trolox and NAC suppressed 2 µM MeHg-induced increases in cell viability and ROS level corresponding to control, although GSH with 2 µM MeHg induced significant cell death and ROS increase. On the contrary, against 4 µM MeHg-induced cell loss and ROS decrease, NAC inhibited both cell loss and ROS decrease, Trolox inhibited cell loss and further enhanced ROS decrease, and GSH moderately inhibited cell loss and increased ROS level above the control level. MeHg-induced oxidative stress was suggested by increases in the protein expression levels of heme oxygenase-1 (HO-1), Hsp70, and Nrf2, except for the decrease in SOD-1 and no change in catalase. Furthermore, MeHg exposure dose-dependently induced increases in the phosphorylation of MAP kinases (ERK1/2, p38MAPK, and SAPK/JNK) and phosphorylation and/or expression levels of transcription factors (CREB, c-Jun, and c-Fos) in NRA. NAC successfully suppressed 2 µM MeHg-induced alterations in all of the above-mentioned MeHg-responsive factors, whereas Trolox suppressed some MeHg-responsive factors but failed to suppress MeHg-induced increases in the protein expression levels of HO-1 and Hsp70 and increase in p38MAPK phosphorylation. Protein expression analyses in NRA exposed to 2 µM MeHg and GSH were excluded because of devastating cell death. These results suggested that MeHg could induce aberrant NRA activation, and ROS must be substantially involved in the toxicity mechanism of MeHg in NRA; however, other factors should be assumed.
Collapse
Affiliation(s)
- Shoto Sasaki
- Department of Physiology, Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya-shi, Aichi 468-8503, Japan
| | - Takayuki Negishi
- Department of Physiology, Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya-shi, Aichi 468-8503, Japan; Department of Physiology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya-shi, Aichi 468-8503, Japan.
| | - Takamasa Tsuzuki
- Department of Physiology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya-shi, Aichi 468-8503, Japan
| | - Kazunori Yukawa
- Department of Physiology, Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya-shi, Aichi 468-8503, Japan; Department of Physiology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya-shi, Aichi 468-8503, Japan
| |
Collapse
|
5
|
Nielsen T, Crawford N, Martell M, Khalil B, Imtiaz F, Newell-Caito JL, Caito S. MicroRNA Expression Influences Methylmercury-Induced Lipid Accumulation and Mitochondrial Toxicity in Caenorhabditis elegans. Chem Res Toxicol 2021; 35:77-88. [PMID: 34905692 DOI: 10.1021/acs.chemrestox.1c00306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metabolic effects of methylmercury (MeHg) are gaining wider attention. We have previously shown that MeHg causes lipid dysregulation in Caenorhabditis elegans (C. elegans), leading to altered gene expression, increased triglyceride levels and lipid storage, and altered feeding behaviors. Transcriptional regulators, such as transcription factors and microRNAs (miRNAs), have been shown to regulate lipid storage, serum triglycerides, and adipogenic gene expression in human and rodent models of metabolic diseases. As we recently investigated adipogenic transcription factors induced by MeHg, we were, therefore, interested in whether MeHg may also regulate miRNA sequences to cause metabolic dysfunction. Lipid dysregulation, as measured by triglyceride levels, lipid storage sites, and feeding behaviors, was assessed in wild-type (N2) worms and in transgenic worms that either were sensitive to miRNA expression or were unable to process miRNAs. Worms that were sensitive to the miRNA expression were protected from MeHg-induced lipid dysregulation. In contrast, the mutant worms that were unable to process miRNAs had exacerbated MeHg-induced lipid dysregulation. Concurrent with differential lipid homeostasis, miRNA-expression mutants had altered MeHg-induced mitochondrial toxicity as compared to N2, with the miRNA-sensitive mutants showing mitochondrial protection and the miRNA-processing mutants showing increased mitotoxicity. Taken together, our data demonstrate that the expression of miRNAs is an important determinant in MeHg toxicity and MeHg-induced metabolic dysfunction in C. elegans.
Collapse
Affiliation(s)
- Tyson Nielsen
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, Maine 04401, United States
| | - Nicole Crawford
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, Maine 04401, United States
| | - Megan Martell
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, Maine 04401, United States
| | - Belal Khalil
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, Maine 04401, United States
| | - Farooq Imtiaz
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, Maine 04401, United States
| | - Jennifer L Newell-Caito
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine 04469, United States
| | - Samuel Caito
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, Maine 04401, United States
| |
Collapse
|
6
|
Caito SW, Newell-Caito J, Martell M, Crawford N, Aschner M. Methylmercury Induces Metabolic Alterations in Caenorhabditis elegans: Role for C/EBP Transcription Factor. Toxicol Sci 2021; 174:112-123. [PMID: 31851340 DOI: 10.1093/toxsci/kfz244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Methylmercury (MeHg) is a well-known neurotoxicant; however, its role in metabolic diseases has been gaining wider attention. We have previously shown that MeHg causes metabolic alterations in Caenorhabditis elegans, leading to decreased nicotinamide adenine dinucleotide cofactor, mitochondrial dysfunction, and oxidative stress. We were, therefore, interested in whether MeHg also affects nutrient metabolism, particularly lipid homeostasis, which may contribute to the development of metabolic conditions such as obesity or metabolic syndrome (MS). RNA from wild-type worms exposed to MeHg was collected immediately after treatment and used for gene expression analysis by DNA microarray. MeHg differentially regulated 215 genes, 17 genes involved in lipid homeostasis, and 12 genes involved in carbohydrate homeostasis. Of particular interest was cebp-1, the worm ortholog to human C/EBP, a pro-adipogenic transcription factor implicated in MS. MeHg increased the expression of cebp-1 as well as pro-adipogenic transcription factors sbp-1 and nhr-49, triglyceride synthesis enzyme acl-6, and lipid transport proteins vit-2 and vit-6. Concurrent with the altered gene expression, MeHg increased triglyceride levels, lipid storage, and feeding behaviors. Worms expressing mutant cebp-1 were protected from MeHg-induced alterations in lipid content, feeding behaviors, and gene expression, highlighting the importance of this transcription factor in the worm's response to MeHg. Taken together, our data demonstrate that MeHg induces biochemical, metabolic, and behavioral changes in C. elegans that can lead to metabolic dysfunction.
Collapse
Affiliation(s)
- Samuel W Caito
- Department of Basic Pharmaceutical Sciences, Husson University School of Pharmacy, Bangor, Maine
| | | | - Megan Martell
- Department of Basic Pharmaceutical Sciences, Husson University School of Pharmacy, Bangor, Maine
| | - Nicole Crawford
- Department of Basic Pharmaceutical Sciences, Husson University School of Pharmacy, Bangor, Maine
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
7
|
Revisiting Astrocytic Roles in Methylmercury Intoxication. Mol Neurobiol 2021; 58:4293-4308. [PMID: 33990914 DOI: 10.1007/s12035-021-02420-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Intoxication by heavy metals such as methylmercury (MeHg) is recognized as a global health problem, with strong implications in central nervous system pathologies. Most of these neuropathological conditions involve vascular, neurotransmitter recycling, and oxidative balance disruption leading to accelerated decline in fine balance, and learning, memory, and visual processes as main outcomes. Besides neurons, astrocytes are involved in virtually all the brain processes and perform important roles in neurological response following injuries. Due to astrocytes' strategic functions in brain homeostasis, these cells became the subject of several studies on MeHg intoxication. The most heterogenous glial cells, astrocytes, are composed of plenty of receptors and transporters to dialogue with neurons and other cells and to monitor extracellular environment responding tightly through fluctuation of cytosolic ions. The overall toxicity of MeHg might be determined on the basis of the balance between MeHg-mediated injury to neurons and protective responses from astrocytes. Although the role of neurons in MeHg intoxication is relatively well-established, the role of the astrocytes is only beginning to be understood. In this review, we update the information on astroglial modulation of the MeHg-induced neurotoxicity, providing remarks on their protective and deleterious roles and insights for future studies.
Collapse
|
8
|
Novo JP, Martins B, Raposo RS, Pereira FC, Oriá RB, Malva JO, Fontes-Ribeiro C. Cellular and Molecular Mechanisms Mediating Methylmercury Neurotoxicity and Neuroinflammation. Int J Mol Sci 2021; 22:ijms22063101. [PMID: 33803585 PMCID: PMC8003103 DOI: 10.3390/ijms22063101] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Methylmercury (MeHg) toxicity is a major environmental concern. In the aquatic reservoir, MeHg bioaccumulates along the food chain until it is consumed by riverine populations. There has been much interest in the neurotoxicity of MeHg due to recent environmental disasters. Studies have also addressed the implications of long-term MeHg exposure for humans. The central nervous system is particularly susceptible to the deleterious effects of MeHg, as evidenced by clinical symptoms and histopathological changes in poisoned humans. In vitro and in vivo studies have been crucial in deciphering the molecular mechanisms underlying MeHg-induced neurotoxicity. A collection of cellular and molecular alterations including cytokine release, oxidative stress, mitochondrial dysfunction, Ca2+ and glutamate dyshomeostasis, and cell death mechanisms are important consequences of brain cells exposure to MeHg. The purpose of this review is to organize an overview of the mercury cycle and MeHg poisoning events and to summarize data from cellular, animal, and human studies focusing on MeHg effects in neurons and glial cells. This review proposes an up-to-date compendium that will serve as a starting point for further studies and a consultation reference of published studies.
Collapse
Affiliation(s)
- João P. Novo
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
| | - Beatriz Martins
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
| | - Ramon S. Raposo
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
- Experimental Biology Core, University of Fortaleza, Health Sciences, Fortaleza 60110-001, Brazil
| | - Frederico C. Pereira
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
| | - Reinaldo B. Oriá
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceará, Fortaleza 60430-270, Brazil;
| | - João O. Malva
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
- Correspondence: (J.O.M.); (C.F.-R.)
| | - Carlos Fontes-Ribeiro
- Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.P.N.); (B.M.); (R.S.R.); (F.C.P.)
- Correspondence: (J.O.M.); (C.F.-R.)
| |
Collapse
|
9
|
Li B, Xia M, Zorec R, Parpura V, Verkhratsky A. Astrocytes in heavy metal neurotoxicity and neurodegeneration. Brain Res 2021; 1752:147234. [PMID: 33412145 DOI: 10.1016/j.brainres.2020.147234] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/15/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
With the industrial development and progressive increase in environmental pollution, the mankind overexposure to heavy metals emerges as a pressing public health issue. Excessive intake of heavy metals, such as arsenic (As), manganese (Mn), mercury (Hg), aluminium (Al), lead (Pb), nickel (Ni), bismuth (Bi), cadmium (Cd), copper (Cu), zinc (Zn), and iron (Fe), is neurotoxic and it promotes neurodegeneration. Astrocytes are primary homeostatic cells in the central nervous system. They protect neurons against all types of insults, in particular by accumulating heavy metals. However, this makes astrocytes the main target for heavy metals neurotoxicity. Intake of heavy metals affects astroglial homeostatic and neuroprotective cascades including glutamate/GABA-glutamine shuttle, antioxidative machinery and energy metabolism. Deficits in these astroglial pathways facilitate or even instigate neurodegeneration. In this review, we provide a concise outlook on heavy metal-induced astrogliopathies and their association with major neurodegenerative disorders. In particular, we focus on astroglial mechanisms of iron-induced neurotoxicity. Iron deposits in the brain are detected in main neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Accumulation of iron in the brain is associated with motor and cognitive impairments and iron-induced histopathological manifestations may be considered as the potential diagnostic biomarker of neurodegenerative diseases. Effective management of heavy metal neurotoxicity can be regarded as a potential strategy to prevent or retard neurodegenerative pathologies.
Collapse
Affiliation(s)
- Baoman Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China.
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, People's Republic of China
| | - Robert Zorec
- Celica BIOMEDICAL, Tehnološki Park 24, 1000 Ljubljana, Slovenia; Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexei Verkhratsky
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
| |
Collapse
|
10
|
Insights into the Potential Role of Mercury in Alzheimer's Disease. J Mol Neurosci 2019; 67:511-533. [PMID: 30877448 DOI: 10.1007/s12031-019-01274-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/30/2019] [Indexed: 12/18/2022]
Abstract
Mercury (Hg), which is a non-essential element, is considered a highly toxic pollutant for biological systems even when present at trace levels. Elevated Hg exposure with the growing release of atmospheric pollutant Hg and rising accumulations of mono-methylmercury (highly neurotoxic) in seafood products have increased its toxic potential for humans. This review aims to highlight the potential relationship between Hg exposure and Alzheimer's disease (AD), based on the existing literature in the field. Recent reports have hypothesized that Hg exposure could increase the potential risk of developing AD. Also, AD is known as a complex neurological disorder with increased amounts of both extracellular neuritic plaques and intracellular neurofibrillary tangles, which may also be related to lifestyle and genetic variables. Research reports on AD and relationships between Hg and AD indicate that neurotransmitters such as serotonin, acetylcholine, dopamine, norepinephrine, and glutamate are dysregulated in patients with AD. Many researchers have suggested that AD patients should be evaluated for Hg exposure and toxicity. Some authors suggest further exploration of the Hg concentrations in AD patients. Dysfunctional signaling pathways in AD and Hg exposure appear to be interlinked with some driving factors such as arachidonic acid, homocysteine, dehydroepiandrosterone (DHEA) sulfate, hydrogen peroxide, glucosamine glycans, glutathione, acetyl-L carnitine, melatonin, and HDL. This evidence suggests the need for a better understanding of the relationship between AD and Hg exposure, and potential mechanisms underlying the effects of Hg exposure on regional brain functions. Also, further studies evaluating brain functions are needed to explore the long-term effects of subclinical and untreated Hg toxicity on the brain function of AD patients.
Collapse
|
11
|
Colón-Rodríguez A, Hannon HE, Atchison WD. Effects of methylmercury on spinal cord afferents and efferents-A review. Neurotoxicology 2017; 60:308-320. [PMID: 28041893 PMCID: PMC5447474 DOI: 10.1016/j.neuro.2016.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
Methylmercury (MeHg) is an environmental neurotoxicant of public health concern. It readily accumulates in exposed humans, primarily in neuronal tissue. Exposure to MeHg, either acutely or chronically, causes severe neuronal dysfunction in the central nervous system and spinal neurons; dysfunction of susceptible neuronal populations results in neurodegeneration, at least in part through Ca2+-mediated pathways. Biochemical and morphologic changes in peripheral neurons precede those in central brain regions, despite the fact that MeHg readily crosses the blood-brain barrier. Consequently, it is suggested that unique characteristics of spinal cord afferents and efferents could heighten their susceptibility to MeHg toxicity. Transient receptor potential (TRP) ion channels are a class of Ca2+-permeable cation channels that are highly expressed in spinal afferents, among other sensory and visceral organs. These channels can be activated in numerous ways, including directly via chemical irritants or indirectly via Ca2+ release from intracellular storage organelles. Early studies demonstrated that MeHg interacts with heterologous TRP channels, though definitive mechanisms of MeHg toxicity on sensory neurons may involve more complex interaction with, and among, differentially-expressed TRP populations. In spinal efferents, glutamate receptors of the N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and possibly kainic acid (KA) classes are thought to play a major role in MeHg-induced neurotoxicity. Specifically, the Ca2+-permeable AMPA receptors, which are abundant in motor neurons, have been identified as being involved in MeHg-induced neurotoxicity. In this review, we will describe the mechanisms that could contribute to MeHg-induced spinal cord afferent and efferent neuronal degeneration, including the possible mediators, such as uniquely expressed Ca2+-permeable ion channels.
Collapse
Affiliation(s)
- Alexandra Colón-Rodríguez
- Department of Pharmacology and Toxicology, 1355 Bogue Street, Life Sciences Building Rm. B440, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, 1129 Farm Lane, Food Safety and Toxicology Rm. 165, Michigan State University, East Lansing, MI, United States; Comparative Medicine and Integrative Biology Program, 784 Wilson Road, Veterinary Medical Center Rm. G-100, Michigan State University, East Lansing, MI, United States.
| | - Heidi E Hannon
- Department of Pharmacology and Toxicology, 1355 Bogue Street, Life Sciences Building Rm. B440, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, 1129 Farm Lane, Food Safety and Toxicology Rm. 165, Michigan State University, East Lansing, MI, United States; Comparative Medicine and Integrative Biology Program, 784 Wilson Road, Veterinary Medical Center Rm. G-100, Michigan State University, East Lansing, MI, United States.
| | - William D Atchison
- Department of Pharmacology and Toxicology, 1355 Bogue Street, Life Sciences Building Rm. B440, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, 1129 Farm Lane, Food Safety and Toxicology Rm. 165, Michigan State University, East Lansing, MI, United States; Comparative Medicine and Integrative Biology Program, 784 Wilson Road, Veterinary Medical Center Rm. G-100, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
12
|
Sulforaphane Prevents Methylmercury-Induced Oxidative Damage and Excitotoxicity Through Activation of the Nrf2-ARE Pathway. Mol Neurobiol 2016; 54:375-391. [PMID: 26742517 DOI: 10.1007/s12035-015-9643-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 12/16/2015] [Indexed: 12/29/2022]
Abstract
Methylmercury (MeHg) is a prominent environmental neurotoxicant, which induces oxidative damage and an indirect excitotoxicity caused by altered glutamate (Glu) metabolism. However, the interaction between oxidative damage and excitotoxicity in MeHg-exposed rats has not been fully recognized. Here, we explored the interaction between oxidative damage and excitotoxicity and evaluated the preventive effects of sulforaphane (SFN) on MeHg-induced neurotoxicity in rat cerebral cortex. Seventy-two rats were randomly assigned to four groups: control group, MeHg-treated groups (4 and 12 μmol/kg), and SFN pretreatment group. After treatment (28 days), the rats were killed and the cerebral cortex was analyzed. Then, Hg, glutathione (GSH), malondialdehyde (MDA), protein sulfhydryl, protein carbonyl, 8-hydroxy-2-deoxyguanosine (8-OHdG), and the levels of reactive oxygen species (ROS) and apoptosis were examined. Glu and glutamine (Gln) levels, glutamine synthetase (GS), phosphate-activated glutaminase (PAG), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), Na+-K+-ATPase and Ca2+-ATPase activities, intracellular Ca2+ levels, and the mRNA and protein expressions of Nrf2, Nrf2-regulated gene products, and N-methyl-D-aspartate receptors (NMDARs) were investigated in rat cerebral cortex. In our study, MeHg exposure not only induced Hg accumulation, apoptosis, ROS formation, GSH depletion, inhibition of antioxidant enzyme activities, and activation of Nrf2-ARE pathway signaling but also caused lipid, protein, and DNA peroxidative damage in a dose-dependent manner in rat cerebral cortex. Moreover, MeHg treatment significantly altered Gln/Glu cycling and NMDAR expression and resulted in calcium overloading. Furthermore, the present study also indicated that SFN pretreatment significantly reinforced the activation of the Nrf2-ARE pathway, which could prevent the toxic effects of MeHg exposure. Collectively, MeHg initiates multiple additive or synergistic disruptive mechanisms that lead to oxidative damage and excitotoxicity in rat cerebral cortex; pretreatment with SFN might prevent the MeHg-induced neurotoxicity by reinforcing the activation of the Nrf2-ARE pathway and then downregulating the interaction between oxidative damage and excitotoxicity pathways.
Collapse
|
13
|
Dysregulation of Glutamate Cycling Mediates Methylmercury-Induced Neurotoxicity. ADVANCES IN NEUROBIOLOGY 2016; 13:295-305. [PMID: 27885634 DOI: 10.1007/978-3-319-45096-4_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To examine the toxicological implications of glutamate, this chapter will focus specifically on its impact in the brain. More explicitly, it will illustrate the role glutamate plays in mediating methylmercury (MeHg)-induced neurotoxicity. In this chapter, one intends to highlight the processes that occur prior to glutamate-stimulated excitotoxicity and subsequent neurodegeneration. As such, it will emphasize three main routes by which MeHg alters glutamate homeostasis. It is essential to recognize that these effects are not mutually exclusive, and that they synergistically influence glutamate dysregulation. Furthermore, the consequences of MeHg exposure will be presented here as a direct pathway; however, it must be noted these effects occur simultaneously. First, glutamate uptake will be reviewed emphasizing the function of astrocytes. Next, the induction of oxidative stress by MeHg exposure will be discussed. This process has a two-fold effect on glutamate homeostasis by (1) inhibiting extracellular glutamate uptake and (2) altering transcription of genes vital to glutamate cycling. Finally, the impact glutamate dysregulation has on glutathione synthesis will be examined. Although this chapter centers on the link between glutamate and MeHg toxicity, it is imperative that the reader acknowledges the processes discussed here can be extended to any pro-oxidant.
Collapse
|
14
|
Karki P, Smith K, Johnson J, Aschner M, Lee E. Role of transcription factor yin yang 1 in manganese-induced reduction of astrocytic glutamate transporters: Putative mechanism for manganese-induced neurotoxicity. Neurochem Int 2014; 88:53-9. [PMID: 25128239 DOI: 10.1016/j.neuint.2014.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/31/2014] [Accepted: 08/05/2014] [Indexed: 10/24/2022]
Abstract
Astrocytes are the most abundant non-neuronal glial cells in the brain. Once relegated to a mere supportive role for neurons, contemporary dogmas ascribe multiple active roles for these cells in central nervous system (CNS) function, including maintenance of optimal glutamate levels in synapses. Regulation of glutamate levels in the synaptic cleft is crucial for preventing excitotoxic neuronal injury. Glutamate levels are regulated predominantly by two astrocytic glutamate transporters, glutamate transporter 1 (GLT-1) and glutamate aspartate transporter (GLAST). Indeed, the dysregulation of these transporters has been linked to several neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD) and Parkinson's disease (PD), as well as manganism, which is caused by overexposure to the trace metal, manganese (Mn). Although Mn is an essential trace element, its excessive accumulation in the brain as a result of chronic occupational or environmental exposures induces a neurological disorder referred to as manganism, which shares common pathological features with Parkinsonism. Mn decreases the expression and function of both GLAST and GLT-1. Astrocytes are commonly targeted by Mn, and thus reduction in astrocytic glutamate transporter function represents a critical mechanism of Mn-induced neurotoxicity. In this review, we will discuss the role of astrocytic glutamate transporters in neurodegenerative diseases and Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Pratap Karki
- Department of Physiology, Meharry Medical College, Nashville, TN 37208, United States
| | - Keisha Smith
- Department of Physiology, Meharry Medical College, Nashville, TN 37208, United States
| | - James Johnson
- Department of Physiology, Meharry Medical College, Nashville, TN 37208, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Eunsook Lee
- Department of Physiology, Meharry Medical College, Nashville, TN 37208, United States.
| |
Collapse
|
15
|
Feng S, Xu Z, Liu W, Li Y, Deng Y, Xu B. Preventive effects of dextromethorphan on methylmercury-induced glutamate dyshomeostasis and oxidative damage in rat cerebral cortex. Biol Trace Elem Res 2014; 159:332-45. [PMID: 24819089 DOI: 10.1007/s12011-014-9977-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 04/10/2014] [Indexed: 12/29/2022]
Abstract
Methylmercury (MeHg) is a well-known environmental pollutant leading to neurotoxicant associated with aberrant central nervous system (CNS) functions, but its toxic mechanisms have not yet been fully recognized. In the present study, we tested the hypothesis that MeHg induces neuronal injury via glutamate (Glu) dyshomeostasis and oxidative damage mechanisms and that these effects are attenuated by dextromethorphan (DM), a low-affinity and noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist. Seventy-two rats were randomly divided into four groups of 18 animals in each group: control group, MeHg-treated group (4 and 12 μmol/kg), and DM-pretreated group. After the 4-week treatment, we observed that the administration of MeHg at a dose of 12 μmol/kg significantly increased in total mercury (Hg) levels, disrupted Glu metabolism, overexcited NMDARs, and led to intracellular calcium overload in the cerebral cortex. We also found that MeHg reduced nonenzymatic and enzymatic antioxidants, enhanced neurocyte apoptosis, induced reactive oxygen species (ROS), and caused lipid, protein, and DNA peroxidative damage in the cerebral cortex. Moreover, glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) appeared to be inhibited by MeHg exposure. These alterations were significantly prevented by the pretreatment with DM at a dose of 13.5 μmol/kg. In conclusion, these findings strongly implicate that DM has potential to protect the brain from Glu dyshomeostasis and oxidative damage resulting from MeHg-induced neurotoxicity in rat.
Collapse
Affiliation(s)
- Shu Feng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
16
|
Caito S, Zeng H, Aschner JL, Aschner M. Methylmercury alters the activities of Hsp90 client proteins, prostaglandin E synthase/p23 (PGES/23) and nNOS. PLoS One 2014; 9:e98161. [PMID: 24852575 PMCID: PMC4031136 DOI: 10.1371/journal.pone.0098161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/29/2014] [Indexed: 01/14/2023] Open
Abstract
Methylmercury (MeHg) is a persistent pollutant with known neurotoxic effects. We have previously shown that astrocytes accumulate MeHg and play a prominent role in mediating MeHg toxicity in the central nervous system (CNS) by altering glutamate signaling, generating oxidative stress, depleting glutathione (GSH) and initiating lipid peroxidation. Interestingly, all of these pathways can be regulated by the constitutively expressed, 90-kDa heat shock protein, Hsp90. As Hsp90 function is regulated by oxidative stress, we hypothesized that MeHg disrupts Hsp90-client protein functions. Astrocytes were treated with MeHg and expression of Hsp90, as well as the abundance of complexes of Hsp90-neuronal nitric oxide synthase (nNOS) and Hsp90-prostaglandin E synthase/p23 (PGES/p23) were assessed. MeHg exposure decreased Hsp90 protein expression following 12 h of treatment while shorter exposures had no effect on Hsp90 protein expression. Interestingly, following 1 or 6 h of MeHg exposure, Hsp90 binding to PGES/p23 or nNOS was significantly increased, resulting in increased prostaglandin E2 (PGE2) synthesis from MeHg-treated astrocytes. These effects were attenuated by the Hsp90 antagonist, geldanmycin. NOS activity was increased following MeHg treatment while cGMP formation was decreased. This was accompanied by an increase in •O2− and H2O2 levels, suggesting that MeHg uncouples NO formation from NO-dependent signaling and increases oxidative stress. Altogether, our data demonstrates that Hsp90 interactions with client proteins are increased following MeHg exposure, but over time Hsp90 levels decline, contributing to oxidative stress and MeHg-dependent excitotoxicity.
Collapse
Affiliation(s)
- Samuel Caito
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Heng Zeng
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Judy L Aschner
- Department of Pediatrics and Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine of Yeshiva University and Children's Hospital at Montefiore, Bronx, New York, United States of America
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America; Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America; Department of Pediatrics and Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine of Yeshiva University and Children's Hospital at Montefiore, Bronx, New York, United States of America; The Kennedy Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
17
|
MK-801 Protects against Intracellular Ca2+ Overloading and Improves N-methyl-d-aspartate Receptor Expression in Cerebral Cortex of Methylmercury-Poisoned Rats. J Mol Neurosci 2012. [DOI: 10.1007/s12031-012-9926-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Riluzole-triggered GSH synthesis via activation of glutamate transporters to antagonize methylmercury-induced oxidative stress in rat cerebral cortex. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:534705. [PMID: 22966415 PMCID: PMC3432391 DOI: 10.1155/2012/534705] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/25/2012] [Accepted: 07/08/2012] [Indexed: 11/18/2022]
Abstract
OBJECTIVE This study was to evaluate the effect of riluzole on methylmercury- (MeHg-) induced oxidative stress, through promotion of glutathione (GSH) synthesis by activating of glutamate transporters (GluTs) in rat cerebral cortex. METHODS Eighty rats were randomly assigned to four groups, control group, riluzole alone group, MeHg alone group, and riluzole + MeHg group. The neurotoxicity of MeHg was observed by measuring mercury (Hg) absorption, pathological changes, and cell apoptosis of cortex. Oxidative stress was evaluated via determining reactive oxygen species (ROS), 8-hydroxy-2-deoxyguanosine (8-OHdG), malondialdehyde (MDAs), carbonyl, sulfydryl, and GSH in cortex. Glutamate (Glu) transport was studied by measuring Glu, glutamine (Gln), mRNA, and protein of glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1). RESULT (1) MeHg induced Hg accumulation, pathological injury, and apoptosis of cortex; (2) MeHg increased ROS, 8-OHdG, MDA, and carbonyl, and inhibited sulfydryl and GSH; (3) MeHg elevated Glu, decreased Gln, and downregulated GLAST and GLT-1 mRNA expression and protein levels; (4) riluzole antagonized MeHg-induced downregulation of GLAST and GLT-1 function and expression, GSH depletion, oxidative stress, pathological injury, and apoptosis obviously. CONCLUSION Data indicate that MeHg administration induced oxidative stress in cortex and that riluzole could antagonize this situation through elevation of GSH synthesis by activating of GluTs.
Collapse
|
19
|
Knott ME, Dorfman D, Chianelli MS, Sáenz DA. Effect of Angeli’s salt on the glutamate/glutamine cycle activity and on glutamate excitotoxicity in the hamster retina. Neurochem Int 2012; 61:7-15. [DOI: 10.1016/j.neuint.2012.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
|
20
|
Yin Z, Lee E, Ni M, Jiang H, Milatovic D, Rongzhu L, Farina M, Rocha JBT, Aschner M. Methylmercury-induced alterations in astrocyte functions are attenuated by ebselen. Neurotoxicology 2011; 32:291-9. [PMID: 21300091 PMCID: PMC3079013 DOI: 10.1016/j.neuro.2011.01.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 12/21/2010] [Accepted: 01/08/2011] [Indexed: 12/26/2022]
Abstract
Methylmercury (MeHg) preferentially accumulates in glia of the central nervous system (CNS), but its toxic mechanisms have yet to be fully recognized. In the present study, we tested the hypothesis that MeHg induces neurotoxicity via oxidative stress mechanisms, and that these effects are attenuated by the antioxidant, ebselen. Rat neonatal primary cortical astrocytes were pretreated with or without 10 μM ebselen for 2h followed by MeHg (0, 1, 5, and 10 μM) treatments. MeHg-induced changes in astrocytic [(3)H]-glutamine uptake were assessed along with changes in mitochondrial membrane potential (ΔΨ(m)), using the potentiometric dye tetramethylrhodamine ethyl ester (TMRE). Western blot analysis was used to detect MeHg-induced ERK (extracellular-signal related kinase) phosphorylation and caspase-3 activation. MeHg treatment significantly decreased (p<0.05) astrocytic [(3)H]-glutamine uptake at all time points and concentrations. Ebselen fully reversed MeHg's (1 μM) effect on [(3)H]-glutamine uptake at 1 min. At higher MeHg concentrations, ebselen partially reversed the MeHg-induced astrocytic inhibition of [(3)H]-glutamine uptake [at 1 min (5 and 10 μM) (p<0.05); 5 min (1, 5 and 10 μM) (p<0.05)]. MeHg treatment (1h) significantly (p<0.05) dissipated the ΔΨ(m) in astrocytes as evidenced by a decrease in mitochondrial TMRE fluorescence. Ebselen fully reversed the effect of 1 μM MeHg treatment for 1h on astrocytic ΔΨ(m) and partially reversed the effect of 5 and 10 μM MeHg treatments for 1h on ΔΨ(m). In addition, ebselen inhibited MeHg-induced phosphorylation of ERK (p<0.05) and blocked MeHg-induced activation of caspase-3 (p<0.05-0.01). These results are consistent with the hypothesis that MeHg exerts its toxic effects via oxidative stress and that the phosphorylation of ERK and the dissipation of the astrocytic mitochondrial membrane potential are involved in MeHg toxicity. In addition, the protective effects elicited by ebselen reinforce the idea that organic selenocompounds represent promising strategies to counteract MeHg-induced neurotoxicity.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Animals, Newborn
- Antioxidants/pharmacology
- Astrocytes/drug effects
- Astrocytes/metabolism
- Astrocytes/pathology
- Azoles/pharmacology
- Blotting, Western
- Caspase 3/metabolism
- Cells, Cultured
- Cytoprotection
- Dose-Response Relationship, Drug
- Environmental Pollutants/toxicity
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Glutamine/metabolism
- Isoindoles
- Membrane Potential, Mitochondrial/drug effects
- Mercury Poisoning, Nervous System/etiology
- Mercury Poisoning, Nervous System/metabolism
- Mercury Poisoning, Nervous System/pathology
- Methylmercury Compounds/toxicity
- Microscopy, Fluorescence
- Mitochondria/drug effects
- Mitochondria/metabolism
- Neuroprotective Agents/pharmacology
- Organoselenium Compounds/pharmacology
- Oxidative Stress/drug effects
- Phosphorylation
- Rats
- Rats, Sprague-Dawley
- Time Factors
Collapse
Affiliation(s)
- Zhaobao Yin
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eunsook Lee
- Department of Physiology, Meharry Medical College, Nashville, Tennessee
| | - Mingwei Ni
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Haiyan Jiang
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dejan Milatovic
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lu Rongzhu
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Joao B. T. Rocha
- Departamento de Bioquímica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Michael Aschner
- Departments of Pediatrics and Pharmacology, the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
21
|
Johnson FO, Yuan Y, Hajela RK, Chitrakar A, Parsell DM, Atchison WD. Exposure to an environmental neurotoxicant hastens the onset of amyotrophic lateral sclerosis-like phenotype in human Cu2+/Zn2+ superoxide dismutase 1 G93A mice: glutamate-mediated excitotoxicity. J Pharmacol Exp Ther 2011; 338:518-27. [PMID: 21586603 DOI: 10.1124/jpet.110.174466] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mice expressing the human Cu(2+)/Zn(2+) superoxide dismutase 1 (hSOD1) gene mutation (hSOD1(G93A); G93A) were exposed to methylmercury (MeHg) at concentrations that did not cause overt motor dysfunction. We hypothesized that low concentrations of MeHg could hasten development of the amyotrophic lateral sclerosis (ALS)-like phenotype in G93A mice. MeHg (1 or 3 ppm/day in drinking water) concentration-dependently accelerated the onset of rotarod failure in G93A, but not wild-type, mice. At the time of rotarod failure, MeHg increased Fluo-4 fluorescence (free intracellular calcium concentration [Ca(2+)](i)) in soma of brainstem-hypoglossal nucleus. These motor neurons control intrinsic and some extrinsic tongue function and exhibit vulnerability in bulbar-onset ALS. The α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA)/kainic acid receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione reduced [Ca(2+)](i) in all G93A mice, irrespective of MeHg treatment. N-acetyl spermine, which antagonizes Ca(2+)-permeable AMPA receptors, further reduced [Ca(2+)](i) more effectively in MeHg-treated than untreated G93A mice, suggesting that MeHg-treated mice have a greater Ca(2+)-permeable AMPA receptor contribution. The non-Ca(2+) divalent cation chelator N,N,N',N'-tetrakis(pyridylmethyl)ethylenediamine reduced Fluo-4 fluorescence in all G93A mice; FluoZin-(Zn(2+) indicator) fluorescence was increased in all MeHg-treated mice. Thus in G93A mice Zn(2+) apparently contributed measurably to the MeHg-induced effect. This is the initial demonstration of accelerated onset of ALS-like phenotype in a genetically susceptible organism by exposure to low concentrations of an environmental neurotoxicant. Increased [Ca(2+)](i) induced by the G93A-MeHg interaction apparently was associated with Ca(2+)-permeable AMPA receptors and may contribute to the hastened development of ALS-like phenotypes by subjecting motor neurons to excessive elevation of [Ca(2+)](i), leading to excitotoxic cell death.
Collapse
Affiliation(s)
- Frank O Johnson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA
| | | | | | | | | | | |
Collapse
|
22
|
Stavenes Andersen I, Voie OA, Fonnum F, Mariussen E. Effects of methyl mercury in combination with polychlorinated biphenyls and brominated flame retardants on the uptake of glutamate in rat brain synaptosomes: a mathematical approach for the study of mixtures. Toxicol Sci 2009; 112:175-84. [PMID: 19700605 DOI: 10.1093/toxsci/kfp178] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Regulatory limit values for toxicants are in general determined by the toxicology of the single compounds. However, little is known about their combined effects. Methyl mercury (MeHg), polychlorinated biphenyls (PCBs), and brominated flame retardants (BFRs) are dominant contaminants in the environment and food. MeHg is a well known neurotoxicant, especially affecting the developing brain. There is increasing evidence that PCB and BFRs also have neurotoxic effects. An enhanced effect of these toxicants, due to either synergistic or additive effects, would be considered as a risk for the fetal development. Here we studied the combinatorial effects of MeHg in combination with PCB or BFR on the reuptake of glutamate in synaptosomes. To provide the optimal conclusion regarding type of interaction, we have analyzed the data using two mathematical models, the Löewe model of additivity and Bliss' model of independent action. Binary and ternary mixtures in different proportions were made. The toxicants had primarily additive effects, as shown with both models, although tendencies towards synergism were observed. MeHg was by far the most potent inhibitor of uptake with an EC(50) value of 0.33 microM. A reconstituted mixture from a relevant fish sample was made in order to elucidate which chemical was responsible for the observed effect. Some interaction was experienced between PCB and MeHg, but in general MeHg seemed to explain the observed effect. We also show that mixture effects should not be assessed by effect addition.
Collapse
Affiliation(s)
- Ingrid Stavenes Andersen
- University of Oslo, Department of Biochemistry, Institute of Basic Medical Sciences, NO-0317 Oslo, Norway
| | | | | | | |
Collapse
|
23
|
Stringari J, Nunes AKC, Franco JL, Bohrer D, Garcia SC, Dafre AL, Milatovic D, Souza DO, Rocha JBT, Aschner M, Farina M. Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain. Toxicol Appl Pharmacol 2007; 227:147-54. [PMID: 18023834 DOI: 10.1016/j.taap.2007.10.010] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/04/2007] [Accepted: 10/14/2007] [Indexed: 11/15/2022]
Abstract
During the perinatal period, the central nervous system (CNS) is extremely sensitive to metals, including methylmercury (MeHg). Although the mechanism(s) associated with MeHg-induced developmental neurotoxicity remains obscure, several studies point to the glutathione (GSH) antioxidant system as an important molecular target for this toxicant. To extend our recent findings of MeHg-induced GSH dyshomeostasis, the present study was designed to assess the developmental profile of the GSH antioxidant system in the mouse brain during the early postnatal period after in utero exposure to MeHg. Pregnant mice were exposed to different doses of MeHg (1, 3 and 10 mg/l, diluted in drinking water, ad libitum) during the gestational period. After delivery, pups were killed at different time points - postnatal days (PND) 1, 11 and 21 - and the whole brain was used for determining biochemical parameters related to the antioxidant GSH system, as well as mercury content and the levels of F(2)-isoprostane. In control animals, cerebral GSH levels significantly increased over time during the early postnatal period; gestational exposure to MeHg caused a dose-dependent inhibition of this developmental event. Cerebral glutathione peroxidase (GPx) and glutathione reductase (GR) activities significantly increased over time during the early postnatal period in control animals; gestational MeHg exposure induced a dose-dependent inhibitory effect on both developmental phenomena. These adverse effects of prenatal MeHg exposure were corroborated by marked increases in cerebral F(2)-isoprostanes levels at all time points. Significant negative correlations were found between F(2)-isoprostanes and GSH, as well as between F(2)-isoprostanes and GPx activity, suggesting that MeHg-induced disruption of the GSH system maturation is related to MeHg-induced increased lipid peroxidation in the pup brain. In utero MeHg exposure also caused a dose-dependent increase in the cerebral levels of mercury at birth. Even though the cerebral mercury concentration decreased to nearly basal levels at postnatal day 21, GSH levels, GPx and GR activities remained decreased in MeHg-exposed mice, indicating that prenatal exposure to MeHg affects the cerebral GSH antioxidant systems by inducing biochemical alterations that endure even when mercury tissue levels decrease and become indistinguishable from those noted in pups born to control dams. This study is the first to show that prenatal exposure to MeHg disrupts the postnatal development of the glutathione antioxidant system in the mouse brain, pointing to an additional molecular mechanism by which MeHg induces pro-oxidative damage in the developing CNS. Moreover, our experimental observation corroborates previous reports on the permanent functional deficits observed after prenatal MeHg exposure.
Collapse
Affiliation(s)
- James Stringari
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Herbert MR, Russo JP, Yang S, Roohi J, Blaxill M, Kahler SG, Cremer L, Hatchwell E. Autism and environmental genomics. Neurotoxicology 2006; 27:671-84. [PMID: 16644012 DOI: 10.1016/j.neuro.2006.03.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Revised: 03/07/2006] [Accepted: 03/21/2006] [Indexed: 10/24/2022]
Abstract
Autism spectrum disorders (ASD) are defined by behavior and diagnosed by clinical history and observation but have no biomarkers and are presumably, etiologically and biologically heterogeneous. Given brain abnormalities and high monozygotic concordance, ASDs have been framed as neurobiologically based and highly genetic, which has shaped the research agenda and in particular criteria for choosing candidate ASD genes. Genetic studies to date have not uncovered genes of strong effect, but a move toward "genetic complexity" at the neurobiological level may not suffice, as evidence of systemic abnormalities (e.g. gastrointestinal and immune), increasing rates and less than 100% monozygotic concordance support a more inclusive reframing of autism as a multisystem disorder with genetic influence and environmental contributors. We review this evidence and also use a bioinformatic approach to explore the possibility that "environmentally responsive genes" not specifically associated with the nervous system, but potentially associated with systemic changes in autism, have not hitherto received sufficient attention in autism genetics investigations. We overlapped genes from NIEHS Environmental Genome Project, the Comparative Toxicogenomics Database, and the SeattleSNPs database of genes relevant to the human immune and inflammatory response with linkage regions identified in published autism genome scans. We identified 135 genes in overlap regions, of which 56 had never previously been studied in relation to autism and 47 had functional SNPs (in coding regions). Both our review and the bioinformatics exercise support the expansion of criteria for evaluating the relevance of genes to autism risk to include genes related to systemic impact and environmental responsiveness. This review also suggests the utility of environmental genomic resources in highlighting the potential relevance of particular genes within linkage regions. Environmental responsiveness and systems impacts consistent with system-wide findings in autism are thus supported as important considerations in identifying the numerous and complex modes of gene-environment interaction in autism.
Collapse
Affiliation(s)
- M R Herbert
- Pediatric Neurology, Massachusetts General Hospital, Harvard Medical School, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Carratù MR, Borracci P, Coluccia A, Giustino A, Renna G, Tomasini MC, Raisi E, Antonelli T, Cuomo V, Mazzoni E, Ferraro L. Acute exposure to methylmercury at two developmental windows: Focus on neurobehavioral and neurochemical effects in rat offspring. Neuroscience 2006; 141:1619-29. [PMID: 16781816 DOI: 10.1016/j.neuroscience.2006.05.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 05/04/2006] [Accepted: 05/04/2006] [Indexed: 11/20/2022]
Abstract
The neurobehavioral and neurochemical effects produced by prenatal methylmercury exposure (8 mg/kg, gestational-days 8 or 15), were investigated in rats. On postnatal day 40, animals exposed to methylmercury and tested in the open field arena, showed a reduction in the number of rearings, whereas the number of crossings and resting time was not altered with respect to the age-matched control rats. The methylmercury-exposed groups showed a lower level of exploratory behavior as well as an impairment in habituation and working memory when subjected to the novel object exploration task. The neophobia displayed by methylmercury-exposed rats is unlikely to be attributed to a higher degree of anxiety. Prenatal methylmercury exposure did not affect motor coordination or motor learning in 40-day-old rats subjected to the balance task on a rotating rod, and it did not impair the onset of reflexive behavior in pups screened for righting reflex, cliff aversion and negative geotaxis. In cortical cell cultures from pups exposed to methylmercury during gestation, basal extracellular glutamate levels were higher, whereas the KCl-evoked extracellular glutamate levels were lower than that measured in cultures from rats born to control mothers. In addition, a higher responsiveness of glutamate release to N-methyl-D-aspartic acid receptor activation was evident in cortical cell cultures from pups born from methylmercury-treated dams than in cultures obtained from control rats. The present results suggest that acute maternal methylmercury exposure induces, in rat offspring, subtle changes in short-term memory as well as in exploratory behavior. These impairments seem to be associated to alterations of cortical glutamatergic signaling.
Collapse
Affiliation(s)
- M R Carratù
- Department of Pharmacology and Human Physiology, Medical School, University of Bari, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|