1
|
Campideli-Santana AC, Gusmao DO, Almeida FRCL, Araujo-Lopes R, Szawka RE. Partial loss of arcuate kisspeptin neurons in female rats stimulates luteinizing hormone and decreases prolactin secretion induced by estradiol. J Neuroendocrinol 2022; 34:e13204. [PMID: 36319592 DOI: 10.1111/jne.13204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/25/2022] [Accepted: 09/30/2022] [Indexed: 11/28/2022]
Abstract
Kisspeptin, neurokinin, and dynorphin (KNDy) neurons in the arcuate nucleus (ARC) control luteinizing hormone (LH) and prolactin (PRL) release, although their role in conveying the effects of estradiol (E2 ) to these hormones is not well understood. We performed a longitudinal evaluation of female rats in which KNDy neurons were ablated using a neurokinin-3 receptor agonist conjugated with saporin (NK3-SAP) to investigate the impact of the reduction of KNDy neurons on the E2 regulation of gonadal and PRL axes. NK3-SAP rats, bearing a moderate loss of ARC kisspeptin-immunoreactive (-IR) neurons (50%-90%), displayed irregular estrous cycles but essentially unaltered follicular development and a normal number of corpora lutea. Rats were then ovariectomized (OVX) and treated with a positive-feedback dose of E2 (OVX + E2 ). LH and PRL were measured in the tail blood by an enzyme-linked immunosorbent assay. The E2 -induced LH surge was amplified, whereas the PRL rise was decreased in NK3-SAP rats compared to Blank-SAP control. After 10 days of no hormonal treatment, basal LH levels were equally elevated in NK3-SAP and controls. Tyrosine hydroxylase (TH) phosphorylation in the median eminence, in turn, was increased in NK3-SAP rats, with no change in the number of ARC TH-IR neurons. Thus, KNDy neurons exert concurrent and opposite roles in the E2 -induced surges of LH and PRL. The partial loss of KNDy neurons disrupts ovarian cyclicity but does not preclude ovulation, consistent with the disinhibition of the LH preovulatory surge. Conversely, KNDy neurons tonically inhibit the enzymatic activity of tuberoinfundibular dopaminergic neurons, which appears to facilitate PRL release in response to E2 .
Collapse
Affiliation(s)
- Ana C Campideli-Santana
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniela O Gusmao
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Fernanda R C L Almeida
- Departamento de Morfologia, Instituto de Ciencias Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Roberta Araujo-Lopes
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raphael E Szawka
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
2
|
Coutinho EA, Esparza LA, Hudson AD, Rizo N, Steffen P, Kauffman AS. Conditional Deletion of KOR (Oprk1) in Kisspeptin Cells Does Not Alter LH Pulses, Puberty, or Fertility in Mice. Endocrinology 2022; 163:6763672. [PMID: 36260530 DOI: 10.1210/endocr/bqac175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 01/26/2023]
Abstract
Classic pharmacological studies suggested that endogenous dynorphin-KOR signaling is important for reproductive neuroendocrine regulation. With the seminal discovery of an interconnected network of hypothalamic arcuate neurons co-expressing kisspeptin, neurokinin B, and dynorphin (KNDy neurons), the KNDy hypothesis was developed to explain how gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) pulses are generated. Key to this hypothesis is dynorphin released from KNDy neurons acting in a paracrine manner on other KNDy neurons via kappa opioid receptor (KOR) signaling to terminate neural "pulse" events. While in vitro evidence supports this aspect of the KNDy hypothesis, a direct in vivo test of the necessity of KOR signaling in kisspeptin neurons for proper LH secretion has been lacking. We therefore conditionally knocked out KOR selectively from kisspeptin neurons of male and female mice and tested numerous reproductive measures, including in vivo LH pulse secretion. Surprisingly, despite validating successful knockout of KOR in kisspeptin neurons, we found no significant effect of kisspeptin cell-specific deletion of KOR on any measure of puberty, LH pulse parameters, LH surges, follicle-stimulating hormone (FSH) levels, estrous cycles, or fertility. These outcomes suggest that the KNDy hypothesis, while sufficient normally, may not be the only neural mechanism for sculpting GnRH and LH pulses, supported by recent findings in humans and mice. Thus, besides normally acting via KOR in KNDy neurons, endogenous dynorphin and other opioids may, under some conditions, regulate LH and FSH secretion via KOR in non-kisspeptin cells or perhaps via non-KOR pathways. The current models for GnRH and LH pulse generation should be expanded to consider such alternate mechanisms.
Collapse
Affiliation(s)
- Eulalia A Coutinho
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Lourdes A Esparza
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Alexandra D Hudson
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Nathanael Rizo
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Paige Steffen
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Alexander S Kauffman
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Stincic TL, Kelly MJ. Estrogenic regulation of reproduction and energy homeostasis by a triumvirate of hypothalamic arcuate neurons. J Neuroendocrinol 2022; 34:e13145. [PMID: 35581942 DOI: 10.1111/jne.13145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/31/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022]
Abstract
Pregnancy is energetically demanding and therefore, by necessity, reproduction and energy balance are inextricably linked. With insufficient or excessive energy stores a female is liable to suffer complications during pregnancy or produce unhealthy offspring. Gonadotropin-releasing hormone neurons are responsible for initiating both the pulsatile and subsequent surge release of luteinizing hormone to control ovulation. Meticulous work has identified two hypothalamic populations of kisspeptin (Kiss1) neurons that are critical for this pattern of release. The involvement of the hypothalamus is unsurprising because its quintessential function is to couple the endocrine and nervous systems, coordinating energy balance and reproduction. Estrogens, more specifically 17β-estradiol (E2 ), orchestrate the activity of a triumvirate of hypothalamic neurons within the arcuate nucleus (ARH) that govern the physiological underpinnings of these behavioral dynamics. Arising from a common progenitor pool, these cells differentiate into ARH kisspeptin, pro-opiomelanocortin (POMC), and agouti related peptide/neuropeptide Y (AgRP) neurons. Although the excitability of all these subpopulations is subject to genomic and rapid estrogenic regulation, Kiss1 neurons are the most sensitive, reflecting their integral function in female fertility. Based on the premise that E2 coordinates autonomic functions around reproduction, we review recent findings on how Kiss1 neurons interact with gonadotropin-releasing hormone, AgRP and POMC neurons, as well as how the rapid membrane-initiated and intracellular signaling cascades activated by E2 in these neurons are critical for control of homeostatic functions supporting reproduction. In particular, we highlight how Kiss1 and POMC neurons conspire to inhibit AgRP neurons and diminish food motivation in service of reproductive success.
Collapse
Affiliation(s)
- Todd L Stincic
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Martin J Kelly
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| |
Collapse
|
4
|
Stincic TL, Rønnekleiv OK, Kelly MJ. Membrane and nuclear initiated estrogenic regulation of homeostasis. Steroids 2021; 168:108428. [PMID: 31229508 PMCID: PMC6923613 DOI: 10.1016/j.steroids.2019.108428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/08/2019] [Accepted: 06/18/2019] [Indexed: 11/23/2022]
Abstract
Reproduction and energy balance are inextricably linked in order to optimize the evolutionary fitness of an organism. With insufficient or excessive energy stores a female is liable to suffer complications during pregnancy and produce unhealthy or obesity-prone offspring. The quintessential function of the hypothalamus is to act as a bridge between the endocrine and nervous systems, coordinating fertility and autonomic functions. Across the female reproductive cycle various motivations wax and wane, following levels of ovarian hormones. Estrogens, more specifically 17β-estradiol (E2), coordinate a triumvirate of hypothalamic neurons within the arcuate nucleus (ARH) that govern the physiological underpinnings of these behavioral dynamics. Arising from a common progenitor pool of cells, this triumvirate is composed of the kisspeptin (Kiss1ARH), proopiomelanocortin (POMC), and neuropeptide Y/agouti-related peptide (AgRP) neurons. Although the excitability of these neuronal subpopulations is subject to genomic and rapid estrogenic regulation, kisspeptin neurons are the most sensitive, reflecting their integral function in female fertility. Based on the premise that E2 coordinates autonomic functions around reproduction, we will review the recent findings on the synaptic interactions between Kiss1, AgRP and POMC neurons and how the rapid membrane-initiated and intracellular signaling cascades activated by E2 in these neurons are critical for control of homeostatic functions supporting reproduction.
Collapse
Affiliation(s)
- Todd L Stincic
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, United States
| | - Oline K Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, United States; Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, United States
| | - Martin J Kelly
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, United States; Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, United States.
| |
Collapse
|
5
|
Liu Y, Li X, Shen X, Ivanova D, Lass G, He W, Chen Q, Yu S, Wang Y, Long H, Wang L, Lyu Q, Kuang Y, O’Byrne KT. Dynorphin and GABAA Receptor Signaling Contribute to Progesterone's Inhibition of the LH Surge in Female Mice. Endocrinology 2020; 161:5808894. [PMID: 32181477 PMCID: PMC7153819 DOI: 10.1210/endocr/bqaa036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 02/28/2020] [Indexed: 01/02/2023]
Abstract
Progesterone can block estrogen-induced luteinising hormone (LH) surge secretion and can be used clinically to prevent premature LH surges. The blocking effect of progesterone on the LH surge is mediated through its receptor in the anteroventral periventricular nucleus (AVPV) of the hypothalamus. However, the underlying mechanisms are unclear. The preovulatory LH surge induced by estrogen is preceded by a significant reduction in hypothalamic dynorphin and gamma-aminobutyric acid (GABA) release. To test the detailed roles of dynorphin and GABA in an LH surge blockade by progesterone, ovariectomized and 17β-estradiol capsule-implanted (OVX/E2) mice received simultaneous injections of estradiol benzoate (EB) and progesterone (P) or vehicle for 2 consecutive days. The LH level was monitored from 2:30 pm to 8:30 pm at 30-minute intervals. Progesterone coadministration resulted in the LH surge blockade. A continuous microinfusion of the dynorphin receptor antagonist nor-BNI or GABAA receptor antagonist bicuculline into the AVPV from 3:00 pm to 7:00 pm reversed the progesterone-mediated blockade of the LH surge in 7 of 9 and 6 of 10 mice, respectively. In addition, these LH surges started much earlier than the surge induced by estrogen alone. However, 5 of 7 progesterone-treated mice did not show LH surge secretion after microinfusion with the GABAB receptor antagonist CGP-35348. Additionally, peripheral administration of kisspeptin-54 promotes LH surge-like release in progesterone treated mice. These results demonstrated that the progesterone-mediated suppression of the LH surge is mediated by an increase in dynorphin and GABAA receptor signaling acting though kisspeptin neurons in the AVPV of the hypothalamus in female mice.
Collapse
Affiliation(s)
- Yali Liu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, China
- Department of Women and Children’s Health, Faculty of Life Sciences and Medicine, King’s College London, Guy’s Campus, UK
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Pudong New Area, Shanghai, China
| | - Xiaofeng Li
- Department of Women and Children’s Health, Faculty of Life Sciences and Medicine, King’s College London, Guy’s Campus, UK
| | - Xi Shen
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, China
- Department of Women and Children’s Health, Faculty of Life Sciences and Medicine, King’s College London, Guy’s Campus, UK
| | - Deyana Ivanova
- Department of Women and Children’s Health, Faculty of Life Sciences and Medicine, King’s College London, Guy’s Campus, UK
| | - Geffen Lass
- Department of Women and Children’s Health, Faculty of Life Sciences and Medicine, King’s College London, Guy’s Campus, UK
| | - Wen He
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, China
| | - Qiuju Chen
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, China
| | - Sha Yu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, China
| | - Yun Wang
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, China
| | - Hui Long
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, China
| | - Li Wang
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, China
| | - Qifeng Lyu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, China
- Correspondence: Kevin O’Byrne, PhD, 2.92W Hodgkin Building, Department of Women and Children’s Health, Faculty of Life Sciences and Medicine, Guy’s Campus, King’s College London, London, SE1 1UL. E-mail: ; or Yanping Kuang, Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China. E-mail:
| | - Kevin T O’Byrne
- Department of Women and Children’s Health, Faculty of Life Sciences and Medicine, King’s College London, Guy’s Campus, UK
- Correspondence: Kevin O’Byrne, PhD, 2.92W Hodgkin Building, Department of Women and Children’s Health, Faculty of Life Sciences and Medicine, Guy’s Campus, King’s College London, London, SE1 1UL. E-mail: ; or Yanping Kuang, Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China. E-mail:
| |
Collapse
|
6
|
Matsuzaki T, Tungalagsuvd A, Munkhzaya M, Iwasa T, Yano K, Mayila Y, Tokui T, Yanagihara R, Matsui S, Kato T, Kuwahara A, Irahara M. Neurokinin B receptor agonist and Dynorphin receptor antagonist stimulated luteinizing hormone secretion in fasted male rodents. Endocr J 2018; 65:485-492. [PMID: 29479004 DOI: 10.1507/endocrj.ej17-0136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Kisspeptin/neurokinin B (NKB)/dynorphin (Dyn) (KNDy) neuron in hypothalamic arcuate nucleus plays a key role in GnRH/LH pulsatile secretion. We aimed to determine whether stimulation of NKB/neurokinin 3 receptor (NK3R) signaling and inhibition of Dyn/kappa-opioid receptor (KOR) signaling recover LH secretion that is suppressed by acute fasting in male rats. Furthermore, we determined dose dependent effect of NKB/NK3R signaling on serum LH level under acute fasting condition in male mice. Mature male rats were injected saline (0.1 mL) and senktide (20 μg/kg), a NK3R agonist, or nor-BNI (800 μg/kg), a KOR antagonist intraperitoneally (ip) after 72 h fasting. And mature male mice were injected multiple doses of senktide, ip after 48 h fasting. Blood and brain sample were collected 90 min after injections for LH measurement and hypothalamic mRNA expressions. All three studies showed significantly lower LH concentration in fasted groups than non-fasted groups. Senktide did not recover LH suppressed by acute fasting in male rats, whereas nor-BNI injected male rats showed significantly higher LH than 72 h fasted male rats (p < 0.05). Mice study showed significantly higher LH concentration in higher doses senktide groups than 48 h fasted group and one of lower doses senktide group. These results suggest that stimulation of NKB/NK3R signaling and attenuation of Dyn/KOR signaling could recover suppressed LH secretion under acute fasting condition in male rodents.
Collapse
Affiliation(s)
- Toshiya Matsuzaki
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Altankhuu Tungalagsuvd
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
- Department of Obstetrics and Gynecology, National Center for Maternal and Child Health, Ulaanbaatar 160660, Mongolia
| | - Munkhsaikhan Munkhzaya
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
- Department of Gynecology, The First Maternity Hospital of Mongolia, Ulaanbaatar 14210, Mongolia
| | - Takeshi Iwasa
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Kiyohito Yano
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Yiliyasi Mayila
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Takako Tokui
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Rie Yanagihara
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Sumika Matsui
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
- Department of Obstetrics and Gynecology, Tokushima Red Cross Hospital, Komatsushima 770-8503, Japan
| | - Takeshi Kato
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Akira Kuwahara
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Minoru Irahara
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| |
Collapse
|
7
|
Weems PW, Lehman MN, Coolen LM, Goodman RL. The Roles of Neurokinins and Endogenous Opioid Peptides in Control of Pulsatile LH Secretion. VITAMINS AND HORMONES 2018; 107:89-135. [PMID: 29544644 DOI: 10.1016/bs.vh.2018.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Work over the last 15 years on the control of pulsatile LH secretion has focused largely on a set of neurons in the arcuate nucleus (ARC) that contains two stimulatory neuropeptides, critical for fertility in humans (kisspeptin and neurokinin B (NKB)) and the inhibitory endogenous opioid peptide (EOP), dynorphin, and are now known as KNDy (kisspeptin-NKB-dynorphin) neurons. In this review, we consider the role of each of the KNDy peptides in the generation of GnRH pulses and the negative feedback actions of ovarian steroids, with an emphasis on NKB and dynorphin. With regard to negative feedback, there appear to be important species differences. In sheep, progesterone inhibits GnRH pulse frequency by stimulating dynorphin release, and estradiol inhibits pulse amplitude by suppressing kisspeptin. In rodents, the role of KNDy neurons in estrogen negative feedback remains controversial, progesterone may inhibit GnRH via dynorphin, but the physiological significance of this action is unclear. In primates, an EOP, probably dynorphin, mediates progesterone negative feedback, and estrogen inhibits kisspeptin expression. In contrast, there is now compelling evidence from several species that kisspeptin is the output signal from KNDy neurons that drives GnRH release during a pulse and may also act within the KNDy network to affect pulse frequency. NKB is thought to act within this network to initiate each pulse, although there is some redundancy in tachykinin signaling in rodents. In ruminants, dynorphin terminates GnRH secretion at the end of pulse, most likely acting on both KNDy and GnRH neurons, but the data on the role of this EOP in rodents are conflicting.
Collapse
Affiliation(s)
- Peyton W Weems
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Michael N Lehman
- University of Mississippi Medical Center, Jackson, MS, United States
| | - Lique M Coolen
- University of Mississippi Medical Center, Jackson, MS, United States
| | | |
Collapse
|
8
|
Matsuzaki T, Tungalagsuvd A, Iwasa T, Munkhzaya M, Yanagihara R, Tokui T, Yano K, Mayila Y, Kato T, Kuwahara A, Matsui S, Irahara M. Kisspeptin mRNA expression is increased in the posterior hypothalamus in the rat model of polycystic ovary syndrome. Endocr J 2017; 64:7-14. [PMID: 27665725 DOI: 10.1507/endocrj.ej16-0282] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Hypersecretion of luteinizing hormone (LH) is a common endocrinological finding of polycystic ovary syndrome (PCOS). This derangement might have a close relationship with hypothalamic kisspeptin expression that is thought to be a key regulator of gonadotropin-releasing hormone (GnRH). We evaluated the relationship between the hypothalamic-pituitary-gonadal axis (HPG axis) and kisspeptin using a rat model of PCOS induced by letrozole. Letrozole pellets (0.4 mg/day) and control pellets were placed subcutaneously onto the backs of 3-week-old female Wistar rats. Body weight, vaginal opening and vaginal smear were checked daily. Blood and tissues of ovary, uterus and brain were collected at 12-weeks of age. An hypothalamic block was cut into anterior and posterior blocks, which included the anteroventral periventricular nucleus (AVPV) and the arcuate nucleus (ARC), respectively, in order to estimate hypothalamic kisspeptin expression in each area. The letrozole group showed a similar phenotype to human PCOS such as heavier body weight, heavier ovary, persistent anovulatory state, multiple enlarged follicles with no corpus luteum and higher LH and testosterone (T) levels compared to the control group. Kisspeptin mRNA expression in the posterior hypothalamic block including ARC was higher in the letrozole group than in the control group although its expression in the anterior hypothalamic block was similar between groups. These results suggest that enhanced KNDy neuron activity in ARC contributes to hypersecretion of LH in PCOS and might be a therapeutic target to rescue ovulatory disorder of PCOS in the future.
Collapse
Affiliation(s)
- Toshiya Matsuzaki
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Stathopoulos AM, Helena CV, Cristancho-Gordo R, Gonzalez-Iglesias AE, Bertram R. Influence of dynorphin on estradiol- and cervical stimulation-induced prolactin surges in ovariectomized rats. Endocrine 2016; 53:585-94. [PMID: 27038317 DOI: 10.1007/s12020-016-0938-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/21/2016] [Indexed: 11/28/2022]
Abstract
Prolactin is an anterior pituitary hormone necessary for fertility, pregnancy maintenance, lactation, and aspects of maternal behavior. In rodents, there is a surge of prolactin on the afternoon of proestrus, and a semi-circadian pattern of prolactin surges during early pregnancy, with a diurnal and nocturnal surge every day. Both of these patterns can be replicated in ovariectomized rats. A prior study demonstrated that central antagonism of κ-opioid receptors, the target of dynorphin, largely abolished the nocturnal prolactin surge in pregnant rats. We build on this to determine whether dynorphin, perhaps from the arcuate population that co-express kisspeptin, neurokinin B, and dynorphin (KNDy neurons), also contributes to the estradiol- or cervical stimulation-induced surges in ovariectomized rats. Ovariectomized rats were treated with either estradiol or cervical stimulation to induce prolactin surge(s). Blood samples were taken around the expected surge time to determine the effect of either acute κ-opioid receptor antagonism or previous chemical ablation of the KNDy population on prolactin levels. Dynorphin antagonism does significantly disrupt the nocturnal prolactin surge, but it does not contribute to the estradiol-induced surge. Chemical ablation of KNDy neurons had opposite effects; ablation of 40 % of the KNDy neurons had no impact on the nocturnal prolactin surge, while a somewhat larger ablation significantly reduced the size of the estradiol-induced surge. We conclude that dynorphin is likely a controlling factor for the nocturnal surge induced by cervical stimulation, and that other KNDy neuron products must play a role in the estradiol-induced surge.
Collapse
Affiliation(s)
- Andrea M Stathopoulos
- Program in Neuroscience and Departments of Biological Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Cleyde V Helena
- Program in Neuroscience and Departments of Biological Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Ruth Cristancho-Gordo
- Program in Neuroscience and Departments of Biological Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Arturo E Gonzalez-Iglesias
- Program in Neuroscience and Departments of Biological Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Richard Bertram
- Program in Neuroscience and Departments of Mathematics, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
10
|
Weems PW, Witty CF, Amstalden M, Coolen LM, Goodman RL, Lehman MN. κ-Opioid Receptor Is Colocalized in GnRH and KNDy Cells in the Female Ovine and Rat Brain. Endocrinology 2016; 157:2367-79. [PMID: 27064940 PMCID: PMC4891780 DOI: 10.1210/en.2015-1763] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Kisspeptin-neurokinin B-dynorphin (KNDy) cells of the hypothalamus are a key component in the neuroendocrine regulation of GnRH secretion. Evidence in sheep and other species suggests that dynorphin released by KNDy cells inhibits pulsatile GnRH secretion by acting upon κ-opioid receptors (KOR). However, the precise anatomical location and neurochemical phenotype of KOR-expressing cells in sheep remain unknown. To this end, we determined the distribution of KOR mRNA and protein in the brains of luteal phase ewes, using an ovine specific KOR mRNA probe for in situ hybridization and an antibody whose specificity we confirmed by Western blot analyses and blocking peptide controls. KOR cells were observed in a number of regions, including the preoptic area (POA); anterior hypothalamic area; supraoptic and paraventricular nuclei; ventromedial, dorsomedial, and lateral hypothalamus; and arcuate nucleus. Next, we determined whether KOR is colocalized in KNDy and/or GnRH cells. Dual-label immunofluorescence and confocal analysis of the KNDy population showed a high degree of colocalization, with greater than 90% of these neurons containing KOR. Surprisingly, GnRH cells also showed high levels of colocalization in sheep, ranging from 74.4% to 95.4% for GnRH cells in the POA and medial basal hypothalamus, respectively. Similarly, 97.4% of GnRH neurons in the POA of ovariectomized, steroid-primed female rats also contained immunoreactive KOR protein. These findings suggest that the inhibitory effects of dynorphin on pulsatile GnRH secretion may occur either indirectly by actions upon KOR within the KNDy population and/or directly via the activation of KOR on GnRH cells.
Collapse
Affiliation(s)
- Peyton W Weems
- Graduate Program in Neuroscience (P.W.W.) and Departments of Neurobiology and Anatomical Sciences (P.W.W., C.F.W., L.M.C., M.N.L.) and Physiology and Biophysics (L.M.C.), University of Mississippi Medical Center, Jackson, Mississippi 39216; Department of Animal Science (M.A.), Texas A&M University, College Station, Texas 77843; and Department of Physiology and Pharmacology (R.L.G.), West Virginia University Health Sciences Center, Morgantown, West Virginia 26506-9229
| | - Christine F Witty
- Graduate Program in Neuroscience (P.W.W.) and Departments of Neurobiology and Anatomical Sciences (P.W.W., C.F.W., L.M.C., M.N.L.) and Physiology and Biophysics (L.M.C.), University of Mississippi Medical Center, Jackson, Mississippi 39216; Department of Animal Science (M.A.), Texas A&M University, College Station, Texas 77843; and Department of Physiology and Pharmacology (R.L.G.), West Virginia University Health Sciences Center, Morgantown, West Virginia 26506-9229
| | - Marcel Amstalden
- Graduate Program in Neuroscience (P.W.W.) and Departments of Neurobiology and Anatomical Sciences (P.W.W., C.F.W., L.M.C., M.N.L.) and Physiology and Biophysics (L.M.C.), University of Mississippi Medical Center, Jackson, Mississippi 39216; Department of Animal Science (M.A.), Texas A&M University, College Station, Texas 77843; and Department of Physiology and Pharmacology (R.L.G.), West Virginia University Health Sciences Center, Morgantown, West Virginia 26506-9229
| | - Lique M Coolen
- Graduate Program in Neuroscience (P.W.W.) and Departments of Neurobiology and Anatomical Sciences (P.W.W., C.F.W., L.M.C., M.N.L.) and Physiology and Biophysics (L.M.C.), University of Mississippi Medical Center, Jackson, Mississippi 39216; Department of Animal Science (M.A.), Texas A&M University, College Station, Texas 77843; and Department of Physiology and Pharmacology (R.L.G.), West Virginia University Health Sciences Center, Morgantown, West Virginia 26506-9229
| | - Robert L Goodman
- Graduate Program in Neuroscience (P.W.W.) and Departments of Neurobiology and Anatomical Sciences (P.W.W., C.F.W., L.M.C., M.N.L.) and Physiology and Biophysics (L.M.C.), University of Mississippi Medical Center, Jackson, Mississippi 39216; Department of Animal Science (M.A.), Texas A&M University, College Station, Texas 77843; and Department of Physiology and Pharmacology (R.L.G.), West Virginia University Health Sciences Center, Morgantown, West Virginia 26506-9229
| | - Michael N Lehman
- Graduate Program in Neuroscience (P.W.W.) and Departments of Neurobiology and Anatomical Sciences (P.W.W., C.F.W., L.M.C., M.N.L.) and Physiology and Biophysics (L.M.C.), University of Mississippi Medical Center, Jackson, Mississippi 39216; Department of Animal Science (M.A.), Texas A&M University, College Station, Texas 77843; and Department of Physiology and Pharmacology (R.L.G.), West Virginia University Health Sciences Center, Morgantown, West Virginia 26506-9229
| |
Collapse
|
11
|
Mittelman-Smith MA, Krajewski-Hall SJ, McMullen NT, Rance NE. Ablation of KNDy Neurons Results in Hypogonadotropic Hypogonadism and Amplifies the Steroid-Induced LH Surge in Female Rats. Endocrinology 2016; 157:2015-27. [PMID: 26937713 PMCID: PMC4870865 DOI: 10.1210/en.2015-1740] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the human infundibular (arcuate) nucleus, a subpopulation of neurons coexpress kisspeptin and neurokinin B (NKB), 2 peptides required for normal reproductive function. A homologous group of neurons exists in the arcuate nucleus of rodents, termed KNDy neurons based on the coexpression of kisspeptin, NKB, and dynorphin. To study their function, we recently developed a method to selectively ablate KNDy neurons using NK3-SAP, a neurokinin 3 receptor agonist conjugated to saporin (SAP). Here, we ablated KNDy neurons in female rats to determine whether these neurons are required for estrous cyclicity and the steroid induced LH surge. NK3-SAP or Blank-SAP (control) was microinjected into the arcuate nucleus using stereotaxic surgery. After monitoring vaginal smears for 3-4 weeks, rats were ovariectomized and given 17β-estradiol and progesterone in a regimen that induced an afternoon LH surge. Rats were killed at the time of peak LH levels, and brains were harvested for NKB and dual labeled GnRH/Fos immunohistochemistry. In ovary-intact rats, ablation of KNDy neurons resulted in hypogonadotropic hypogonadism, characterized by low levels of serum LH, constant diestrus, ovarian atrophy with increased follicular atresia, and uterine atrophy. Surprisingly, the 17β-estradiol and progesterone-induced LH surge was 3 times higher in KNDy-ablated rats. Despite the marked increase in the magnitude of the LH surge, the number of GnRH or anterior ventral periventricular nucleus neurons expressing Fos was not significantly different between groups. Our studies show that KNDy neurons are essential for tonic levels of serum LH and estrous cyclicity and may play a role in limiting the magnitude of the LH surge.
Collapse
Affiliation(s)
- Melinda A Mittelman-Smith
- Departments of Pathology (M.A.M.-S., S.J.K.-H., N.E.R.) and Cellular and Molecular Medicine and Neurology (N.T.M., N.E.R.) and The Evelyn F. McKnight Brain Institute (N.E.R.), University of Arizona College of Medicine, Tucson, Arizona 85724
| | - Sally J Krajewski-Hall
- Departments of Pathology (M.A.M.-S., S.J.K.-H., N.E.R.) and Cellular and Molecular Medicine and Neurology (N.T.M., N.E.R.) and The Evelyn F. McKnight Brain Institute (N.E.R.), University of Arizona College of Medicine, Tucson, Arizona 85724
| | - Nathaniel T McMullen
- Departments of Pathology (M.A.M.-S., S.J.K.-H., N.E.R.) and Cellular and Molecular Medicine and Neurology (N.T.M., N.E.R.) and The Evelyn F. McKnight Brain Institute (N.E.R.), University of Arizona College of Medicine, Tucson, Arizona 85724
| | - Naomi E Rance
- Departments of Pathology (M.A.M.-S., S.J.K.-H., N.E.R.) and Cellular and Molecular Medicine and Neurology (N.T.M., N.E.R.) and The Evelyn F. McKnight Brain Institute (N.E.R.), University of Arizona College of Medicine, Tucson, Arizona 85724
| |
Collapse
|
12
|
Grachev P, Millar RP, O'Byrne KT. The role of neurokinin B signalling in reproductive neuroendocrinology. Neuroendocrinology 2014; 99:7-17. [PMID: 24356581 DOI: 10.1159/000357734] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/04/2013] [Indexed: 11/19/2022]
Abstract
The KNDy neuropeptides, kisspeptin, neurokinin B (NKB) and dynorphin A (Dyn), have been implicated in regulating pulsatile luteinising hormone (LH) secretion. Studies of the interactions between KNDy signalling systems, however, are currently few. Although the stimulatory effect of kisspeptin and the inhibitory effect of Dyn on the gonadotropin-releasing hormone pulse generator are widely accepted, the effects of NKB in rodents are variable and sometimes controversial. Literature describing increased LH secretion in response to NKB receptor agonism predominates and is in line with human physiology, as well as the pathophysiology of pubertal failure associated with disruption of NKB signalling. However, the robust suppression of the LH pulse, induced by the same treatment under hypoestrogenic conditions, may hold clues as to the mechanisms of reproductive inhibition under pathological conditions. This review discusses the recent evidence for this paradox and outlines a revised working model incorporating the mechanisms by which KNDy neuropeptides modulate the reproductive axis.
Collapse
Affiliation(s)
- P Grachev
- Division of Women's Health, School of Medicine, King's College London, London, UK
| | | | | |
Collapse
|
13
|
Kalló I, Vida B, Deli L, Molnár CS, Hrabovszky E, Caraty A, Ciofi P, Coen CW, Liposits Z. Co-localisation of kisspeptin with galanin or neurokinin B in afferents to mouse GnRH neurones. J Neuroendocrinol 2012; 24:464-76. [PMID: 22129075 DOI: 10.1111/j.1365-2826.2011.02262.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The gonadotrophin-releasing hormone (GnRH) secreting neurones, which form the final common pathway for the central regulation of reproduction, are directly targeted by kisspeptin (KP) via the G protein-coupled receptor, GPR54. In these multiple labelling studies, we used ovariectomised mice treated with 17β-oestradiol (OVX + E(2)) or vehicle (OVX + oil) to determine: (i) the ultrastructural characteristics of KP-immunoreactive (IR) afferents to GnRH neurones; (ii) their galanin or neurokinin B (NKB) content; and (iii) the co-expression of galanin or NKB with KP in the two major subpopulations of KP neurones located in the rostral periventricular area of the third ventricle (RP3V) and the arcuate nucleus (Arc). Electron microscopic investigation of the neuronal juxtapositions revealed axosomatic and axodendritic synapses; these showed symmetrical or asymmetrical characteristics, suggesting a phenotypic diversity of KP afferents. Heterogeneity of afferents was also demonstrated by differential co-expression of neuropeptides; in OVX + E(2) mice, KP afferents to GnRH neurones showed galanin-immunoreactivity with an incidence of 22.50 ± 2.41% and NKB-immunoreactivity with an incidence of 5.61 ± 2.57%. In OVX + oil animals, galanin-immunoreactivity in the KP afferents showed a major reduction, appearing in only 5.78 ± 1.57%. Analysis for co-localisation of galanin or NKB with KP was extended to the perikaryal level in animal models, which showed the highest KP incidence; these were OVX + E(2) females for the RP3V and OVX + oil females for the ARC. In the RP3V of colchicine-treated OVX + E(2) animals, 87.84 ± 2.65% of KP-IR neurones were galanin positive. In the Arc of the colchicine-treated OVX + oil animals, galanin immunoreactivity was detected in only 12.50 ± 1.92% of the KP expressing neurones. By contrast, the incidence of co-localisation with NKB in the Arc of those animals was 98.09 ± 1.30%. In situ hybridisation histochemistry of sections from OVX + E(2) animals identified galanin message in more than a third of the KP neurones in the RP3V (38.67 ± 11.57%) and in the Arc (42.50 ± 12.52%). These data suggest that GnRH neurones are innervated by chemically heterogeneous KP cell populations, with a small proportion deriving from the Arc group. The presence of galanin within KP axons innervating GnRH neurones and the oestrogen-dependent regulation of that presence add a new dimension to the roles played by galanin in the central regulation of reproduction.
Collapse
Affiliation(s)
- I Kalló
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Xu Y, Faulkner LD, Hill JW. Cross-Talk between Metabolism and Reproduction: The Role of POMC and SF1 Neurons. Front Endocrinol (Lausanne) 2011; 2:98. [PMID: 22649394 PMCID: PMC3355979 DOI: 10.3389/fendo.2011.00098] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 11/22/2011] [Indexed: 01/22/2023] Open
Abstract
Energy homeostasis and reproduction require tight coordination, but the mechanisms underlying their interaction are not fully understood. Two sets of hypothalamic neurons, namely pro-opiomelanocortin (POMC) neurons in the arcuate nucleus and steroidogenic factor-1 (SF1) neurons in the ventromedial hypothalamic nucleus, are emerging as critical nodes where metabolic and reproductive signals communicate. This view is supported by recent genetic studies showing that disruption of metabolic signals (e.g., leptin and insulin) or reproductive signals (e.g., estradiol) in these neurons leads to impaired regulation of both energy homeostasis and fertility. In this review, we will examine the potential mechanisms of neuronal communication between POMC, SF1, and gonadotropin-releasing hormone neurons in the regulation of metabolism and reproduction.
Collapse
Affiliation(s)
- Yong Xu
- Department of Pediatrics, Children’s Nutrition Research Center, Baylor College of MedicineHouston, TX, USA
- *Correspondence: Yong Xu, Department of Pediatrics, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA e-mail: ; Jennifer W. Hill, Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, College of Medicine, The University of Toledo, Toledo, OH, USA e-mail:
| | - Latrice D. Faulkner
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, College of Medicine, The University of ToledoToledo, OH, USA
| | - Jennifer W. Hill
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, College of Medicine, The University of ToledoToledo, OH, USA
- Department of Obstetrics and Gynecology, College of Medicine, The University of ToledoToledo, OH, USA
- *Correspondence: Yong Xu, Department of Pediatrics, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA e-mail: ; Jennifer W. Hill, Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, College of Medicine, The University of Toledo, Toledo, OH, USA e-mail:
| |
Collapse
|
15
|
Goletiani NV, Mendelson JH, Sholar MB, Siegel AJ, Mello NK. Opioid and cocaine combined effect on cocaine-induced changes in HPA and HPG axes hormones in men. Pharmacol Biochem Behav 2008; 91:526-36. [PMID: 18848957 DOI: 10.1016/j.pbb.2008.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 09/08/2008] [Accepted: 09/11/2008] [Indexed: 01/23/2023]
Abstract
Nalbuphine, a mixed micro-/kappa-opioid analgesic, may have potential as a new medication for the treatment of cocaine abuse. Kappa-opioid agonists functionally antagonize some abuse-related and locomotor effects of cocaine, and both kappa-selective and mixed micro-/kappa-opioids reduce cocaine self-administration by rhesus monkeys. Because cocaine's interactions with the hypothalamic-pituitary-adrenal and (HPA) hypothalamic-pituitary-gonadal (HPG) axes may contribute to its reinforcing properties, we examined the effects of cocaine alone and in combination with nalbuphine. Neuroendocrine effects of a single dose of cocaine alone (0.2 mg/kg, IV), with nalbuphine (5 mg/70 kg, IV)+cocaine (0.2 mg/kg, IV) in combination were compared in seven adult men (ages 18-35) who met DSM-IV criteria for current cocaine abuse. Cocaine alone, and in combination with nalbuphine was administered on separate test days under placebo-controlled, double blind conditions. Cocaine stimulated ACTH, cortisol, and LH, whereas cocaine+nalbuphine in combination produced a smaller increase in ACTH, and decreased cortisol and LH. Thus it appears that nalbuphine attenuated cocaine's effects on ACTH, cortisol, and LH. These data are consistent with our earlier report that nalbuphine modestly attenuated cocaine's positive subjective effects, and that the subjective and cardiovascular effects of cocaine+nalbuphine in combination were not additive.
Collapse
Affiliation(s)
- Nathalie V Goletiani
- Alcohol and Drug Abuse Research Center, Harvard Medical School and McLean Hospital, Belmont, MA 02478, USA.
| | | | | | | | | |
Collapse
|
16
|
Scott CJ, Clarke IJ, Tilbrook AJ. The effect of testosterone and season on prodynorphin messenger RNA expression in the preoptic area-hypothalamus of the ram. Domest Anim Endocrinol 2008; 34:440-50. [PMID: 18308503 DOI: 10.1016/j.domaniend.2008.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 01/08/2008] [Accepted: 01/08/2008] [Indexed: 11/27/2022]
Abstract
Testosterone and season influence mRNA expression for the opioid, enkephalin, in the preoptic area and hypothalamus of rams. Dynorphin is another opioid which has been shown to play a role in the control of reproductive function in females. We now report effects of season and testosterone on the expression of prodynorphin mRNA in the hypothalamus of the ram. Castrated adult Romney Marsh rams (5/group) received vehicle or testosterone propionate (i.m.) during either the 'breeding' season or 'non-breeding' season. Prodynorphin mRNA expression was quantified in the hypothalami by in situ hybridisation. Testosterone treatment increased prodynorphin mRNA expression in the supraoptic nucleus and the bed nucleus of the stria terminalis in the breeding season but not during the non-breeding season. Prodynorphin mRNA expression was also higher in the breeding season than in the non-breeding season in the caudal preoptic area, paraventricular nucleus and accessory supraoptic nucleus, irrespective of treatment. No effects of treatment were observed in any other regions of the hypothalamus. We conclude that testosterone and season regulate prodynorphin mRNA expression in a region-specific manner, which may influence seasonal changes in reproductive function.
Collapse
Affiliation(s)
- Christopher J Scott
- Department of Physiology, Monash University, Vic., Australia; School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.
| | | | | |
Collapse
|
17
|
Zhang Q, Gallo RV. Presence of kappa-opioid tone at the onset of the ovulatory luteinizing hormone surge in the proestrous rat. Brain Res 2003; 980:135-9. [PMID: 12865168 DOI: 10.1016/s0006-8993(03)02965-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A decrease in endogenous opioid peptide inhibitory tone on the afternoon of proestrus is one event underlying generation of the ovulatory luteinizing hormone (LH) surge. Whether this disinhibition involves a complete loss of opioid suppression at the time of the LH surge is controversial. The objective of the present study was to determine whether a total loss specifically of the kappa-opioid inhibitory component suppressing LH secretion occurs on proestrus at the onset of the LH surge. Proestrous rats were infused intraventricularly with either artificial cerebrospinal fluid (aCSF) or aCSF containing nor-binaltorphimine (nor-BNI), a selective kappa-opioid receptor antagonist, from 15:30 or 16:30 h (the approximate onset time of the spontaneous LH surge) to 18:50 h. The LH surge in rats treated with nor-BNI beginning at 15:30 h started 0.5 h earlier than the spontaneous surge in aCSF controls, and had significantly higher plasma LH levels from 16:30 to 17:30 h. Nor-BNI administration begun at 16:30 h also produced an LH surge with more elevated plasma LH levels at 17:30 and 18:00 h than in aCSF-treated controls. These results demonstrate that significant amounts of kappa-opioid tone are still present during the hours when the LH surge is initiated. Thus, a complete loss of kappa-opioid inhibition is not required for the onset of the LH surge on proestrus.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Physiology and Neurobiology, The University of Connecticut, 3107 Horsebarn Hill Rd., Box U-156, Storrs, CT 06269-4156, USA
| | | |
Collapse
|
18
|
Abstract
This paper is the twenty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2002 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|