1
|
Wu CYC, Zhang Y, Xu L, Huang Z, Zou P, Clemons GA, Li C, Citadin CT, Zhang Q, Lee RHC. The role of serum/glucocorticoid-regulated kinase 1 in brain function following cerebral ischemia. J Cereb Blood Flow Metab 2024; 44:1145-1162. [PMID: 38235747 PMCID: PMC11179613 DOI: 10.1177/0271678x231224508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
Cardiopulmonary arrest (CA) is a major cause of death/disability in the U.S. with poor prognosis and survival rates. Current therapeutic challenges are physiologically complex because they involve hypoperfusion (decreased cerebral blood flow), neuroinflammation, and mitochondrial dysfunction. We previously discovered novel serum/glucocorticoid-regulated kinase 1 (SGK1) is highly expressed in brain of neurons that are susceptible to ischemia (hippocampus and cortex). We inhibited SGK1 and utilized pharmacological (specific inhibitor, GSK650394) and neuron-specific genetic approaches (shRNA) in rodent models of CA to determine if SGK1 is responsible for hypoperfusion, neuroinflammation, mitochondrial dysfunctional, and neurological deficits after CA. Inhibition of SGK1 alleviated cortical hypoperfusion and neuroinflammation (via Iba1, GFAP, and cytokine array). Treatment with GSK650394 enhanced mitochondrial function (via Seahorse respirometry) in the hippocampus 3 and 7 days after CA. Neuronal injury (via MAP2, dMBP, and Golgi staining) in the hippocampus and cortex was observed 7 days after CA but ameliorated with SGK1-shRNA. Moreover, SGK1 mediated neuronal injury by regulating the Ndrg1-SOX10 axis. Finally, animals subjected to CA exhibited learning/memory, motor, and anxiety deficits after CA, whereas SGK1 inhibition via SGK1-shRNA improved neurocognitive function. The present study suggests the fundamental roles of SGK1 in brain circulation and neuronal survival/death in cerebral ischemia-related diseases.
Collapse
Affiliation(s)
- Celeste Yin-Chieh Wu
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| | - Yulan Zhang
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| | - Li Xu
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| | - Zhihai Huang
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| | - Peibin Zou
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| | - Garrett A Clemons
- Department of Cellular Biology and Anatomy, Louisiana State University Health, Shreveport, LA, USA
| | - Chun Li
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| | - Cristiane T Citadin
- Department of Cellular Biology and Anatomy, Louisiana State University Health, Shreveport, LA, USA
| | - Quanguang Zhang
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| | - Reggie Hui-Chao Lee
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| |
Collapse
|
2
|
Lee J, Peesh P, Quaicoe V, Tan C, Banerjee A, Mooz P, Ganesh BP, Petrosino J, Bryan RM, McCullough LD, Venna VR. Estradiol mediates colonic epithelial protection in aged mice after stroke and is associated with shifts in the gut microbiome. Gut Microbes 2023; 15:2271629. [PMID: 37910478 PMCID: PMC10730206 DOI: 10.1080/19490976.2023.2271629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
The gut is a major source of bacteria and antigens that contribute to neuroinflammation after brain injury. Colonic epithelial cells (ECs) are responsible for secreting major cellular components of the innate defense system, including antimicrobial proteins (AMP) and mucins. These cells serve as a critical regulator of gut barrier function and maintain host-microbe homeostasis. In this study, we determined post-stroke host defense responses at the colonic epithelial surface in mice. We then tested if the enhancement of these epithelial protective mechanisms is beneficial in young and aged mice after stroke. AMPs were significantly increased in the colonic ECs of young males, but not in young females after experimental stroke. In contrast, mucin-related genes were enhanced in young females and contributed to mucus formation that maintains the distance between the host and gut bacteria. Bacterial community profiling was done using universal amplification of 16S rRNA gene sequences. The sex-specific colonic epithelial defense responses after stroke in young females were reversed with ovariectomy and led to a shift from a predominately mucin response to the enhanced AMP expression seen in males after stroke. Estradiol (E2) replacement prior to stroke in aged females increased mucin gene expression in the colonic ECs. Interestingly, we found that E2 treatment reduced stroke-associated neuronal hyperactivity in the insular cortex, a brain region that interacts with visceral organs such as the gut, in parallel to an increase in the composition of Lactobacillus and Bifidobacterium in the gut microbiota. This is the first study demonstrating sex differences in host defense mechanisms in the gut after brain injury.
Collapse
Affiliation(s)
- Juneyoung Lee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pedram Peesh
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Victoria Quaicoe
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chunfeng Tan
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anik Banerjee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Patrick Mooz
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bhanu P. Ganesh
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joseph Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Robert M. Bryan
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX, USA
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Neurology, Memorial Hermann Hospital-Texas Medical Center, Houston, TX, USA
| | - Venugopal Reddy Venna
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
3
|
Rose JJ, Krishnan-Sarin S, Exil VJ, Hamburg NM, Fetterman JL, Ichinose F, Perez-Pinzon MA, Rezk-Hanna M, Williamson E. Cardiopulmonary Impact of Electronic Cigarettes and Vaping Products: A Scientific Statement From the American Heart Association. Circulation 2023; 148:703-728. [PMID: 37458106 DOI: 10.1161/cir.0000000000001160] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Vaping and electronic cigarette (e-cigarette) use have grown exponentially in the past decade, particularly among youth and young adults. Cigarette smoking is a risk factor for both cardiovascular and pulmonary disease. Because of their more limited ingredients and the absence of combustion, e-cigarettes and vaping products are often touted as safer alternative and potential tobacco-cessation products. The outbreak of e-cigarette or vaping product use-associated lung injury in the United States in 2019, which led to >2800 hospitalizations, highlighted the risks of e-cigarettes and vaping products. Currently, all e-cigarettes are regulated as tobacco products and thus do not undergo the premarket animal and human safety studies required of a drug product or medical device. Because youth prevalence of e-cigarette and vaping product use was as high as 27.5% in high school students in 2019 in the United States, it is critical to assess the short-term and long-term health effects of these products, as well as the development of interventional and public health efforts to reduce youth use. The objectives of this scientific statement are (1) to describe and discuss e-cigarettes and vaping products use patterns among youth and adults; (2) to identify harmful and potentially harmful constituents in vaping aerosols; (3) to critically assess the molecular, animal, and clinical evidence on the acute and chronic cardiovascular and pulmonary risks of e-cigarette and vaping products use; (4) to describe the current evidence of e-cigarettes and vaping products as potential tobacco-cessation products; and (5) to summarize current public health and regulatory efforts of e-cigarettes and vaping products. It is timely, therefore, to review the short-term and especially the long-term implications of e-cigarettes and vaping products on cardiopulmonary health. Early molecular and clinical evidence suggests various acute physiological effects from electronic nicotine delivery systems, particularly those containing nicotine. Additional clinical and animal-exposure model research is critically needed as the use of these products continues to grow.
Collapse
|
4
|
Lee RHC, Grames MS, Wu CYC, Lien CF, Couto E Silva A, Possoit HE, Clemons GA, Citadin CT, Neumann JT, Pastore D, Lauro D, Della-Morte D, Lin HW. Upregulation of serum and glucocorticoid-regulated kinase 1 exacerbates brain injury and neurological deficits after cardiac arrest. Am J Physiol Heart Circ Physiol 2020; 319:H1044-H1050. [PMID: 32946263 DOI: 10.1152/ajpheart.00399.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cardiopulmonary arrest (CA) is the leading cause of death and disability in the United States. CA-induced brain injury is influenced by multifactorial processes, including reduced cerebral blood flow (hypoperfusion) and neuroinflammation, which can lead to neuronal cell death and functional deficits. We have identified serum and glucocorticoid-regulated kinase-1 (SGK1) as a new target in brain ischemia previously described in the heart, liver, and kidneys (i.e., diabetes and hypertension). Our data suggest brain SGK1 mRNA and protein expression (i.e., hippocampus), presented with hypoperfusion (low cerebral blood flow) and neuroinflammation, leading to further studies of the potential role of SGK1 in CA-induced brain injury. We used a 6-min asphyxia cardiac arrest (ACA) rat model to induce global cerebral ischemia. Modulation of SGK1 was implemented via GSK650394, a SGK1-specific inhibitor (1.2 μg/kg icv). Accordingly, treatment with GSK650394 attenuated cortical hypoperfusion and neuroinflammation (via Iba1 expression) after ACA, whereas neuronal survival was enhanced in the CA1 region of the hippocampus. Learning/memory deficits were observed 3 days after ACA but ameliorated with GSK650394. In conclusion, SGK1 is a major contributor to ACA-induced brain injury and neurological deficits, while inhibition of SGK1 with GSK650394 provided neuroprotection against CA-induced hypoperfusion, neuroinflammation, neuronal cell death, and learning/memory deficits. Our studies could lead to a novel, therapeutic target for alleviating brain injury following cerebral ischemia.NEW & NOTEWORTHY Upregulation of SGK1 exacerbates brain injury during cerebral ischemia. Inhibition of SGK1 affords neuroprotection against cardiac arrest-induced hypoperfusion, neuroinflammation, neuronal cell death, and neurological deficits.
Collapse
Affiliation(s)
- Reggie Hui-Chao Lee
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana.,Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Mychal S Grames
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Celeste Yin-Chieh Wu
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Chih-Feng Lien
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Alexandre Couto E Silva
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - HarLee E Possoit
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Garrett A Clemons
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Cristiane T Citadin
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Jake T Neumann
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, West Virginia
| | - Donatella Pastore
- Department of Systems Medicine, University of Rome Tor Vergata, Rome. Italy
| | - Davide Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, Rome. Italy
| | - David Della-Morte
- Department of Systems Medicine, University of Rome Tor Vergata, Rome. Italy.,Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, Rome. Italy.,Department of Neurology and Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - Hung Wen Lin
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana.,Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana.,Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| |
Collapse
|
5
|
Mohajeri M, Martín-Jiménez C, Barreto GE, Sahebkar A. Effects of estrogens and androgens on mitochondria under normal and pathological conditions. Prog Neurobiol 2019; 176:54-72. [DOI: 10.1016/j.pneurobio.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 02/23/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
|
6
|
Stradecki-Cohan HM, Cohan CH, Raval AP, Dave KR, Reginensi D, Gittens RA, Youbi M, Perez-Pinzon MA. Cognitive Deficits after Cerebral Ischemia and Underlying Dysfunctional Plasticity: Potential Targets for Recovery of Cognition. J Alzheimers Dis 2018; 60:S87-S105. [PMID: 28453486 DOI: 10.3233/jad-170057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cerebral ischemia affects millions of people worldwide and survivors suffer from long-term functional and cognitive deficits. While stroke and cardiac arrest are typically considered when discussing ischemic brain injuries, there is much evidence that smaller ischemic insults underlie neurodegenerative diseases, including Alzheimer's disease. The "regenerative" capacity of the brain relies on several aspects of plasticity that are crucial for normal functioning; less affected brain areas may take over function previously performed by irreversibly damaged tissue. To harness the endogenous plasticity mechanisms of the brain to provide recovery of cognitive function, we must first understand how these mechanisms are altered after damage, such as cerebral ischemia. In this review, we discuss the long-term cognitive changes that result after cerebral ischemia and how ischemia alters several plasticity processes. We conclude with a discussion of how current and prospective therapies may restore brain plasticity and allow for recovery of cognitive function, which may be applicable to several disorders that have a disruption of cognitive processing, including traumatic brain injury and Alzheimer's disease.
Collapse
Affiliation(s)
- Holly M Stradecki-Cohan
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Charles H Cohan
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA
| | - Ami P Raval
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA
| | - Kunjan R Dave
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Diego Reginensi
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
| | - Rolando A Gittens
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
| | - Mehdi Youbi
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA
| | - Miguel A Perez-Pinzon
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
7
|
Tulsulkar J, Glueck B, Hinds TD, Shah ZA. Ginkgo biloba Extract Prevents Female Mice from Ischemic Brain Damage and the Mechanism Is Independent of the HO1/Wnt Pathway. Transl Stroke Res 2015; 7:120-31. [PMID: 26573919 DOI: 10.1007/s12975-015-0433-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/28/2015] [Accepted: 11/06/2015] [Indexed: 01/18/2023]
Abstract
It is well known that gender differences exist in experimental or clinical stroke with respect to brain damage and loss of functional outcome. We have previously reported neuroprotective properties of Ginkgo biloba/EGb 761® (EGb 761) in transient and permanent mouse models of brain ischemia using male mice, and the mechanism of action was attributed to the upregulation of the heme oxygenase 1 (HO1)/Wnt pathway. Here, we sought to investigate whether EGb 761's protective effect in ovariectomized female mice following stroke is also mediated by the HO1/Wnt pathway. Female mice were ovariectomized (OVX) to remove the protective effect of estrogen and were treated with EGb 761 for 7 days prior to inducing permanent middle cerebral artery occlusion (pMCAO) and allowed to survive for an additional 7 days. At day 8, animals were sacrificed, and the brains were harvested for infarct volume analysis, western blots, and immunohistochemistry. The OVX female mice treated with EGb 761 showed significantly lower infarct size as compared to Veh/OVX animals. EGb 761 treatment in female mice inhibited apoptosis by preventing caspase-3 cleavage and blocking the extrinsic apoptotic pathway. EGb 761 pretreatment significantly enhanced neurogenesis in OVX mice as compared to the Veh/OVX group and significantly upregulated androgen receptor expression with no changes in HO1/Wnt signaling. These results suggest that EGb 761 prevented brain damage in OVX female mice by improving grip strength and neurological deficits, and the mechanism of action is not through HO1/Wnt but via blocking the extrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Jatin Tulsulkar
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Bryan Glueck
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Terry D Hinds
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Avenue, Toledo, OH, 43614, USA. .,Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Avenue, Toledo, OH, 43614, USA.
| |
Collapse
|
8
|
Predicting the Binding Affinity of ERβ Ligands Based on a Novel Variable Selection Method. Interdiscip Sci 2015; 8:412-418. [PMID: 26525889 DOI: 10.1007/s12539-015-0131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/14/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
A number of descriptors were employed to characterize the molecular structures of the 128 estrogen receptor β ligands. A quantitative structure-activity relationship (QSAR) model of these compounds was developed by the variable selection method based on variable interaction. The QSAR model with five descriptors was internally and externally validated. The determination coefficient (R 2) and the leave-one-out cross-validated correlation coefficient (Q 2) are 0.8272 and 0.8041, respectively. The estimated correlation coefficient of the external validation is 0.8255. The mechanistic interpretation of the final model was carried out according to the definition of descriptors. As the model meets the five principles proposed by Organization for Economic Co-operation and Development, it can be used to predict the binding affinity of other derivatives.
Collapse
|
9
|
Belenichev IF, Odnokoz OV, Pavlov SV, Belenicheva OI, Polyakova EN. The neuroprotective activity of tamoxifen and tibolone during glutathione depletion in vitro. NEUROCHEM J+ 2012. [DOI: 10.1134/s181971241203004x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Actions of estrogens on glial cells: Implications for neuroprotection. Biochim Biophys Acta Gen Subj 2010; 1800:1106-12. [DOI: 10.1016/j.bbagen.2009.10.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/29/2009] [Accepted: 10/01/2009] [Indexed: 01/21/2023]
|
11
|
Gillies GE, McArthur S. Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines. Pharmacol Rev 2010; 62:155-98. [PMID: 20392807 PMCID: PMC2879914 DOI: 10.1124/pr.109.002071] [Citation(s) in RCA: 480] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The classic view of estrogen actions in the brain was confined to regulation of ovulation and reproductive behavior in the female of all mammalian species studied, including humans. Burgeoning evidence now documents profound effects of estrogens on learning, memory, and mood as well as neurodevelopmental and neurodegenerative processes. Most data derive from studies in females, but there is mounting recognition that estrogens play important roles in the male brain, where they can be generated from circulating testosterone by local aromatase enzymes or synthesized de novo by neurons and glia. Estrogen-based therapy therefore holds considerable promise for brain disorders that affect both men and women. However, as investigations are beginning to consider the role of estrogens in the male brain more carefully, it emerges that they have different, even opposite, effects as well as similar effects in male and female brains. This review focuses on these differences, including sex dimorphisms in the ability of estradiol to influence synaptic plasticity, neurotransmission, neurodegeneration, and cognition, which, we argue, are due in a large part to sex differences in the organization of the underlying circuitry. There are notable sex differences in the incidence and manifestations of virtually all central nervous system disorders, including neurodegenerative disease (Parkinson's and Alzheimer's), drug abuse, anxiety, and depression. Understanding the cellular and molecular basis of sex differences in brain physiology and responses to estrogen and estrogen mimics is, therefore, vitally important for understanding the nature and origins of sex-specific pathological conditions and for designing novel hormone-based therapeutic agents that will have optimal effectiveness in men or women.
Collapse
Affiliation(s)
- Glenda E Gillies
- Centre for Neuroscience, Department of Medicine, Hammersmith Hospital, Imperial College Faculty of Medicine, DuCane Road, London W12ONN, UK.
| | | |
Collapse
|
12
|
Abstract
Evidence exists for the potential protective effects of circulating ovarian hormones in stroke, and oestrogen reduces brain damage in animal ischaemia models. However, a recent clinical trial indicated that HRT (hormone-replacement therapy) increased the incidence of stroke in post-menopausal women, and detrimental effects of oestrogen on stroke outcome have been identified in a meta-analysis of HRT trials and in pre-clinical research studies. Therefore oestrogen is not an agent that can be promoted as a potential stroke therapy. Many published reviews have reported the neuroprotective effects of oestrogen in stroke, but have failed to include information on the detrimental effects. This issue is addressed in the present review, along with potential mechanisms of action, and the translational capacity of pre-clinical research.
Collapse
|
13
|
Scharfman HE, Malthankar-Phatak GH, Friedman D, Pearce P, McCloskey DP, Harden CL, Maclusky NJ. A rat model of epilepsy in women: a tool to study physiological interactions between endocrine systems and seizures. Endocrinology 2009; 150:4437-42. [PMID: 19443573 PMCID: PMC2736077 DOI: 10.1210/en.2009-0135] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epilepsy in women is influenced by endocrine status and antiepileptic drugs, but without an animal model, the effects of endocrine variables and antiepileptic drugs cannot be easily dissociated from the influence of epilepsy itself. Animal models have had limited utility because experimentally induced seizures typically result in reproductive failure. This study was conducted to develop an improved animal model. The muscarinic convulsant pilocarpine was used to elicit status epilepticus (SE) in adult female Sprague Dawley rats. The selective estrogen receptor modulator raloxifene was administered 30 min before pilocarpine. An anticonvulsant barbiturate, pentobarbital, was injected 5-10 min after the onset of SE and at least once thereafter to minimize acute convulsions. Mortality, morbidity, estrous cyclicity, and the ultimate success of the procedure (i.e. induction of recurrent, spontaneous seizures) were monitored. The combination of raloxifene and pentobarbital led to significantly improved estrous cyclicity compared with previous methods. Animals treated with raloxifene and pentobarbital became epileptic, as defined by the recurrence of spontaneous convulsions in the weeks after SE. The results of this study provide an improved animal model to examine the interactions between seizures and ovarian hormone secretion. The results also suggest that treatment of SE with raloxifene may benefit women with SE.
Collapse
|
14
|
Ronnett GV, Ramamurthy S, Kleman AM, Landree LE, Aja S. AMPK in the brain: its roles in energy balance and neuroprotection. J Neurochem 2009; 109 Suppl 1:17-23. [PMID: 19393004 DOI: 10.1111/j.1471-4159.2009.05916.x] [Citation(s) in RCA: 232] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) senses metabolic stress and integrates diverse physiological signals to restore energy balance. Multiple functions are indicated for AMPK in the CNS. While all neurons sense their own energy status, some integrate neuro-humoral signals to assess organismal energy balance. A variety of disease states may involve AMPK, so determining the underlying mechanisms is important. We review the impact of altered AMPK activity under physiological (hunger, satiety) and pathophysiological (stroke) conditions, as well as therapeutic manipulations of AMPK that may improve energy balance.
Collapse
Affiliation(s)
- Gabriele V Ronnett
- Department of Neuroscience, The Center for Metabolism and Obesity Research (CMOR), The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | |
Collapse
|
15
|
Pietranera L, Saravia FE, Roig P, Lima A, De Nicola AF. Protective effects of estradiol in the brain of rats with genetic or mineralocorticoid-induced hypertension. Psychoneuroendocrinology 2008; 33:270-81. [PMID: 18164826 DOI: 10.1016/j.psyneuen.2007.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 11/12/2007] [Accepted: 11/19/2007] [Indexed: 12/15/2022]
Abstract
Abnormalities of hippocampus and hypothalamus are commonly observed in rats with genetic (SHR) or mineralocorticoid/salt-induced hypertension. In the hippocampus, changes include decreased cell proliferation in the dentate gyrus (DG), astrogliosis and decreased neuronal density in the hilus, whereas in the hypothalamus expression of arginine vasopressin (AVP) is markedly elevated. Here, we report that estradiol treatment overturns these abnormalities. We used 16-week-old male SHR with blood pressure (BP) approximately 190 mmHg and their normotensive Wistar-Kyoto (WKY) controls, and male Sprague-Dawley rats made hypertensive by administration of 10mg deoxycorticosterone acetate (DOCA) every other day plus 1% NaCl as drinking fluid for 4 weeks (BP approximately 160 mmHg). Controls received oil vehicle plus 1% NaCl only. Half of the animals in each group were implanted s.c. with a single estradiol benzoate pellet weighing 14 mg for 2 weeks. Estradiol-treated SHR and DOCA-salt rats showed, in comparison to their respective steroid-free groups: (a) enhanced proliferation in the DG measured by bromodeoxyuridine incorporation; (b) decreased number of glial fibrillary acidic protein (GFAP) immunopositive astrocytes; (c) increased density of neurons in the hilus of the DG, and (d) decreased hypothalamic AVP mRNA expression. These results indicate that neuronal and glial alterations of hypertensive models are plastic events reversible by steroid treatment. The estradiol protective effects may be of pharmacological interest to attenuate the consequences of hypertensive encephalopathy.
Collapse
Affiliation(s)
- Luciana Pietranera
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
16
|
Farr TD, Carswell HVO, McCann DJ, Sato M, Bryant HU, Dodge JA, Macrae IM. The selective oestrogen receptor modulator, LY362321, is not neuroprotective in a rat model of transient focal ischaemia. J Neuroendocrinol 2008; 20:366-74. [PMID: 18208545 DOI: 10.1111/j.1365-2826.2008.01648.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Selective oestrogen receptor modulators (SERMs) may offer improved alternatives to oestrogen as neuroprotectants in experimental stroke. The present study investigated the role of a novel SERM, LY362321, in a rat model of transient middle cerebral artery occlusion (MCAO). Female Sprague-Dawley rats were ovariectomised and began receiving daily s.c. injections of either 1 mg/kg (n = 13), 10 mg/kg (n = 14) of LY362321, or vehicle (n = 13). The left MCA was temporarily occluded (90 min), with cortical blood flow monitoring, at 12 days post ovariectomy. Sensorimotor function was assessed using a neurological score prior to the MCAO and daily for 3 days following the MCAO. Tissue was processed for infarct volume assessment using 2,3,5-triphenyltetra-zolium chloride staining. The results indicated that there were no significant differences amongst groups in cortical blood flow during the MCAO. Furthermore, there was no significant difference in infarct size amongst vehicle, 1, and 10 mg/kg treated animals: 22.9 +/- 5.0, 16.7 +/- 4.2, and 21.1 +/- 4.1, respectively, one-way anova [F(2,32) = 0.542, P = 0.587]. The MCAO induced a significant decline in neurological score in the vehicle group (from 14 to 7 at 24 h post-MCAO) but this was not significantly affected by LY362321 at either dose. In conclusion, pretreatment with a low or high dose of the novel SERM LY362321 did not significantly influence cerebral blood flow, infarct volume, or sensorimotor function in rats exposed to transient MCAO.
Collapse
Affiliation(s)
- T D Farr
- Wellcome Surgical Institute and 7T MRI Facility, Division of Clinical Neuroscience, University of Glasgow, Glasgow, UK.
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
There is a wealth of historical and circumstantial evidence to suggest that female patients with schizophrenia may suffer from a deficit in estrogenic function. The prolactin-inducing properties of most antipsychotic drugs, and subsequent negative feedback on estrogen levels, is in keeping with this. The functions of estrogen, its complex receptor organization and its numerous actions are the focus of ongoing research activity. Of particular interest are its neuroprotective properties, particularly with regard to cognitive impairment, and its involvement with neurotransmitter systems, which are the substrate for psychotropic drugs. Estrogen has now been used as an adjunct to standard antipsychotic medication in quite a few studies of female schizophrenia patients. However, most of these are not double-blind, randomized, controlled trials. Only two relatively small double-blind, randomized clinical trials returned positive results: one long-term study that selected for hypoestrogenism reported negative findings. Furthermore, recent evidence of the risks of long-term hormone replacement therapy is of concern. The advent of specific estrogen receptor modulators, which may avoid excess risks of cancer and cardiovascular events, will have little to add to schizophrenia treatment if estrogen is, essentially, devoid of any specific antipsychotic or adjuvant mechanism of action relevant to the pathophysiology of this disorder.
Collapse
Affiliation(s)
- A M Mortimer
- The University of Hull, Department of Psychiatry, Hertford Building, Cottingham Road, Hull HU6 7RX, UK.
| |
Collapse
|
18
|
Raval AP, Bramlett H, Perez-Pinzon MA. Estrogen preconditioning protects the hippocampal CA1 against ischemia. Neuroscience 2006; 141:1721-30. [PMID: 16777351 DOI: 10.1016/j.neuroscience.2006.05.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 04/30/2006] [Accepted: 05/09/2006] [Indexed: 01/06/2023]
Abstract
Estrogen is neuroprotective against ischemia in both in vivo and in vitro injury models. Because of the promising preclinical data on neuroprotection, the Women's Estrogen for Stroke Trial was initiated. The outcomes from this trial were, however, unsuccessful and questions emerged about the safety of chronic estrogen treatment in women. In contrast to the chronic estrogen treatment strategy, the present study aims to investigate: (1) the neuroprotective efficacy of single estrogen pretreatment/preconditioning; and (2) the existence of a similarity between estrogen- and ischemic preconditioning-induced neuroprotection against cerebral ischemia. The efficacy of estrogen was tested in an in vitro model of cerebral ischemia using hippocampal organotypic slice culture system. The hippocampal organotypic slice cultures were generated from female neonatal (9-11 days old) Sprague-Dawley rats. The slices were exposed to estradiol-17beta (0.5, 1, 5 nM) for various durations (1, 2 or 4 h) 48 h prior to ischemia (40 min of oxygen-glucose deprivation). For ischemic preconditioning, slices were exposed to sublethal oxygen-glucose deprivation (15 min), 48 h prior to lethal oxygen-glucose deprivation. Quantification of cell death in hippocampal CA1 region was conducted by using propidium iodide fluorescence staining technique. Results demonstrated that estrogen preconditioning significantly protects the hippocampal CA1 region against ischemia (P<0.001) and mimicked ischemic preconditioning-induced neuroprotection. The propidium iodide fluorescence values of estrogen preconditioning, ischemic preconditioning and ischemia groups were 21+/-2 (mean+/-S.E.M.) (1 nM; 2 h; n=15), 18+/-2 (5 nM; 4 h; n=12), 32+/-3 (n=8), 65+/-3 (n=27), respectively. Further, estrogen preconditioning initiated a calcium-mediated signaling pathway leading to protection of CA1 neurons against ischemia. Future investigations in estrogen preconditioning may suggest new estrogen regimens that avoid potential side effects of chronic estrogen treatment for stroke patients.
Collapse
Affiliation(s)
- A P Raval
- Cerebral Vascular Disease Research Center, Department of Neurology and Neuroscience Program (D4-5), P.O. Box 016960, University of Miami School of Medicine, Miami, FL 33101, USA.
| | | | | |
Collapse
|
19
|
Theodorsson A, Theodorsson E. Estradiol increases brain lesions in the cortex and lateral striatum after transient occlusion of the middle cerebral artery in rats: no effect of ischemia on galanin in the stroke area but decreased levels in the hippocampus. Peptides 2005; 26:2257-64. [PMID: 15919133 DOI: 10.1016/j.peptides.2005.04.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 04/21/2005] [Accepted: 04/22/2005] [Indexed: 10/25/2022]
Abstract
A distinctive feature of galanin expression is that it is extensively increased by neuronal injury, estrogens, Alzheimer's disease and during development. Since stroke is amongst the clinically most important causes of neuronal injury we studied the tissue concentrations of galanin in a rat stroke model and the possibility of modulating this effect with estrogen. Transient focal middle cerebral artery ischemia was induced in rats that 2 weeks earlier underwent ovariectomy and received 1.5mg 17beta-estradiol slow-release or placebo pellets. The concentrations of galanin and neuropeptide Y were measured after observation periods of 3, 7 and 14 days in extracts of punch biopsies from both the lesioned and the contra lateral control hemisphere. The galanin levels were not changed in any of the brain regions studied except in the hippocampus where they were lower in the ischemic hemisphere in both the estrogen- and placebo-treated animals compared to the corresponding contra lateral intact hemisphere (p=0.015). Estrogen treatment up-regulated galanin concentrations in both the ventral and dorsal hippocampus (p=0.003). The effects on the galanin concentrations were similar after all observation periods: 3, 7 and 14 days (p=0.144). No significant changes were observed in the concentration of neuropeptide Y in response to the lesions. The ischemic lesions were markedly larger in the estrogen-treated animals observed after 3 days compared to the corresponding control group. In the estrogen group the lesion was largest at bregma and the slice 2mm anterior to the bregma, 82% and 435% larger than in the control group (p<0.001). A similar, but much less pronounced (not statistically significant) difference was seen in the groups observed after 7 and 14 days. Earlier studies of lesions in the peripheral and central nervous systems have generally shown an up-regulation of galanin markers in response to but at a distance from the injury. Our results indicate that galanin is not involved in the response of the ischemic penumbra itself to stroke, whereas it may participate in the reactions of the neural stem-cell rich hippocampus to stroke.
Collapse
Affiliation(s)
- Annette Theodorsson
- Department of Biomedicine and Surgery/Division of Clinical Chemistry, University Hospital, SE-581 85 Linkoping, Sweden
| | | |
Collapse
|
20
|
Gleason CE, Carlsson CM, Johnson S, Atwood C, Asthana S. Clinical Pharmacology and Differential Cognitive Efficacy of Estrogen Preparations. Ann N Y Acad Sci 2005; 1052:93-115. [PMID: 16024754 DOI: 10.1196/annals.1347.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Menopause is associated with a significant decline in levels of estrogen, which reportedly leads to several distressing symptoms and adverse health effects on various target tissues including those on bones, heart, and brain. Although effective, the long-term safety and feasibility of therapy with both unopposed and opposed oral conjugated equine estrogen has been questioned by the recent findings of both the Women's Health Initiative (WHI) and the Women's Health Initiative Memory Study (WHIMS). The findings of both these studies have raised several critical issues related to hormone therapy that need to be systematically evaluated in clinical studies. Specifically, these issues relate to the differential efficacy and adverse-effects profile of various forms of estrogen and progestins, the importance of the route of administration of estrogen, the best timing to initiate postmenopausal hormone therapy, and the efficacy of cyclic versus continuous hormone therapy. This article focuses on estrogen and discusses issues related to selecting the best form and route of administration of the hormone. It includes information on basic clinical pharmacology of various forms of estrogen, neuroendocrinology of the menopause, neurobiology of estradiol and estrone, and results of selected basic science and human intervention studies with relevance to identifying the best form and route of administration of estrogen.
Collapse
Affiliation(s)
- Carey E Gleason
- Department of Medicine, University of Wisconsin Medical School, and Geriatric Research, Education and Clinical Center (GRECC), William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA.
| | | | | | | | | |
Collapse
|
21
|
Dhandapani KM, Wade FM, Mahesh VB, Brann DW. Astrocyte-derived transforming growth factor-{beta} mediates the neuroprotective effects of 17{beta}-estradiol: involvement of nonclassical genomic signaling pathways. Endocrinology 2005; 146:2749-59. [PMID: 15746252 DOI: 10.1210/en.2005-0014] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
17beta-Estradiol (E2) and selective estrogen receptor modulators (SERMs), such as tamoxifen, mediate numerous effects in the brain, including neurosecretion, neuroprotection, and the induction of synaptic plasticity. Astrocytes, the most abundant cell type in the brain, influence many of these same functions and thus may represent a mediator of estrogen action. The present study examined the regulatory effect and underlying cell signaling mechanisms of E2-induced release of neurotropic growth factors from primary rat cortical astrocyte cultures. The results revealed that E2 (0.5, 1, and 10 nm) and tamoxifen (1 mum) increased both the expression and release of the neuroprotective cytokines, TGF-beta1 and TGF-beta2 (TGF-beta), from cortical astrocytes. The stimulatory effect of E2 was attenuated by the estrogen receptor (ER) antagonist, ICI182,780, suggesting ER dependency. The effect of E2 also appeared to involve mediation by the phosphotidylinositol 3-kinase (PI3K)/Akt signaling pathway, because E2 rapidly induced Akt phosphorylation, and pharmacological or molecular inhibition of the PI3K/Akt pathway prevented E2-induced release of TGF-beta. Additionally, the membrane-impermeant conjugate, E2-BSA, stimulated the release of TGF-beta, suggesting the potential involvement of a membrane-bound ER. Finally, E2, tamoxifen, and E2-BSA were shown to protect neuronal-astrocyte cocultures from camptothecin-induced neuronal cell death, effects that were attenuated by ICI182,780, Akt inhibition, or TGF-beta immunoneutralization. As a whole, these studies suggest that E2 induction of TGF-beta release from cortical astrocytes could provide a mechanism of neuroprotection, and that E2 stimulation of TGF-beta expression and release from astrocytes occurs via an ER-dependent mechanism involving mediation by the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Krishnan M Dhandapani
- Institute of Molecular Medicine and Genetics, Program in Developmental Neurobiology, 1120 15th Street, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | |
Collapse
|
22
|
Goekoop R, Duschek EJJ, Knol DL, Barkhof F, Netelenbos C, Scheltens P, Rombouts SARB. Raloxifene exposure enhances brain activation during memory performance in healthy elderly males; its possible relevance to behavior. Neuroimage 2005; 25:63-75. [PMID: 15734344 DOI: 10.1016/j.neuroimage.2004.11.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 09/28/2004] [Accepted: 11/09/2004] [Indexed: 11/15/2022] Open
Abstract
Raloxifene is a selective estrogen receptor modulator (SERM) that is prescribed in females only, but its use in male subjects is increasingly considered. With a growing number of patients having potential benefit from raloxifene, the need for an assessment of its effects on brain function is growing. Effects of estrogens on brain function are very subtle and difficult to detect by neuropsychological assessment. Functional imaging techniques, however, have been relatively successful in detecting such changes. This study used functional magnetic resonance imaging (fMRI) to examine effects of raloxifene treatment on memory function. Healthy elderly males (n = 28; mean age 63.6 years, SD 2.4) were scanned during performance on a face encoding paradigm. Scans were made at baseline and after 3 months of treatment with either raloxifene (n = 14) or placebo (n = 14). Treatment effects were analyzed using mixed-effects statistical analysis (FSL). Activation during task performance involved bilateral parietal and prefrontal areas, anterior cingulate gyrus, and inferior prefrontal, occipital, and mediotemporal areas bilaterally. When compared to placebo, raloxifene treatment significantly enhanced activation in these structures (Z > 3.1), except for mediotemporal areas. Task performance accuracy diminished in the placebo group (P = 0.02), but remained constant in the raloxifene group (P = 0.60). In conclusion, raloxifene treatment enhanced brain activation in areas spanning a number of different cognitive domains, suggesting an effect on cortical arousal. Such effects may translate into small effects on behavior, including effects on attention and working memory performance, executive functions, verbal skills, and episodic memory. Further neuropsychological assessment is necessary to test the validity of these predictions.
Collapse
Affiliation(s)
- R Goekoop
- Department of Neurology, VU University Medical Center, De Boelelaan 1117 1081 HV, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
23
|
Ardelt AA, McCullough LD, Korach KS, Wang MM, Munzenmaier DH, Hurn PD. Estradiol regulates angiopoietin-1 mRNA expression through estrogen receptor-alpha in a rodent experimental stroke model. Stroke 2005; 36:337-41. [PMID: 15637314 DOI: 10.1161/01.str.0000153795.38388.72] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Female, compared with male, animals are protected from cerebral ischemic injury. Physiological concentrations of 17beta-estradiol (E2) reduce damage in experimental stroke. E2 augments angiogenesis in reproductive organs and noncerebral vascular beds. We hypothesized that E2 protects brain in stroke through modulation of angiogenesis. We quantified molecular markers of angiogenesis and capillary density before and after unilateral middle cerebral artery occlusion (MCAO). METHODS Female animals were ovariectomized, treated with 25 microg E2 or placebo implants, and subjected to 2-hour MCAO and 22 hours of reperfusion. Brain angiopoietin-1 (Ang-1), Ang-2, Tie-1, Tie-2, vascular endothelial growth factor (VEGF), VEGF R1, and VEGF R2 mRNA levels were determined by RNAse protection assays, and CD31-positive vessels were counted. RESULTS E2, but not ischemia, upregulated cerebral Ang-1 mRNA by 49%. Capillary density was higher in the brains of E2-treated animals. In estrogen receptor-alpha knockout (ERKO) mice, E2-mediated induction of Ang-1 mRNA was absent relative to wild-type littermates. CONCLUSIONS These results suggest that E2 increases Ang-1 and enhances capillary density in brain under basal conditions, priming the MCA territory for survival after experimental focal ischemia.
Collapse
Affiliation(s)
- Agnieszka A Ardelt
- Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, Md, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Theodorsson A, Hilke S, Rugarn O, Linghammar D, Theodorsson E. Serum concentrations of 17beta-estradiol in ovariectomized rats during two times six weeks crossover treatment by daily injections in comparison with slow-release pellets. Scand J Clin Lab Invest 2005; 65:699-705. [PMID: 16319044 DOI: 10.1080/00365510500375206] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Estrogens exert widespread biological functions that reach far beyond their well-known role in reproduction. Exogenous administration of 17beta-estradiol to ovariectomized experimental animals is of the utmost importance in elucidating its mechanisms of action. In the present study, we compared two different modes of exogenous administration of 17beta-estradiol to ovariectomized rats in relation to the serum 17beta-estradiol concentrations over prolonged periods of time. 17beta-estradiol was administered either by slow-release pellets (Innovative Research of America, Sarasota, Fl. 34236, USA, 90-day release, NHH-115, 1.5 mg) or by daily subcutaneous injections of 15 microg 17beta-estradiol dissolved in sesame oil. After 6 weeks, the mode of administration of estradiol was changed to the opposite method and continued for a further 6 weeks. Blood samples for measurement of serum 17beta-estradiol were taken every second week. After 2 weeks, the serum concentrations of 17beta-estradiol in group A initially receiving the pellets were 73 % higher (p<0.001) compared to those of group B receiving daily injections. The difference was even more prominent, 580 % (p<0.001), after 4 weeks. Steady state was reached at week 6 in group A, but already by week 4 in group B. Once steady state was reached, the concentrations were the same in both groups for the remainder of the experiment (12 weeks in total). Our study indicates that steady-state concentrations of 17beta-estradiol occur 5-6 weeks later than the 48 h the manufacturer of the slow-release pellets claims.
Collapse
Affiliation(s)
- A Theodorsson
- Department of Clinical Chemistry, Linköping University Hospital, Linköping, Sweden.
| | | | | | | | | |
Collapse
|
25
|
Toung TJ, Chen TY, Littleton-Kearney MT, Hurn PD, Murphy SJ. Effects of combined estrogen and progesterone on brain infarction in reproductively senescent female rats. J Cereb Blood Flow Metab 2004; 24:1160-6. [PMID: 15529016 DOI: 10.1097/01.wcb.0000135594.13576.d2] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent data from the Women's Health Initiative have highlighted many fundamental issues about the utility and safety of long-term estrogen use in women. Current hormone replacement therapy for postmenopausal women incorporates progestin with estrogen, but it is uncertain if combined therapy provides major cerebrovascular risks or benefits to these women. No experimental animal stroke studies have examined combined hormone administration. The authors tested the hypothesis that combined hormone treatment reduces ischemic injury in middle-aged female rat brain. Reproductively senescent female rats underwent 2-hour middle cerebral artery occlusion (MCAO) followed by 22 hours reperfusion. Estrogen implants were placed subcutaneously at least 7 days before MCAO, and progesterone intraperitoneal injections were given 30 minutes before MCAO, at initiation, and at 6 hours of reperfusion. Rats received no hormone, a 25-microg estrogen implant, a 25-microg estrogen implant plus 5 mg/kg intraperitoneal progesterone, or 5 mg/kg intraperitoneal progesterone. Cortical, caudoputamen, and total infarct volumes were assessed by 2,3,5-triphenyltetrazolium chloride staining and digital image analysis at 22 hours reperfusion. Cortical and total infarct volumes, except in the acute progesterone-treated group, were significantly attenuated in all estrogen-alone and combined hormone-treated groups. There were no significant differences in caudoputamen infarct volumes in all hormone-treated groups as compared with untreated rats. These data have potential clinical implications relative to stroke for postmenopausal women taking combined hormone replacement therapy.
Collapse
Affiliation(s)
- Thomas J Toung
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
26
|
Pearce KH, Iannone MA, Simmons CA, Gray JG. Discovery of novel nuclear receptor modulating ligands: an integral role for peptide interaction profiling. Drug Discov Today 2004; 9:741-51. [PMID: 15450240 DOI: 10.1016/s1359-6446(04)03201-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is currently a marketed drug for nearly every nuclear receptor for which the natural ligand has been identified. However, because of the complexity of signal transduction by this class of ligand-regulated transcription factors, few of these drugs have been optimized for pharmaceutical effectiveness. Over the past several years, structural and biochemical work has shed light on some of the ligand-induced features of nuclear receptors that enable them to trigger signal transduction cascades. This review will highlight the use of peptide interactions to cluster different classes of ligands and to identify novel nuclear receptor-modulating ligands as potential drug candidates. Phage display and a multiplexed peptide interaction assay are two of the technologies that are key to this approach. When used as part of a drug discovery platform, this type of biochemical characterization can bridge the gap between high-throughput chemical synthesis and disease model testing. Furthermore, the development of these methodologies is timely because there is a significant medical need for new and improved nuclear receptor drugs that retain beneficial effects but do not have undesired side effect activities.
Collapse
Affiliation(s)
- Kenneth H Pearce
- Department of Gene Expression and Protein Biochemistry, GlaxoSmithKline Discovery Research, Research Triangle Park, NC 27709, USA.
| | | | | | | |
Collapse
|
27
|
Serova LI, Maharjan S, Huang A, Sun D, Kaley G, Sabban EL. Response of tyrosine hydroxylase and GTP cyclohydrolase I gene expression to estrogen in brain catecholaminergic regions varies with mode of administration. Brain Res 2004; 1015:1-8. [PMID: 15223360 DOI: 10.1016/j.brainres.2004.04.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2004] [Indexed: 11/19/2022]
Abstract
The effect of different dose, mode and duration of estradiol administration was examined in the different brain catecholaminergic areas in ovariectomized (OVX) female rats. We determined changes in mRNA levels of tyrosine hydroxylase (TH), rate-limiting enzyme in catecholamine (CA) biosynthesis of GTP cyclohydrolase I (GTPCH), rate-limiting enzyme in biosynthesis as well as of tetrahydrobiopterin (BH4), and concentration of BH4, which is an essential cofactor for TH, tryptophan hydroxylase and nitric oxide synthase. Short-term administration of estradiol benzoate (EB) by five injections of 15 or 40 microg/kg 12 h apart led to increase in TH and GTPCH mRNA levels in dopaminergic and noradrenergic cell bodies of the ventral tegmental area (VTA), substantia nigra (SN), locus coeruleus (LC) and the nucleus of solitary tract (NTS) depending on dose of administration. Estrogen-elicited alterations in BH4 concentrations were mostly correlated with changes in GTPCH mRNA levels, except in SN. Long-term administration of estradiol by injections (EB: 25 microg/kg, 16 injections 26 h apart; 50 microg/kg, 16 injections 48 h apart) or pellets (0.1 mg 17 beta-estradiol, 14 days) were not very effective in modulating mRNA levels for both genes in most locations except the NTS. Long-term injections of EB elevated GTPCH mRNA levels throughout the NTS and in microvessels. Administration of estradiol by pellets led to decline of TH mRNA in rostral-medial and elevation in caudal parts of the NTS. Thus, estradiol has a complex and differential effect on TH and GTPCH gene expression in a tissue specific manner and depends on the mode of administration.
Collapse
Affiliation(s)
- Lidia I Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Women are protected from stroke relative to men until the years of menopause. Because stroke is the leading cause of serious, long-term disability in the United States, modeling sex-specific mechanisms and outcomes in animals is vital to research. Important research questions are focused on the effects of hormone replacement therapy, age, reproductive status, and identification of sex-specific risk factors. Available research relevant to stroke in the female has almost exclusively utilized rodent models. Gender-linked stroke outcomes are more detectable in experimental studies than in clinical trials and observational studies. Various estrogens have been extensively studied as neuroprotective agents in women, animals, and a variety of in vitro models of neural injury and degeneration. Most data in animal and cell models are based on 17 beta estradiol and suggest that this steroid is neuroprotective in injury from ischemia/reperfusion. However, current evidence for the clinical benefits of hormone replacement therapy is unclear. Future research in this area will need to expand into stroke models utilizing higher order, gyrencephalic animals such as nonhuman primates if we are to improve extrapolation to the human scenario and to direct and enhance the design of ongoing and future clinical studies and trials.
Collapse
Affiliation(s)
- Stephanie J Murphy
- Department of Anesthesiology and Peri-Operative Medicine, Oregon Health and Science University, Portland, OR, USA
| | | | | |
Collapse
|