1
|
Fröhlich E, Wahl R. The forgotten effects of thyrotropin-releasing hormone: Metabolic functions and medical applications. Front Neuroendocrinol 2019; 52:29-43. [PMID: 29935915 DOI: 10.1016/j.yfrne.2018.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/07/2018] [Accepted: 06/20/2018] [Indexed: 11/18/2022]
Abstract
Thyrotropin-releasing hormone (TRH) causes a variety of thyroidal and non-thyroidal effects, the best known being the feedback regulation of thyroid hormone levels. This was employed in the TRH stimulation test, which is currently little used. The role of TRH as a cancer biomarker is minor, but exaggerated responses to TSH and prolactin levels in breast cancer led to the hypothesis of a potential role for TRH in the pathogenesis of this disease. TRH is a rapidly degraded peptide with multiple targets, limiting its suitability as a biomarker and drug candidate. Although some studies reported efficacy in neural diseases (depression, spinal cord injury, amyotrophic lateral sclerosis, etc.), therapeutic use of TRH is presently restricted to spinocerebellar degenerative disease. Regulation of TRH production in the hypothalamus, patterns of expression of TRH and its receptor in the body, its role in energy metabolism and in prolactin secretion are addressed in this review.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Internal Medicine (Dept. of Endocrinology and Diabetology, Angiology, Nephrology and Clinical Chemistry), University of Tuebingen, Otfried-Muellerstrasse 10, 72076 Tuebingen, Germany; Center for Medical Research, Medical University Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Richard Wahl
- Internal Medicine (Dept. of Endocrinology and Diabetology, Angiology, Nephrology and Clinical Chemistry), University of Tuebingen, Otfried-Muellerstrasse 10, 72076 Tuebingen, Germany.
| |
Collapse
|
2
|
Ristic N, Ajdzanovic V, Manojlovic-Stojanoski M, Maliković J, Uscebrka G, Markovic Z, Milosevic V. Effects of Estradiol on Histological Parameters and Secretory Ability of Pituitary Mammotrophs in Ovariectomized Female Rats. CELL JOURNAL 2017; 19:461-468. [PMID: 28836408 PMCID: PMC5570411 DOI: 10.22074/cellj.2017.4334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/16/2016] [Indexed: 01/02/2023]
Abstract
Objective Estrogen replacement therapy remains current as a therapeutic approach to
treat menopausal symptoms and may significantly affect hormone-producing cells in the
female pituitaries. The aim of this study was to examine the histological parameters of
pituitary mammotrophs and prolactin secretion after chronic estradiol treatment in ovariectomized adult female rats, reflecting premature menopause. Materials and Methods In this experimental study, adult female Wistar rats were divided into non-ovariectomized (C),
ovariectomized (OVX) and estradiol-treated ovariectomized (OVX+E) groups. Estradiol dipropionate [0.625 mg/kg body mass per
day] was administered for four weeks, while the C and OVX groups received vehicle
alone. Mammotrophs were identified by the peroxidase-antiperoxidase (PAP) immunohistochemical procedure, while prolactin concentrations were measured by the
non-isotopic two-step assay (Delfia) method. Comparison of the differences between
groups was performed using one-way analysis of variance (ANOVA) and Tukay (honest significant difference) HSD test.
Results Ovariectomy caused significant (P<0.05) decreases in mammotroph optical
density (OD), volume density (VV) and number per mm2 by 29, 27 and 34%, respectively, in comparison with the C females. In the OVX+E group, significant (P<0.05)
increases in OD, cell volume, VVand number of mammotrophs per mm2 by 181, 15%,
5.8-fold and 5.2-fold, respectively, were observed when compared to OVX animals.
The serum prolactin concentration in OVX females was significantly (P<0.05) decreased by 14% in comparison to the C group, while in OVX+E females, prolactin
levels were significantly (P<0.05) increased by 53% compared to the OVX controls. Conclusion Estradiol supplementation in ovariectomized females is followed by
stimulatory histological and secretory changes of the mammotrophs. These results
could serve as indicators of possible prolactinome development upon estradiol application in premature menopausal subjects.
Collapse
Affiliation(s)
- Natasa Ristic
- Department of Cytology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia.
| | - Vladimir Ajdzanovic
- Department of Cytology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia.
| | - Milica Manojlovic-Stojanoski
- Department of Cytology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Jovana Maliković
- Department of Cytology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Gordana Uscebrka
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | | | - Verica Milosevic
- Department of Cytology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Medigović IM, Živanović JB, Ajdžanović VZ, Nikolić-Kokić AL, Stanković SD, Trifunović SL, Milošević VL, Nestorović NM. Effects of soy phytoestrogens on pituitary-ovarian function in middle-aged female rats. Endocrine 2015. [PMID: 26215277 DOI: 10.1007/s12020-015-0691-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of this study was to assess the effects of genistein (G) and daidzein (D) on the histological, hormonal, and functional parameters of the pituitary-ovarian axis in middle-aged female rats, and to compare these effects with the effects of estradiol (E), commonly used in the prevention and treatment of menopausal symptoms. Middle-aged (12 month old) Wistar female rats subcutaneously received 35 mg/kg of G, or 35 mg/kg of D, or 0.625 mg/kg of E every day for 4 weeks. Each of the treated groups had a corresponding control group. An intact control group was also established. G and D did not change the intracellular protein content within gonadotropic and lactotropic cells, but vacuolization was observed in all the cell types. In contrast, E caused an inhibition of gonadotropic and stimulation of lactotropic cells. Also, ovaries of middle-aged female rats exposed to G or D have more healthy primordial and primary follicles and less atretic follicles. E treatment in the ovaries had a mostly negative effect, which is reflected by the increased number of atretic follicles in all tested classes. G and D provoked decrease in CuZnSOD and CAT activity, while E treatment increased MnSOD and decreased CuZnSOD and GSHPx activity. All the treatments increased serum estradiol and decreased testosterone levels, while D and E increased the serum progesterone level. In conclusion, soy phytoestrogens exhibited beneficial effects on pituitary-ovarian function in middle-aged female rats, as compared to estradiol.
Collapse
Affiliation(s)
- Ivana M Medigović
- Department of Citology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia.
| | - Jasmina B Živanović
- Department of Citology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Vladimir Z Ajdžanović
- Department of Citology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Aleksandra L Nikolić-Kokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Sanja D Stanković
- Center for Medical Biochemistry, Clinical Centre of Serbia, School of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Svetlana L Trifunović
- Department of Citology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Verica Lj Milošević
- Department of Citology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Nataša M Nestorović
- Department of Citology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Zhao WJ, Jiang Q, Mei JP. Neurohypophyseal Neuregulin 1 Is Derived from the Hypothalamus as a Potential Prolactin Modulator. Neuroendocrinology 2015; 102:288-299. [PMID: 26043804 DOI: 10.1159/000431377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 05/14/2015] [Indexed: 02/05/2023]
Abstract
Although neuregulin 1 (Nrg1) has been identified in the rat hypothalamus, the localisation of Nrg1 in the hypothalamus-hypophyseal structure and its functions remain unclear and require further elucidation. In this study, we identified the existence of Nrg1β types I-III in the rat hypothalamus. We demonstrated that Nrg1 was partially localised in somatostatin-positive cells in the periventricular nucleus. It was also co-localised with arginine vasopressin in the supraoptic nucleus, median eminence and pituitary stalk. Nrg1 was also extensively distributed in the posterior pituitary (PP), including the projected neuronal fibres that surround the vascular structure and Herring bodies. Western blotting confirmed that these signals were primarily produced by soluble Nrg1 derived from a 45-kDa Nrg1 precursor mainly identified in the hypothalamus. Similar to Nrg1α, Nrg1β increased the prolactin (PRL) expression in rat pituitary RC-4B/C cells, which can be inhibited by an Akt inhibitor. In addition, Nrg1β had no apparent effect on growth hormone expression at the mRNA or protein levels. Collectively, we conclude that hypothalamic Nrg1 may be transported to the PP as the β form. We further hypothesise that Nrg1β may function via the regulation of PRL expression through a paracrine mechanism.
Collapse
Affiliation(s)
- Wei-Jiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | | | | |
Collapse
|
5
|
Spuch C, Ortolano S, Navarro C. LRP-1 and LRP-2 receptors function in the membrane neuron. Trafficking mechanisms and proteolytic processing in Alzheimer's disease. Front Physiol 2012; 3:269. [PMID: 22934024 PMCID: PMC3429044 DOI: 10.3389/fphys.2012.00269] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/26/2012] [Indexed: 11/13/2022] Open
Abstract
Low density lipoprotein receptor-related protein (LRP) belongs to the low-density lipoprotein receptor family, generally recognized as cell surface endocytic receptors, which bind and internalize extracellular ligands for degradation in lysosomes. Neurons require cholesterol to function and keep the membrane rafts stable. Cholesterol uptake into the neuron is carried out by ApoE via LRPs receptors on the cell surface. In neurons the most important are LRP-1 and LRP-2, even it is thought that a causal factor in Alzheimer's disease (AD) is the malfunction of this process which cause impairment intracellular signaling as well as storage and/or release of nutrients and toxic compounds. Both receptors are multifunctional cell surface receptors that are widely expressed in several tissues including neurons and astrocytes. LRPs are constituted by an intracellular (ICD) and extracellular domain (ECD). Through its ECD, LRPs bind at least 40 different ligands ranging from lipoprotein and protease inhibitor complex to growth factors and extracellular matrix proteins. These receptors has also been shown to interact with scaffolding and signaling proteins via its ICD in a phosphorylation-dependent manner and to function as a co-receptor partnering with other cell surface or integral membrane proteins. Thus, LRPs are implicated in two major physiological processes: endocytosis and regulation of signaling pathways, which are both involved in diverse biological roles including lipid metabolism, cell growth processes, degradation of proteases, and tissue invasion. Interestingly, LRPs were also localized in neurons in different stages, suggesting that both receptors could be implicated in signal transduction during embryonic development, neuronal outgrowth or in the pathogenesis of AD.
Collapse
Affiliation(s)
- Carlos Spuch
- Department of Pathology and Neuropathology, University Hospital of VigoVigo, Spain
| | | | | |
Collapse
|
6
|
Sosa LDV, Gutiérrez S, Petiti JP, Palmeri CM, Mascanfroni ID, Soaje M, De Paul AL, Torres AI. 17β-Estradiol modulates the prolactin secretion induced by TRH through membrane estrogen receptors via PI3K/Akt in female rat anterior pituitary cell culture. Am J Physiol Endocrinol Metab 2012; 302:E1189-97. [PMID: 22354782 DOI: 10.1152/ajpendo.00408.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Considering that estradiol is a major modulator of prolactin (PRL) secretion, the aim of the present study was to analyze the role of membrane estradiol receptor-α (mERα) in the regulatory effect of this hormone on the PRL secretion induced by thyrotropin-releasing hormone (TRH) by focusing on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway activation. Anterior pituitary cell cultures from female rats were treated with 17β-estradiol (E(2), 10 nM) and its membrane-impermeable conjugated estradiol (E(2)-BSA, 10 nM) alone or coincubated with TRH (10 nM) for 30 min, with PRL levels being determined by RIA. Although E(2), E(2)-BSA, TRH, and E(2)/TRH differentially increased the PRL secretion, the highest levels were achieved with E(2)-BSA/TRH. ICI-182,780 did not modify the TRH-induced PRL release but significantly inhibited the PRL secretion promoted by E(2) or E(2)-BSA alone or in coincubation with TRH. The PI3K inhibitors LY-294002 and wortmannin partially inhibited the PRL release induced by E(2)-BSA, TRH, and E(2)/TRH and totally inhibited the PRL levels stimulated by E(2)-BSA/TRH, suggesting that the mER mediated the cooperative effect of E(2) on TRH-induced PRL release through the PI3K pathway. Also, the involvement of this kinase was supported by the translocation of its regulatory subunit p85α from the cytoplasm to the plasma membrane in the lactotroph cells treated with E(2)-BSA and TRH alone or in coincubation. A significant increase of phosphorylated Akt was induced by E(2)-BSA/TRH. Finally, the changes of ERα expression in the plasmalemma of pituitary cells were examined by confocal microscopy and flow cytometry, which revealed that the mobilization of intracellular ERα to the plasma membrane of lactotroph cells was only induced by E(2). These finding showed that E(2) may act as a modulator of the secretory response of lactotrophs induced by TRH through mER, with the contribution by PI3K/Akt pathway activation providing a new insight into the mechanisms underlying the nongenomic action of E(2) in the pituitary.
Collapse
Affiliation(s)
- Liliana d V Sosa
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba. Haya de la Torre esq. Enrique Barros, Ciudad Universitaria, CP 5000, Córdoba, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhao W, Ren SG. Neuregulin-1 (Nrg1) is mainly expressed in rat pituitary gonadotroph cells and possibly regulates prolactin (PRL) secretion in a juxtacrine manner. J Neuroendocrinol 2011; 23:1252-62. [PMID: 21919974 DOI: 10.1111/j.1365-2826.2011.02223.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The binding of Neuregulin-1 (Nrg1) to its cognate receptors ErbB-3 and -4 mediates intercellular and intracellular communication. In vitro, this interaction has been shown to control prolactin (PRL) secretion from pituitary tumour cells. However, Nrg1/ErbB signalling and its function in vivo are not well understood. In the present study, we demonstrated that type I and III Nrg1 isoforms were expressed in the rat anterior pituitary. We observed that Nrg1 positive gonadotrophs can form contacts with lactotrophs, which are positive for ErbB-3 receptor. In addition, we show that gonadotroph cell-derived Nrg1 regulates the secretion of an 18 kDa form of PRL from pituitary lactosomatotroph GH3 cells in vitro. The results obtained strongly suggest that gonadotrophs are the major source of Nrg1 in the normal anterior pituitary and that Nrg1 may function as a paracrine/juxtacrine regulator of PRL secretion.
Collapse
Affiliation(s)
- W Zhao
- Shantou University Medical College, Center for Neuroscience, Shantou, Guangdong Province 515041, China.
| | | |
Collapse
|
8
|
Cooper O, Vlotides G, Fukuoka H, Greene MI, Melmed S. Expression and function of ErbB receptors and ligands in the pituitary. Endocr Relat Cancer 2011; 18:R197-211. [PMID: 21917845 PMCID: PMC3758362 DOI: 10.1530/erc-11-0066] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The role of ErbB family in discreet pituitary functions is reviewed. Several ErbB receptor ligands, EGF, TGFα, and heregulin are differentially expressed in normal gonadotroph and lacto-somatotroph lineages, and other elements of the anterior pituitary. ErbB receptors, i.e. EGFR and ErbB2, are also localized to the anterior pituitary with preferential EGFR lactosomatotroph expression. EGF regulates CRH and ACTH secretion and corticotroph proliferation as well as exhibiting autocrine and paracrine effects on gonadotrophs and on lactosomatotroph proliferation, gene and protein expression, and hormonal secretion. EGF and EGFR are expressed in both functioning and non-functioning pituitary adenomas, with higher expression in more aggressive tumor subtypes. ErbB2 receptor is detected in all tumor subtypes, particularly in invasive tumors. ErbB tyrosine kinase inhibitors regulate hormonal secretion, cell morphology, and proliferation in lacto-somatotroph tumors, reflecting the emerging application of targeted pituitary therapeutics.
Collapse
Affiliation(s)
- Odelia Cooper
- Department of Medicine, Pituitary Center, Cedars-Sinai Medical Center, Academic Affairs, Room 2015, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | | | | | | | | |
Collapse
|
9
|
De Paul AL, Gutiérrez S, Sabatino ME, Mukdsi JH, Palmeri CM, Soaje M, Petiti JP, Torres AI. Epidermal growth factor induces a sexually dimorphic proliferative response of lactotroph cells through protein kinase C-ERK1/2-Pit-1 in vitro. Exp Physiol 2010; 96:226-39. [DOI: 10.1113/expphysiol.2010.054502] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Spuch C, Diz-Chaves Y, Pérez-Tilve D, Alvarez-Crespo M, Mallo F. Prolactin-releasing Peptide (PrRP) increases prolactin responses to TRH in vitro and in vivo. Endocrine 2007; 31:119-24. [PMID: 17873321 DOI: 10.1007/s12020-007-0031-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 05/17/2007] [Accepted: 05/17/2007] [Indexed: 11/25/2022]
Abstract
The Prolactin-releasing Peptide (PrRP) is a 31-aminoacid peptide produced and secreted from the hypothalamus, and postulated to promote the prolactin release from the pituitary. However, the action of PrRP remain controversial, since it was described to have potency comparable enough to TRH, although there are many evidences that PrRP is less potent than TRH. Here we have studied the effects of PrRP alone or in combination with TRH in the prolactin levels of rat pituitary primary cell cultures in vitro and also in vivo prolactin responses in randomly cycling and estrogens-treated female rats. PrRP itself increased prolactin levels in vitro and in vivo, although in a magnitude several times lower than TRH. In vivo PrRP promotes an atypical non-peaking progressive and maintained prolactin increase. On the other hand, PrRP markedly increased the prolactin responses to TRH in vitro (10-30 fold increase) and in vivo (up to three-fold increase). In addition, FGF-2 and EGF, two important growth factors present in the pituitary, reduced the PrRP-induced prolactin increase in vitro. Taken together our results suggest that PrRP released from the hypothalamus may be relevant to modulate the circulating prolactin levels in the rat.
Collapse
Affiliation(s)
- Carlos Spuch
- Department of Functional Biology and Health Sciences, Laboratory of Endocrinology, Faculty of Sciences, Campus of Vigo, University of Vigo, Vigo, 36310, Spain.
| | | | | | | | | |
Collapse
|