1
|
Legorreta-Haquet MV, Santana-Sánchez P, Chávez-Sánchez L, Chávez-Rueda AK. The effect of prolactin on immune cell subsets involved in SLE pathogenesis. Front Immunol 2022; 13:1016427. [PMID: 36389803 PMCID: PMC9650038 DOI: 10.3389/fimmu.2022.1016427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/13/2022] [Indexed: 08/27/2023] Open
Abstract
The higher frequency of autoimmune diseases in the female population compared to males suggests that certain hormones, such as prolactin (PRL), play a role in determining the prevalence of autoimmunity in women, particularly during childbearing age. PRL can act not only as a hormone but also as a cytokine, being able to modulate immune responses. Hyperprolactinemia has been implicated in the pathogenesis of various autoimmune diseases where it may affect disease activity. One of the conditions where PRL has such a role is systemic lupus erythematosus (SLE). PRL regulates the proliferation and survival of both lymphoid and myeloid cells. It also affects the selection of T-cell repertoires by influencing the thymic microenvironment. In autoimmune conditions, PRL interferes with the activity of regulatory T cells. It also influences B cell tolerance by lowering the activation threshold of anergic B cells. The production of CD40L and cytokines, such as interleukin IL-6, are also promoted by PRL. This, in turn, leads to the production of autoantibodies, one of the hallmarks of SLE. PRL increases the cytotoxic activity of T lymphocytes and the secretion of proinflammatory cytokines. The production of proinflammatory cytokines, particularly those belonging to the type 1 interferon (IFN) family, is part of the SLE characteristic genetic signature. PRL also participates in the maturation and differentiation of dendritic cells, promoting the presentation of autoantigens and high IFNα secretion. It also affects neutrophil function and the production of neutrophil traps. Macrophages and dendritic cells can also be affected by PRL, linking this molecule to the abnormal behavior of both innate and adaptive immune responses.This review aimed to highlight the importance of PRL and its actions on the cells of innate and adaptive immune responses. Additionally, by elucidating the role of PRL in SLE etiopathogenesis, this work will contribute to a better understanding of the factors involved in SLE development and regulation.
Collapse
Affiliation(s)
| | | | | | - Adriana Karina Chávez-Rueda
- Unidad de Investigación Médica en Inmunología (UIM) en Inmunología, Hospital de Pediatría, Centro Médico Nacional (CMN) Siglo XXI, Instituto Mexicano del Seguro Social, México City, Mexico
| |
Collapse
|
2
|
Duc Nguyen H, Oh H, Yu BP, Hoang NMH, Jo WH, Young Chung H, Kim MS. Associations between Prolactin, Diabetes, and Cognitive Impairment: A Literature Review. Neuroendocrinology 2022; 112:856-873. [PMID: 34963126 DOI: 10.1159/000521653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Converging evidence indicates prolactin (PRL) and diabetes play an important role in the pathophysiology of cognitive impairment. However, little is known about the mechanisms responsible for the effects of PRL and diabetes on cognitive impairment. SUMMARY We summarize and review the available literature and current knowledge of the association between PRL and diabetes on aspects of cognitive impairment. KEY MESSAGES The phosphatidylinositol 3-kinase/protein kinase B pathway is central to the molecular mechanisms underlying how PRL and diabetes interact in cognitive impairment. Further work is needed to identify the interaction between PRL and diabetes, especially in the molecular aspects of cognitive impairment, which can suggest novel strategies for cognitive dysfunction treatment.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea,
| | - Hojin Oh
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Ngoc Minh Hong Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Won Hee Jo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
3
|
Duc Nguyen H, Pal Yu B, Hoang NHM, Jo WH, Young Chung H, Kim MS. Prolactin and Its Altered Action in Alzheimer's Disease and Parkinson's Disease. Neuroendocrinology 2022; 112:427-445. [PMID: 34126620 DOI: 10.1159/000517798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Prolactin (PRL) is one of the most diverse pituitary hormones and is known to modulate normal neuronal function and neurodegenerative conditions. Many studies have described the influence that PRL has on the central nervous system and addressed its contribution to neurodegeneration, but little is known about the mechanisms responsible for the effects of PRL on neurodegenerative disorders, especially on Alzheimer's disease (AD) and Parkinson's disease (PD). SUMMARY We review and summarize the existing literature and current understanding of the roles of PRL on various PRL aspects of AD and PD. KEY MESSAGES In general, PRL is viewed as a promising molecule for the treatment of AD and PD. Modulation of PRL functions and targeting of immune mechanisms are needed to devise preventive or therapeutic strategies.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Ngoc Hong Minh Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Won Hee Jo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
4
|
Chua XY, Salomon A. Ovalbumin Antigen-Specific Activation of Human T Cell Receptor Closely Resembles Soluble Antibody Stimulation as Revealed by BOOST Phosphotyrosine Proteomics. J Proteome Res 2021; 20:3330-3344. [PMID: 34018748 DOI: 10.1021/acs.jproteome.1c00239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Activation of the T cell receptor (TCR) leads to a network of early signaling predominantly orchestrated by tyrosine phosphorylation in T cells. The TCR is commonly activated using soluble anti-TCR antibodies, but this approach is not antigen-specific. Alternatively, activating the TCR using specific antigens of a range of binding affinities in the form of a peptide-major histocompatibility complex (pMHC) is presumed to be more physiological. However, due to the lack of wide-scale phosphotyrosine (pTyr) proteomic studies directly comparing anti-TCR antibodies and pMHC, a comprehensive definition of these activated states remains enigmatic. Elucidation of the tyrosine phosphoproteome using quantitative pTyr proteomics enables a better understanding of the unique features of these activating agents and the role of ligand binding affinity on signaling. Here, we apply the recently established Broad-spectrum Optimization Of Selective Triggering (BOOST) to examine perturbations in tyrosine phosphorylation of human TCR triggered by anti-TCR antibodies and pMHC. Our data reveal that high-affinity ovalbumin (OVA) pMHC activation of the human TCR triggers a largely similar, albeit potentially stronger, pTyr-mediated signaling regulatory axis compared to the anti-TCR antibody. The signaling output resulting from OVA pMHC variants correlates well with their weaker affinities, enabling affinity-tunable control of signaling strength. Collectively, we provide a framework for applying BOOST to compare pTyr-mediated signaling pathways of human T cells activated in an antigen-independent and antigen-specific manner.
Collapse
Affiliation(s)
- Xien Yu Chua
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island 02912, United States
| | - Arthur Salomon
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
5
|
Gorvin CM. The prolactin receptor: Diverse and emerging roles in pathophysiology. JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY 2015; 2:85-91. [PMID: 29204371 PMCID: PMC5685068 DOI: 10.1016/j.jcte.2015.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/10/2015] [Indexed: 12/21/2022]
Abstract
Investigations over two decades have revised understanding of the prolactin hormone. Long thought to be merely a lactogenic hormone, its list of functions has been extended to include: reproduction, islet differentiation, adipocyte control and immune modulation. Prolactin functions by binding cell-surface expressed prolactin receptor, initiating signaling cascades, primarily utilizing Janus kinase-signal transducer and activator of transcription (JAK-STAT). Pathway disruption has been implicated in tumorigenesis, reproductive abnormalities, and diabetes. Prolactin can also be secreted from extrapituitary sources adding complexity to understanding of its physiological functions. This review aims to describe how prolactin exerts its pathophysiological roles by endocrine and autocrine means.
Collapse
Affiliation(s)
- Caroline M Gorvin
- Academic Endocrine Unit, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Oxford, OX3 7LJ, UK
| |
Collapse
|
6
|
Matera L, Beltramo E, Martinuzzi E, Buttiglieri S. Effect of prolactin on carcinoembryonic antigen-specific cytotoxic T lymphocyte response induced by dendritic cells. Clin Exp Immunol 2004; 137:320-8. [PMID: 15270849 PMCID: PMC1809106 DOI: 10.1111/j.1365-2249.2004.02533.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The cytokine hormone prolactin (PRL) has been shown previously to modulate native cellular responses and maturation of antigen-presenting cells. Here we have addressed its effect on the antigen-specific response of cytotoxic T lymphocytes (CTL). CTL were generated from HLA-A2 lymphocytes after three rounds of stimulation with autologous dendritic cells loaded with HLA-A2-restricted carcinoembrionic antigen (CEA) Cap-1 (YLSGANLNL) peptide. Selected cultures were expanded on cytokine-supplemented feeder-layers, enriched for CD8+ lymphocytes and analysed for PRL-receptor (PRL-R) expression and PRL responsiveness. Resting CD8+ lymphocytes were negative for PRL-R, whereas antigen-activated CD8+ lymphocytes derived from long-term cultures were highly positive. Results of a 51Cr release assay showed CTL killing of CEA-loaded, but not unloaded, T2 cell line and the CEA-positive gastric carcinoma cell line KATO, but not of the CEA-negative T leukaemia cell line Jurkat. Interferon (IFN)-gamma release, evaluated in an ELISPOT assay against CEA-loaded T2, was enhanced (P < 0.05) by concentrations of PRL (12-25 ng/ml) very close to the physiological levels (6-20 ng/ml), but was decreased (P < 0.05) by high concentrations (200 ng/ml). Pre-incubation of the stimulators with the anti-MHC class I MoAb W6.32 induced a 40-60% decrease of the PRL-boosted IFN-gamma release, thus proving the MHC restriction of the lymphocyte response. Cytotoxicity against CEA-loaded T2 and KATO cell lines was also increased by 12-25 ng (P < 0.05) and decreased (P < 0.05) by 200 ng PRL. Pre-incubation of CTL with an antibody specific for the PRL-R almost completely abrogated this effect.
Collapse
Affiliation(s)
- L Matera
- Department of Internal Medicine, University of Turin, Turin, Italy.
| | | | | | | |
Collapse
|
7
|
Abstract
The contribution of prolactin (PRL) to the pathogenesis and progression of human breast cancer at the cellular, transgenic, and epidemiological levels is increasingly appreciated. Acting at the endocrine and autocrine/paracrine levels, PRL functions to stimulate the growth and motility of human breast cancer cells. The actions of this ligand are mediated by at least six recognized PRL receptor isoforms found on, or secreted by, human breast epithelium. The PRL/PRL receptor complex associates with and activates several signaling networks that are shared with other members of the cytokine receptor superfamily. Coupled with the recently identified intranuclear function of PRL, these networks are integrated into the in vitro and in vivo actions induced by ligand. These findings indicate that antagonists of PRL/PRL receptor interaction or PRL receptor-associated signal transduction may be of considerable utility in the treatment of human breast cancer.
Collapse
Key Words
- cis, cytokine-inducible inhibitor of signaling
- cypb, cyclophilin b
- ecd, extracellular domain
- egf, epidermal growth factor
- ghr, gh receptor
- hprlr, human prlr
- icd, intracellular domain
- jak, janus kinase 2
- jnk, c-jun n-terminal kinase
- pias, peptide inhibitor of activated stat
- pi3k, phosphatidylinositol 3′-kinase
- prl, prolactin
- ptdins, phosphatidylinositol
- prlbp, prl binding protein
- prlr, prl receptor
- shp-2, sh2-containing protein tyrosine phosphatase
- socs, suppressor of cytokine signaling
- stat, signal transducer and activator of transcription
Collapse
Affiliation(s)
- Charles V Clevenger
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
8
|
Abstract
Prolactin (PRL) is a pituitary hormone and a cytokine that plays an important role in rodent and human immune responses, including autoimmune diseases. However, many cells and tissues other than the pituitary make PRL, including immune cells. Here, we will present the evidence demonstrating PRL synthesis by different subtypes of immune cells from humans, mice and rats, describe the regulation of PRL gene expression in human lymphocytes, and discuss the functions of PRL made by immune cells. Finally, we will present evidence for involvement of immune cell PRL in human autoimmune disease and suggest how it might play a unique immunoregulatory role.
Collapse
Affiliation(s)
- D W Montgomery
- Research Service, Southern Arizona VA Health Care System, Tucson 85723, USA.
| |
Collapse
|
9
|
Hooghe R, Dogusan Z, Martens N, Velkeniers B, Hooghe-Peters EL. Effects of prolactin on signal transduction and gene expression: possible relevance for systemic lupus erythematosus. Lupus 2002; 10:719-27. [PMID: 11721698 DOI: 10.1191/096120301717164958] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Receptors for prolactin (PRL-R) are expressed in normal leukocytes from rat and man. PRL signals through PRL-R associated Janus tyrosine kinase (Jak)-2 and signal transducers and activators of transcription (Stat). In addition, in human leukocytes PRL also activates the p38 MAP kinase pathway. PRL, at physiological concentrations, stimulates the expression of the interferon regulatory factor (IRF)-1 gene in rat spleen and bone marrow cells. In man, genes induced by PRL include several members of the 'suppressors of cytokine signaling' (SOCS) family and inducible nitric oxide synthase (iNOS; in mononuclear cells and in granulocytes) and IRF-1 (in granulocytes). Thus, in normal leukocytes, PRL induces the expression of several genes relevant to innate and acquired immune responses. Sex hormones, such as estrogen and PRL, have been implicated in the pathogenesis of murine and human SLE. Also defective signaling in leukocytes is a feature of the disease. What the origin is of aberrant signaling processes in SLE lymphocytes and how they relate to tolerance breakdown and immunopathology is still unknown. It is not unlikely that PRL is a player at some level. The exact contribution of PRL to immune responses in normal subjects and in SLE patients is not known. Further work should also indicate whether PRL might contribute to the onset or progression of the disease and assess the possible benefits of manipulating PRL concentrations in patients.
Collapse
Affiliation(s)
- R Hooghe
- Pharmacology Department, Medical School, Free University of Brussels (VUB), Belgium
| | | | | | | | | |
Collapse
|
10
|
Abstract
Within the immune system, multiple isoforms of the human prolactin receptor (PRLr) serve to mediate the effects of its ligand (PRL). Now numbering four, these isoforms are structurally and functionally distinct, demonstrating significant differences in ligand affinities, kinetics of transduction and the transduction proteins activated. The proximal transduction pathways activated during PRLr-associated signaling include the tyrosine kinases Jak2, Fyn and Tec, the phosphatase SHP-2, the guanine nucleotide exchange factor Vav, and the signaling suppressor SOCS. Differential activation of these pathways may contribute to the pleiotropism of PRL action in tissues of the immune system.
Collapse
Affiliation(s)
- C V Clevenger
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia 19066, USA.
| | | |
Collapse
|
11
|
Abstract
Evidence accumulated over the last two decades indicates important actions for prolactin (PRL) in regulation of several functions of the immune system. That PRL can serve to facilitate immune cell proliferation is well established. In addition, PRL appears to play a salient role in the genesis and/or potentiation of certain autoimmune diseases. Recent evidence from several laboratories has extended the spectrum of PRL actions in immunological systems to include regulation of lymphocyte pool size through the process of apoptosis. Experimental results obtained using lactogen-dependent rat pre-T cell lines, the Nb2 lymphoma, have demonstrated that PRL suppresses cell death mechanisms activated by cytokine/hormone deprivation and cytotoxic drugs such as glucocorticoids. In this paper, we review results from studies conducted to investigate the mechanism(s) underlying PRL-regulated apoptosis suppression. Effects of the hormone on expression of apoptosis-associated genes of the Bcl-2 family as well as the protooncogene pim-1 in proliferating Nb2 sublines and in cells exposed to apoptotic stimuli are presented. It is concluded that PRL-mediated apoptosis suppression in immune cells reflects a complex interaction among several gene products.
Collapse
Affiliation(s)
- A R Buckley
- College of Pharmacy, Department of Molecular and Cellular Physiology, University of Cincinnati Medical Center, 3223 Eden Avenue, P.O. Box 670004, Cincinnati, OH 45267-0004, USA.
| | | |
Collapse
|
12
|
Krumenacker JS, Narang VS, Buckley DJ, Buckley AR. Prolactin signaling to pim-1 expression: a role for phosphatidylinositol 3-kinase. J Neuroimmunol 2001; 113:249-59. [PMID: 11164909 DOI: 10.1016/s0165-5728(00)00430-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sublines of the lactogen-dependent, rat pre-T Nb2 lymphoma are useful as a model for the investigation of prolactin (PRL) signaling mechanisms, regulation of transcription of target genes, and the immunomodulatory and anti-apoptotic actions of the hormone in T lymphocytes. In the present study, coupling of various tyrosine, serine/threonine, and phospholipid kinase signaling mechanisms to PRL-stimulated Nb2-11 cell proliferation and expression of the protooncogene, pim-1, was investigated utilizing pharmacologic antagonists of a broad spectrum of tyrosine kinases (tyrphostin A25), and the specific enzymes, Jak2 (tyrphostin B42) and ZAP-70 (piceatannol), as well as mitogen-activated protein kinase (MAPK, PD98059), protein kinase C (PKC, calphostin C), and phosphatidylinositol 3-kinase (PI3-kinase, LY294002). Inhibition of each pathway attenuated PRL-stimulated Nb2-11 cell proliferation in a concentration-dependent manner. Blockade of MAPK was the least efficacious; it inhibited proliferation maximally by 60%. Northern blot analysis of pim-1 expression in antagonist-treated cells revealed that MAPK, Jak2 and PI3-kinase appeared to signal to initiation of pim-1 transcription; its expression was attenuated by each of the antagonists. In other experiments, PRL was shown to rapidly activate a downstream effector of PI3-kinase, Akt, and this effect was also blocked by LY294002. It is concluded that PRL-stimulated Nb2 cell proliferation requires participation of each of the signaling pathways investigated. Moreover, hormone-mediated expression of pim-1 appears to reflect signaling by MAPK, Jak2, and PI3-kinase.
Collapse
Affiliation(s)
- J S Krumenacker
- College of Pharmacy and Department of Molecular and Cellular Physiology, University of Cincinnati Medical Center, 3223 Eden Avenue, P.O. Box 670004, Cincinnati, OH 45267-0004, USA
| | | | | | | |
Collapse
|
13
|
Clevenger CV, Rycyzyn MA, Syed F, Kline JB. Prolactin Receptor Signal Transduction. PROLACTIN 2001. [DOI: 10.1007/978-1-4615-1683-5_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
14
|
Matera L, Galetto A, Geuna M, Vekemans K, Ricotti E, Contarini M, Moro F, Basso G. Individual and combined effect of granulocyte-macrophage colony-stimulating factor and prolactin on maturation of dendritic cells from blood monocytes under serum-free conditions. Immunology 2000; 100:29-36. [PMID: 10809956 PMCID: PMC2326992 DOI: 10.1046/j.1365-2567.2000.00996.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prolactin (PRL) shares structural and functional features with haemopoietic factors and cytokine peptides. Dendritic cells (DC) are involved in both initiating the primary and boosting the secondary host immune response and can be differentiated in vitro from precursors under the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) plus other factors. Because PRL has been shown to functionally interact with GM-CSF, we have addressed its role on GM-CSF-driven differentiation of DC. Monocytic DC precursors from peripheral blood mononuclear cells (PBMC) were enriched either by adhesion to a plastic surface or CD14-positive selection and cultured for 7 days in serum-free medium containing GM-CSF, interleukin (IL)-4 and PRL, alone or in combination. Cells with large, veiled cytoplasm, expressing major histocompatibility complex (MHC) class II and the costimulatory molecules CD80, CD86 and CD40 and lacking the monocyte marker CD14, were considered as having the phenotype of cytokine-generated DC. Functional maturation was assessed by proliferation and interferon-gamma (IFN-gamma) release of allogeneic T lymphocytes. Physiological (10-20 ng/ml) concentrations of PRL interacted synergistically with GM-CSF and the effect was similar to that induced by IL-4 on GM-CSF-driven DC maturation. When used alone, the physiological concentrations of PRL were inhibitory, whereas higher concentrations (80 ng/ml) were stimulatory. The synergistic effect of PRL may in part be caused by its ability to counteract the down-modulation of the GM-CSF receptor observed in serum-free conditions. These data provide further evidence of the significance of PRL in the process of T lymphocyte activation.
Collapse
Affiliation(s)
- L Matera
- Department of Internal Medicine, University of Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- X R Bustelo
- Department of Pathology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.
| |
Collapse
|