1
|
Komatsuda H, Kono M, Wakisaka R, Sato R, Inoue T, Kumai T, Takahara M. Harnessing Immunity to Treat Advanced Thyroid Cancer. Vaccines (Basel) 2023; 12:45. [PMID: 38250858 PMCID: PMC10820966 DOI: 10.3390/vaccines12010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
The incidence of thyroid cancer (TC) has increased over the past 30 years. Although differentiated thyroid cancer (DTC) has a good prognosis in most patients undergoing total thyroidectomy followed by radioiodine therapy (RAI), 5-10% of patients develop metastasis. Anaplastic thyroid cancer (ATC) has a low survival rate and few effective treatments have been available to date. Recently, tyrosine kinase inhibitors (TKIs) have been successfully applied to RAI-resistant or non-responsive TC to suppress the disease. However, TC eventually develops resistance to TKIs. Immunotherapy is a promising treatment for TC, the majority of which is considered an immune-hot malignancy. Immune suppression by TC cells and immune-suppressing cells, including tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells, is complex and dynamic. Negative immune checkpoints, cytokines, vascular endothelial growth factors (VEGF), and indoleamine 2,3-dioxygenase 1 (IDO1) suppress antitumor T cells. Basic and translational advances in immune checkpoint inhibitors (ICIs), molecule-targeted therapy, tumor-specific immunotherapy, and their combinations have enabled us to overcome immune suppression and activate antitumor immune cells. This review summarizes current findings regarding the immune microenvironment, immunosuppression, immunological targets, and immunotherapy for TC and highlights the potential efficacy of immunotherapy.
Collapse
Affiliation(s)
- Hiroki Komatsuda
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
| | - Michihisa Kono
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Risa Wakisaka
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
| | - Ryosuke Sato
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
| | - Takahiro Inoue
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
| | - Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Miki Takahara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa 078-8510, Japan
| |
Collapse
|
2
|
Das B, Senapati S. Immunological and functional aspects of MAGEA3 cancer/testis antigen. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 125:121-147. [PMID: 33931137 DOI: 10.1016/bs.apcsb.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Identification of ectopic gene activation in cancer cells serves as a basis for both gene signature-guided tumor targeting and unearthing of oncogenic mechanisms to expand the understanding of tumor biology/oncogenic process. Proteins expressed only in germ cells of testis and/or placenta (immunoprivileged organs) and in malignancies are called cancer testis antigens; they are antigenic because of the lack of antigen presentation by those specific cell types (germ cells), which limits the exposure of the proteins to the immune cells. Since the Cancer Testis Antigens (CTAs) are immunogenic and expressed in a wide variety of cancer types, CT antigens have become interesting target for immunotherapy against cancer. Among CT antigens MAGEA family is reported to have 12 members (MAGEA1 to MAGEA12). The current review highlights the studies on MAGEA3 which is a CT antigen and reported in almost all types of cancer. MAGEA3 is well tried for cancer immunotherapy. Recent advances on its functional and immunological aspect warranted much deliberation on effective therapeutic approach, thus making it a more interesting target for cancer therapy.
Collapse
Affiliation(s)
- Biswajit Das
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| |
Collapse
|
3
|
Das B, Senapati S. Functional and mechanistic studies reveal MAGEA3 as a pro-survival factor in pancreatic cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:294. [PMID: 31287009 PMCID: PMC6615156 DOI: 10.1186/s13046-019-1272-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/10/2019] [Indexed: 12/17/2022]
Abstract
Background In the era of personalized therapy, functional annotation of less frequent genetic aberrations will be instrumental in adapting effective therapeutic in clinic. Overexpression of Melanoma associated antigen A3 (MAGEA3) is reported in certain pancreatic cancer (PCA) patients. The major objective of the current study was to investigate the functional role of MAGEA3 in pancreatic cancer cells (PCCs) growth and survival. Methods Using overexpression (tet-on regulated system and constitutive expression system) and knockdown (by siRNA and shRNA) approach, we dissected the mechanistic role of MAGEA3 in pancreatic cancer pathogenesis. We generated MAGEA3 expressing stable PCA cell lines and mouse primary pancreatic epithelial cells. MAGEA3 was also depleted in certain MAGEA3 positive PCCs by siRNA or shRNA. The stable cells were subjected to in vitro assays like proliferation and survival assays under growth factor deprivation or in the presence of cytotoxic drugs. The MAGEA3 overexpressing or depleted stable PCCs were evaluated in vivo using xenograft model to check the role of MAGEA3 in tumor progression. We also dissected the mechanism behind the MAGEA3 role in tumor progression using western blot analysis and CCL2 neutralization. Results MAGEA3 overexpression in PCA cells did not alter the cell proliferation but protected the cells during growth factor deprivation and also in the presence of cytotoxic drugs. However, depletion of MAGEA3 in MAGEA3 positive cells resulted in reduced cell proliferation and increased apoptosis upon growth factor deprivation and also in response to cytotoxic drugs. The in vivo xenograft study revealed that overexpression of MAGEA3 promoted tumor growth however depleting the same hindered the tumor progression. Mechanistically, our in vitro and in vivo study revealed that MAGEA3 has tumor-promoting role by reducing macro-autophagy and overexpressing pro-survival molecules like CCL2 and survivin. Conclusion Our data proves tumor-promoting role of MAGEA3 and provides the rationale to target MAGEA3 and/or its functional mediators like CCL2 for PCA, which may have a better impact in PCA therapy. Electronic supplementary material The online version of this article (10.1186/s13046-019-1272-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Biswajit Das
- Tumor Microenvironment and Animal Models Lab, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Lab, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India.
| |
Collapse
|
4
|
Naoum GE, Morkos M, Kim B, Arafat W. Novel targeted therapies and immunotherapy for advanced thyroid cancers. Mol Cancer 2018; 17:51. [PMID: 29455653 PMCID: PMC5817719 DOI: 10.1186/s12943-018-0786-0] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/01/2018] [Indexed: 02/06/2023] Open
Abstract
Thyroid cancer is a frequently encountered endocrine malignancy. Despite the favorable prognosis of this disease, 15–20% of differentiated thyroid cancer (DTC) cases and most anaplastic types, remain resistant to standard treatment options, including radioactive iodine (RAI). In addition, around 30% of medullary thyroid cancer (MTC) cases show resistance after surgery. The evolving understanding of disease-specific molecular therapeutic targets has led to the approval of two targeted therapies (Sorafenib and Lenvatinib) for RAI refractory DTC and another two drugs (Vandetanib and Cabozantinib) for MTC. These advanced therapies exert their effects by blocking the MAPK pathway, which has been widely correlated to different types of thyroid cancers. While these drugs remain reserved for thyroid cancer patients who failed all treatment options, their ability to improve patients’ overall survival remain hindered by their low efficacy and other molecular factors. Among these factors is the tumor’s ability to activate parallel proliferative signaling pathways other than the cascades blocked by these drugs, along with overexpression of some tyrosine kinase receptors (TKR). These facts urge the search for novel different treatment strategies for advanced thyroid cases beyond these drugs. Furthermore, the growing knowledge of the dynamic immune system interaction with tumor microenvironment has revolutionized the cancer immune therapy field. In this review, we aim to discuss the molecular escape mechanisms of thyroid tumors from these drugs. We also highlight novel therapeutic options targeting other pathways than MAPK, including PI3K pathway, ALK translocations and HER2/3 receptors and their clinical impact. We also aim to discuss the usage of targeted therapy in restoring thyroid tumor sensitivity to RAI, and finally turn to extensively discuss the role of immunotherapy as a potential alternative treatment option for advanced thyroid diseases.
Collapse
Affiliation(s)
- George E Naoum
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA.,Alexandria Comprehensive Cancer center, Alexandria, Egypt
| | - Michael Morkos
- Department of Endocrinology, Rush University, 1900 W Polk St, Room 801, Chicago, IL, USA
| | - Brian Kim
- Department of Endocrinology, Thyroid Cancer Program, Rush University, Jelke Building, Room 604, 1735 W Harrison St, Chicago, IL, 60612, UK
| | - Waleed Arafat
- Alexandria Comprehensive Cancer center, Alexandria, Egypt. .,University Of Alexandria, Clinical oncology department, Alexandria, Egypt. .,Department of Radiation Oncology, University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL, 35294, UK.
| |
Collapse
|
5
|
Melo DH, Mamede RCM, Neder L, Silva WA, Barros-Filho MC, Kowalski LP, Pinto CAL, Zago MA, Figueiredo DLA, Jungbluth AA. Expression of cancer/testis antigens MAGE-A, MAGE-C1, GAGE and CTAG1B in benign and malignant thyroid diseases. Oncol Lett 2017; 14:6485-6496. [PMID: 29163685 PMCID: PMC5688795 DOI: 10.3892/ol.2017.7072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/25/2016] [Indexed: 11/15/2022] Open
Abstract
Despite considerable advances in the understanding of thyroid gland biology, correctly diagnosing thyroid nodules and treating high-grade thyroid carcinoma remains challenging. Cancer/testis (CT) antigens have emerged as potential diagnostic tools as well as targets of potential cancer vaccinations. In the present study, a total of 117 patients who underwent surgical therapy for thyroid disease were available for analysis. The expression levels of melanoma-associated antigen (MAGE) A, MAGE-C1/CT7, cancer/testis antigen 1B (CTAG1B) and G antigen (GAGE) were analyzed by immunohistochemistry. None of the CT antigens were expressed in the normal thyroid or goiter. In papillary and follicular carcinoma, MAGE-A was present in 8.1% of cases, GAGE in 10.8% and CT/7MAGE-C1 and CTAG1B in 2.7% each. In medullary carcinoma, CT antigen expression was as follows: MAGE-A in 42.9% of patients; MAGE-C1/CT7 in 46.5%; GAGE in 92.9%; and CTAG1B in 3.6%. A statistically significant association was observed between the expression of G MAGE-C1/CT7 and patient gender as well as patient clinical stage (P=0.029 and 0.031, respectively). In poorly differentiated and anaplastic carcinoma cases, CT antigen expression was as follows: MAGE-A in 61.8% of cases; MAGE-C1 in 57.1%; GAGE in 66.7%; and CTAG1B in 14.4%. There was a statistically significant association between expression of GAGE and gender (P=0.043). However, there was no association between CT antigen expression and patient survival in any of the tumor entities analyzed. The current study identified a distinct expression pattern of CT antigens in malignant thyroid tumors indicating that CT antigens have the potential to outperform existing thyroid cancer biomarkers. The prevalence of CT antigens in high-grade carcinomas suggests that they serve an important biological role within malignant tumors.
Collapse
Affiliation(s)
- Daniel Hardy Melo
- School of Medicine, Federal University of Ceara, Sobral, CE 62042-280, Brazil
| | - Rui Celso Martins Mamede
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Center for Cell Based Therapy, CEPID/FAPESP, Ribeirão Preto, SP 14049-900, Brazil
| | - Luciano Neder
- Department of Clinical Pathology, Ribeirão Preto Medical School, University of São Paulo, Center for Cell Based Therapy, CEPID/FAPESP, Ribeirão Preto, SP 14049-900, Brazil
| | - Wilson Araújo Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Center for Cell Based Therapy, CEPID/FAPESP, Ribeirão Preto, SP 14049-900, Brazil
| | - Mateus Camargo Barros-Filho
- Department of Head and Neck Surgery and Otorhinolaryngology, A.C. Camargo Cancer Center, São Paulo, SP 01509-010, Brazil
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, A.C. Camargo Cancer Center, São Paulo, SP 01509-010, Brazil
| | | | - Marco Antônio Zago
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | | | - Achim A Jungbluth
- Division of Pathology Diagnostic Services, Cytology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| |
Collapse
|
6
|
French JD, Bible K, Spitzweg C, Haugen BR, Ryder M. Leveraging the immune system to treat advanced thyroid cancers. Lancet Diabetes Endocrinol 2017; 5:469-481. [PMID: 27773653 DOI: 10.1016/s2213-8587(16)30277-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 12/20/2022]
Abstract
Inflammation has long been associated with the thyroid and with thyroid cancers, raising seminal questions about the role of the immune system in the pathogenesis of advanced thyroid cancers. With a growing understanding of dynamic tumour-immune cell interactions and the mechanisms by which tumour cells evade antitumour immunity, the field of cancer immunotherapy has been revolutionised. In this Review, we provide evidence to support the presence of an antitumour immune response in advanced thyroid cancers linked to cytotoxic T cells and NK cells. This antitumour response, however, is likely blunted by the presence of immunosuppressive pathways within the microenvironment, facilitated by tumour-associated macrophages or increased expression of negative regulators of cytotoxic T-cell function. Current and future efforts to incorporate immune-based therapies into existing tumour cell or endothelial-derived therapies-eg, with kinase inhibitors targeting tumour-associated macrophages or antibodies blocking negative regulators on T cells-could provide improved and durable responses for patients with disease that is otherwise refractory to treatment.
Collapse
Affiliation(s)
- Jena D French
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Denver, Aurora, CO, USA; University of Colorado Cancer Center, University of Colorado Denver, Aurora, CO, USA
| | - Keith Bible
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Christine Spitzweg
- Department of Internal Medicine II, University Hospital of Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Bryan R Haugen
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Denver, Aurora, CO, USA; Department of Pathology, University of Colorado Denver, Aurora, CO, USA; University of Colorado Cancer Center, University of Colorado Denver, Aurora, CO, USA
| | - Mabel Ryder
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA; Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
7
|
CD8+ TIL recruitment may revert the association of MAGE A3 with aggressive features in thyroid tumors. J Immunol Res 2014; 2014:921864. [PMID: 25825704 PMCID: PMC4235601 DOI: 10.1155/2014/921864] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/09/2014] [Indexed: 12/20/2022] Open
Abstract
Background. We aimed to investigate a possible role of MAGE A3 and its associations with infiltrated immune cells in thyroid malignancy, analyzing their utility as a diagnostic and prognostic marker. Materials and Methods. We studied 195 malignant tissues: 154 PTCs and 41 FTCs; 102 benign tissues: 51 follicular adenomas and 51 goiter and 17 normal thyroid tissues. MAGE A3 and immune cell markers (CD4 and CD8) were evaluated using immunohistochemistry and compared with clinical pathological features. Results. The semiquantitative analysis and ACIS III analysis showed similar results. MAGE A3 was expressed in more malignant than in benign lesions (P < 0.0001), also helping to discriminate follicular-patterned lesions. It was also higher in tumors in which there was extrathyroidal invasion (P = 0.0206) and in patients with stage II disease (P = 0.0107). MAGE A3+ tumors were more likely to present CD8+ TIL (P = 0.0346), and these tumors were associated with less aggressive features, that is, extrathyroidal invasion and small size. There was a trend of MAGE A3+ CD8+ tumors to evolve free of disease. Conclusion. We demonstrated that MAGE A3 and CD8+ TIL infiltration may play an important role in malignant thyroid nodules, presenting an interesting perspective for new researches on DTC immunotherapy.
Collapse
|
8
|
Gunda V, Frederick DT, Bernasconi MJ, Wargo JA, Parangi S. A potential role for immunotherapy in thyroid cancer by enhancing NY-ESO-1 cancer antigen expression. Thyroid 2014; 24:1241-50. [PMID: 24811699 PMCID: PMC4106380 DOI: 10.1089/thy.2013.0680] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND NY-ESO-1 is one of the most immunogenic members of the cancer/testis antigen family and its levels can be increased after exposure to demethylating and deacetylating agents. This cytoplasmic antigen can serve as a potent target for cancer immunotherapy and yet has not been well studied in differentiated thyroid cancer cells. METHODS We studied the baseline expression of NY-ESO-1 messenger RNA and protein before and after exposure to 5-aza-2'-deoxycytidine (DAC) (72 hours) in a panel of thyroid cancer cell lines using quantitative polymerase chain reaction and Western blot. HLA-A2+, NY-ESO-1+ thyroid cell lines were then co-cultured with peripheral blood lymphocytes transduced with NY-ESO-1 specific T-cell receptor (TCR) and assayed for interferon-gamma and Granzyme-B release in the medium. SCID mice injected orthotopically with BCPAP cells were treated with DAC to evaluate for NY-ESO-1 gene expression in vivo. RESULTS None of the thyroid cancer cell lines showed baseline expression of NY-ESO-1. Three cell lines, BCPAP, TPC-1, and 8505c, showed an increase in NY-ESO-1 gene expression with DAC treatment and were found to be HLA-A2 positive. DAC-treated target BCPAP and TPC-1 tumor cells with up-regulated NY-ESO-1 levels were able to mount an appropriate interferon-gamma and Granzyme-B response upon co-culture with the NY-ESO-1-TCR-transduced peripheral blood lymphocytes. In vivo DAC treatment was able to increase NY-ESO-1 expression in an orthotopic mouse model with BCPAP cells. CONCLUSION Our data suggest that many differentiated thyroid cancer cells can be pressed to express immune antigens, which can then be utilized in TCR-based immunotherapeutic interventions.
Collapse
Affiliation(s)
- Viswanath Gunda
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dennie T. Frederick
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Maria J. Bernasconi
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jennifer A. Wargo
- Department of Surgical Oncology and Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sareh Parangi
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
9
|
Gunda V, Cogdill AP, Bernasconi MJ, Wargo JA, Parangi S. Potential role of 5-aza-2'-deoxycytidine induced MAGE-A4 expression in immunotherapy for anaplastic thyroid cancer. Surgery 2014; 154:1456-62; discussion 1462. [PMID: 24238058 DOI: 10.1016/j.surg.2013.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 07/03/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Melanoma antigen gene family (MAGE)-A4, a member of the cancer testis antigen family, has been reported in various cancers including melanoma, bladder, head and neck, oral, and lung, and is a potential target for T-cell-receptor-based immunotherapy. Baseline expression levels of the MAGE-A4 gene in thyroid cancer cell lines have not been previously studied thoroughly. METHODS Human thyroid cancer cell lines (8505c, HTh7, BCPAP, and TPC-1) were treated with either 10 μmol/L 5'-azacytidine (Aza) or 10 μmol/L 5-AZA-2'deoxycytidine (DAC) and evaluated for various MAGEA gene expression. Later melanoma cell lines A375 and 8505c were treated with PLX4720 in combination with DAC and evaluated for MAGE-A4 expression. RESULTS Only BCPAP cells expressed moderate levels of MAGE-A3 and MAGE-A6 at baseline. Treatment with DAC/Aza induced the expression of MAGE-A4 and MAGE-A1 in 8505c cells. PLX4720 treatment did not affect MAGE-A4 expression in 8505c cells, but increased its expression in A375 cells. In contrast, addition of PLX4720 to DAC-treated 8505c cells decreased the previously induced MAGE-A4 expression by DAC in these cells. A similar decrease in MAGE-A4 expression by DAC was also seen in 8505cBRAF(-/-) cells. Although DAC treatment resulted in demethylation of the MAGE-A4 promoter in 2 CpG sites, PLX addition to DAC did not affect the demethylation status. CONCLUSION Demethylating agents increased the expression of MAGE genes in thyroid cancer cells. The effect of BRAFV600E inhibitors on MAGE-A4 expression suggest the role of downstream MEK/BRAF signaling in its expression apart from promoter demethylation being the sole requirement. Expression of MAGE-A4 may make immunotherapeutic intervention possible in selected patients with thyroid cancer.
Collapse
Affiliation(s)
- Viswanath Gunda
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | | | | | | |
Collapse
|
10
|
Abstract
BACKGROUND With our growing understanding of the immune system and mechanisms employed by tumors to evade destruction, the field of cancer immunotherapy has been revitalized. Concurrent inflammation has long been associated with follicular cell-derived thyroid cancer (FDTC). In the last decade, much research has focused on characterizing the tumor-associated immune response in patients with FDTC. SUMMARY Mast cells, natural killer cells, macrophages, dendritic cells, B cells, and T cells have been identified within FDTC-associated immune infiltrate. Collectively, these findings suggest that the immune response to FDTC is compromised and may even promote tumor progression. A more thorough characterization of the tumor-associated immune response in FDTC may lead to the development of immune-based adjuvant therapies for patients with aggressive disease. CONCLUSIONS Immune-based therapies could provide essential alternatives to patients that cannot be treated surgically, those with recurrent or persistent lymph node metastases, and those with anaplastic thyroid cancer.
Collapse
Affiliation(s)
- Jena D French
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado , Aurora, CO 80045, USA.
| |
Collapse
|
11
|
Melo DH, Mamede RCM, Neder L, Saggioro FP, Figueiredo DLA, da Silva WA, Jungbluth AA, Zago MA. Expression of MAGE-A4 and MAGE-C1 tumor-associated antigen in benign and malignant thyroid diseases. Head Neck 2011; 33:1426-32. [PMID: 21246638 DOI: 10.1002/hed.21616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Revised: 07/27/2010] [Accepted: 08/12/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A subset of thyroid tumors characterized by a follicular growth pattern can represent a serious diagnosis. Immunohistochemistry and molecular pathology for genetic profiling have been used in an attempt to resolve some of these issues. METHODS Tumor tissue samples of thyroid were obtained from 70 patients who underwent surgical therapy. They were divided into 4 groups: 20 adenomatous goiters, 10 follicular adenomas, 24 papillary carcinomas, and 16 follicular carcinomas. Immunohistochemical analysis was carried out using antibodies for MAGE-A4 (melanoma antigen-encoding gene A4) and MAGE-C1 (melanoma antigen-encoding gene C1). RESULTS Standard histologic analysis and immunohistochemistry analysis of MAGE-A4 and MAGE-C1 expression were performed in all patients. The antigens examined were not expressed in any of the tissues. CONCLUSIONS The malignant degeneration of normal tissues is a multifactorial process, varying considerably both among tumor types and among individual patients. The present study showed that there was no immunolabeling of the MAGE-A4 and MAGE-C1 antigens.
Collapse
Affiliation(s)
- Daniel Hardy Melo
- Program of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Advances in cellular therapy for the treatment of thyroid cancer. JOURNAL OF ONCOLOGY 2010; 2010:179491. [PMID: 20671939 PMCID: PMC2910457 DOI: 10.1155/2010/179491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 05/06/2010] [Indexed: 12/21/2022]
Abstract
Up to now, there are no curative therapies available for the subset of metastasized undifferentiated/anaplastic thyroid carcinomas. This review describes the possible use of immunocompetent cells which may help to restore the antitumor immune recognition for treating an existing tumor or preventing its recurrence. The most prominent experimental strategy is the use of dendritic cells (DCs) which are highly potent in presenting tumor antigens. Activated DCs subsequently migrate to draining lymph nodes where they present antigens to naïve lymphocytes and induce cytotoxic T cells (CTL). Alternatively to DC therapy, adoptive cell transfer may be performed by either using natural killer cells or ex vivo maturated CTLs. Within this review article we will focus on recent advances in the understanding of anti-tumor immune responses, for example, in thyroid carcinomas including the advances which have been made for the identification of potential tumor antigens in thyroid malignancies.
Collapse
|
14
|
Wuttke M, Papewalis C, Jacobs B, Schott M. Identifying tumor antigens in endocrine malignancies. Trends Endocrinol Metab 2009; 20:122-9. [PMID: 19269848 DOI: 10.1016/j.tem.2008.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 11/25/2008] [Accepted: 12/02/2008] [Indexed: 11/27/2022]
Abstract
Tumor antigens are surface molecules that are mostly cancer specific, often overexpressed and recognized by the immune system. Therefore, identifying tumor antigens is of key importance for developing new immunotherapies for incurable cancers. For endocrine malignancies, several different tumor-associated antigens have been described, including polypeptide hormones and/or vesicle-associated antigens in Th1-mediated autoimmune diseases. Other antigens have been identified by screening tumor DNA libraries. Furthermore, vaccination studies in humans and animal models have revealed a tumor-antigen-specific immunity and clinical responses with reduced tumor size. Here, we provide an overview of the recent progress achieved in identifying tumor antigens and predict how this knowledge can be used in the future for developing anti-tumor vaccinations.
Collapse
Affiliation(s)
- Margret Wuttke
- Endocrine Cancer Center, Department of Endocrinology, Diabetology and Rheumatology, University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | | | | | | |
Collapse
|
15
|
Liu W, Cheng S, Asa SL, Ezzat S. The Melanoma-Associated Antigen A3 Mediates Fibronectin-Controlled Cancer Progression and Metastasis. Cancer Res 2008; 68:8104-12. [DOI: 10.1158/0008-5472.can-08-2132] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Abstract
Gain-of-function mutations in oncogenes have aided our understanding of the molecular mechanisms of thyroid carcinogenesis. Mutations or deletions cause inactivation of tumor suppressor genes in thyroid carcinomas. However, recent advances have disclosed the significance of epigenetic events in the development and progression of human tumorigenesis. Indeed, various tumor-suppressor genes and thyroid hormone-related genes are epigenetically silenced in thyroid tumors. This article reviews the evidence for epigenetic gene dysregulation in follicular cell-derived thyroid carcinomas including papillary thyroid carcinoma, follicular thyroid carcinoma, and undifferentiated thyroid carcinoma. The authors also discuss future applications of epigenetics as ancillary diagnostic tools and in the design of targeted therapies for thyroid cancer.
Collapse
Affiliation(s)
- Tetsuo Kondo
- Department of Pathology, University of Yamanashi, Japan
| | | | | |
Collapse
|
17
|
Kondo T, Zhu X, Asa SL, Ezzat S. The cancer/testis antigen melanoma-associated antigen-A3/A6 is a novel target of fibroblast growth factor receptor 2-IIIb through histone H3 modifications in thyroid cancer. Clin Cancer Res 2007; 13:4713-20. [PMID: 17699848 DOI: 10.1158/1078-0432.ccr-07-0618] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Fibroblast growth factor (FGF) signals play fundamental roles in development and tumorigenesis. Thyroid cancer is an example of a tumor with nonoverlapping genetic mutations that up-regulate mitogen-activated protein kinase. We reported recently that FGF receptor 2 (FGFR2) is down-regulated through extensive DNA promoter methylation in thyroid cancer. Reexpression of the FGFR2-IIIb isoform impedes signaling upstream of the BRAF/mitogen-activated protein kinase pathway to interrupt tumor progression. In this analysis, we examined a novel target of FGFR2-IIIb signaling, melanoma-associated antigen-A3 and A6 (MAGE-A3/6). EXPERIMENTAL DESIGN cDNA microarray analysis was done on human WRO thyroid cancer cells transfected with FGFR2-IIIb or empty vector. Identified gene target was confirmed by reverse transcription-PCR and Western blotting. Gene regulation was examined by treatment of WRO cells with the methylation inhibitor 5'-azacytidine followed by methylation-specific PCR and reverse transcription-PCR and by chromatin immunoprecipitation. RESULTS Gene expression profiling identified the cancer/testis antigen MAGE-A3/6 as a novel target of FGFR2-IIIb signaling. MAGE-A3/6 regulation was mediated through DNA methylation and chromatin modifications. In particular, FGF7/FGFR2-IIIb activation resulted in histone 3 methylation and deacetylation associated with the MAGE-A3/6 promoter to down-regulate gene expression. CONCLUSIONS These data unmask a complex repertoire of epigenetically controlled signals that govern FGFR2-IIIb and MAGE-A3/6 expression. Our findings provide insights into the interrelationship between novel tumor markers that may also represent overlapping therapeutic targets.
Collapse
Affiliation(s)
- Tetsuo Kondo
- Department of Pathology, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|