1
|
Diaz M, Verkoczy L. Editorial: Does selection against autoreactive B cells limit affinity maturation to pathogens? Front Immunol 2023; 14:1294532. [PMID: 37860006 PMCID: PMC10583564 DOI: 10.3389/fimmu.2023.1294532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Affiliation(s)
- Marilyn Diaz
- Immunology and Vaccines Discovery Group, Applied Biomedical Science Institute, San Diego, CA, United States
| | | |
Collapse
|
2
|
Kissel T, Ge C, Hafkenscheid L, Kwekkeboom JC, Slot LM, Cavallari M, He Y, van Schie KA, Vergroesen RD, Kampstra AS, Reijm S, Stoeken-Rijsbergen G, Koeleman C, Voortman LM, Heitman LH, Xu B, Pruijn GJ, Wuhrer M, Rispens T, Huizinga TW, Scherer HU, Reth M, Holmdahl R, Toes RE. Surface Ig variable domain glycosylation affects autoantigen binding and acts as threshold for human autoreactive B cell activation. SCIENCE ADVANCES 2022; 8:eabm1759. [PMID: 35138894 PMCID: PMC8827743 DOI: 10.1126/sciadv.abm1759] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/15/2021] [Indexed: 05/05/2023]
Abstract
The hallmark autoantibodies in rheumatoid arthritis are characterized by variable domain glycans (VDGs). Their abundant occurrence results from the selective introduction of N-linked glycosylation sites during somatic hypermutation, and their presence is predictive for disease development. However, the functional consequences of VDGs on autoreactive B cells remain elusive. Combining crystallography, glycobiology, and functional B cell assays allowed us to dissect key characteristics of VDGs on human B cell biology. Crystal structures showed that VDGs are positioned in the vicinity of the antigen-binding pocket, and dynamic modeling combined with binding assays elucidated their impact on binding. We found that VDG-expressing B cell receptors stay longer on the B cell surface and that VDGs enhance B cell activation. These results provide a rationale on how the acquisition of VDGs might contribute to the breach of tolerance of autoreactive B cells in a major human autoimmune disease.
Collapse
Affiliation(s)
- Theresa Kissel
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Changrong Ge
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Lise Hafkenscheid
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
- Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | | | - Linda M. Slot
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Marco Cavallari
- Biology III (Department of Molecular Immunology), University of Freiburg, Freiburg, Germany
| | - Yibo He
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Karin A. van Schie
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Arieke S.B. Kampstra
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Sanne Reijm
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Carolien Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Lennard M. Voortman
- Department of Cell and Chemical Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Laura H. Heitman
- Oncode Institute and Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Bingze Xu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Ger J.M. Pruijn
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Theo Rispens
- Department Immunopathology, Sanquin Research, Amsterdam, Netherlands
| | - Tom W.J. Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Hans Ulrich Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Michael Reth
- Biology III (Department of Molecular Immunology), University of Freiburg, Freiburg, Germany
| | - Rikard Holmdahl
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
- The Second Affiliated Hospital of Xi’an Jiaotong University (Xibei Hospital), 710004 Xi’an, China
| | - Rene E.M. Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
3
|
Bannard O, Cyster JG. Germinal centers: programmed for affinity maturation and antibody diversification. Curr Opin Immunol 2017; 45:21-30. [DOI: 10.1016/j.coi.2016.12.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/14/2016] [Indexed: 12/17/2022]
|
4
|
Verkoczy L. Humanized Immunoglobulin Mice: Models for HIV Vaccine Testing and Studying the Broadly Neutralizing Antibody Problem. Adv Immunol 2017; 134:235-352. [PMID: 28413022 PMCID: PMC5914178 DOI: 10.1016/bs.ai.2017.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A vaccine that can effectively prevent HIV-1 transmission remains paramount to ending the HIV pandemic, but to do so, will likely need to induce broadly neutralizing antibody (bnAb) responses. A major technical hurdle toward achieving this goal has been a shortage of animal models with the ability to systematically pinpoint roadblocks to bnAb induction and to rank vaccine strategies based on their ability to stimulate bnAb development. Over the past 6 years, immunoglobulin (Ig) knock-in (KI) technology has been leveraged to express bnAbs in mice, an approach that has enabled elucidation of various B-cell tolerance mechanisms limiting bnAb production and evaluation of strategies to circumvent such processes. From these studies, in conjunction with the wealth of information recently obtained regarding the evolutionary pathways and paratopes/epitopes of multiple bnAbs, it has become clear that the very features of bnAbs desired for their function will be problematic to elicit by traditional vaccine paradigms, necessitating more iterative testing of new vaccine concepts. To meet this need, novel bnAb KI models have now been engineered to express either inferred prerearranged V(D)J exons (or unrearranged germline V, D, or J segments that can be assembled into functional rearranged V(D)J exons) encoding predecessors of mature bnAbs. One encouraging approach that has materialized from studies using such newer models is sequential administration of immunogens designed to bind progressively more mature bnAb predecessors. In this review, insights into the regulation and induction of bnAbs based on the use of KI models will be discussed, as will new Ig KI approaches for higher-throughput production and/or altering expression of bnAbs in vivo, so as to further enable vaccine-guided bnAb induction studies.
Collapse
Affiliation(s)
- Laurent Verkoczy
- Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States.
| |
Collapse
|
5
|
Reed JH, Jackson J, Christ D, Goodnow CC. Clonal redemption of autoantibodies by somatic hypermutation away from self-reactivity during human immunization. J Exp Med 2016; 213:1255-65. [PMID: 27298445 PMCID: PMC4925023 DOI: 10.1084/jem.20151978] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 05/02/2016] [Indexed: 11/23/2022] Open
Abstract
Clonal anergy is an enigmatic self-tolerance mechanism because no apparent purpose is served by retaining functionally silenced B cells bearing autoantibodies. Human autoantibodies with IGHV4-34*01 heavy chains bind to poly-N-acetyllactosamine carbohydrates (I/i antigen) on erythrocytes and B lymphocytes, cause cold agglutinin disease, and are carried by 5% of naive B cells that are anergic. We analyzed the specificity of three IGHV4-34*01 IgG antibodies isolated from healthy donors immunized against foreign rhesus D alloantigen or vaccinia virus. Each IgG was expressed and analyzed either in a hypermutated immune state or after reverting each antibody to its unmutated preimmune ancestor. In each case, the preimmune ancestor IgG bound intensely to normal human B cells bearing I/i antigen. Self-reactivity was removed by a single somatic mutation that paradoxically decreased binding to the foreign immunogen, whereas other mutations conferred increased foreign binding. These data demonstrate the existence of a mechanism for mutation away from self-reactivity in humans. Because 2.5% of switched memory B cells use IGHV4-34*01 and >43% of these have mutations that remove I/i binding, clonal redemption of anergic cells appears efficient during physiological human antibody responses.
Collapse
Affiliation(s)
- Joanne H Reed
- Department of Immunology, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Jennifer Jackson
- Department of Immunology, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Daniel Christ
- Department of Immunology, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Christopher C Goodnow
- Department of Immunology, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
6
|
Autoreactivity in HIV-1 broadly neutralizing antibodies: implications for their function and induction by vaccination. Curr Opin HIV AIDS 2014; 9:224-34. [PMID: 24714565 DOI: 10.1097/coh.0000000000000049] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW This review discusses progress in understanding the impact of immune tolerance on inducing broadly neutralizing antibodies (bnAbs), and how such knowledge can be incorporated into novel immunization approaches. RECENT FINDINGS Over 120 bnAbs have now been isolated, all of which bear unusual features associated with host tolerance controls, but paradoxically may also be required for their function. Evidence that poly/autoreactivity of membrane proximal external region bnAbs can invoke such controls has been demonstrated by knock-in technology, highlighting its potential for studying the impact of tolerance in the generation of bnAb lineages to distinct HIV-1 envelope targets. The requirement for extensive affinity maturation in developing neutralization breadth/potency during infection is being examined, and similar studies in the setting of immunization will be aided by testing novel vaccine approaches in knock-in models that either selectively express reverted V(D)J rearrangements, or unrearranged germline segments, from which bnAb lineages originate. SUMMARY It is increasingly apparent that immune tolerance, sometimes invoked by self-reactivity that overlaps with bnAb epitope specificity, adds to a formidable set of roadblocks impeding bnAb induction. The path to an effective HIV-1 vaccine may thus benefit from a deeper understanding of host controls, including categorizing those that are unique or common at distinct bnAb targets, and ranking those most feasible to overcome by immunization. Ultimately, such emerging information will be critical to incorporate into new vaccine approaches that can be tested in human trials.
Collapse
|
7
|
Redemption of autoantibodies on anergic B cells by variable-region glycosylation and mutation away from self-reactivity. Proc Natl Acad Sci U S A 2014; 111:E2567-75. [PMID: 24821781 DOI: 10.1073/pnas.1406974111] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The best-understood mechanisms for achieving antibody self/non-self discrimination discard self-reactive antibodies before they can be tested for binding microbial antigens, potentially creating holes in the repertoire. Here we provide evidence for a complementary mechanism: retaining autoantibodies in the repertoire displayed as low levels of IgM and high IgD on anergic B cells, masking a varying proportion of autoantibody-binding sites with carbohydrates, and removing their self-reactivity by somatic hypermutation and selection in germinal centers (GCs). Analysis of human antibody sequences by deep sequencing of isotype-switched memory B cells or in IgG antibodies elicited against allogeneic RhD+ erythrocytes, vaccinia virus, rotavirus, or tetanus toxoid provides evidence for reactivation of anergic IgM(low) IgD+ IGHV4-34+ B cells and removal of cold agglutinin self-reactivity by hypermutation, often accompanied by mutations that inactivated an N-linked glycosylation sequon in complementarity-determining region 2 (CDR2). In a Hy10 antibody transgenic model where anergic B cells respond to a biophysically defined lysozyme epitope displayed on both foreign and self-antigens, cell transfers revealed that anergic IgM(low) IgD+ B cells form twice as many GC progeny as naïve IgM(hi) IgD+ counterparts. Their GC progeny were rapidly selected for CDR2 mutations that blocked 72% of antigen-binding sites with N-linked glycan, decreased affinity 100-fold, and then cleared the binding sites of blocking glycan. These results provide evidence for a mechanism to acquire self/non-self discrimination by somatic mutation away from self-reactivity, and reveal how varying the efficiency of N-glycosylation provides a mechanism to modulate antibody avidity.
Collapse
|
8
|
Verkoczy L, Chen Y, Zhang J, Bouton-Verville H, Newman A, Lockwood B, Scearce RM, Montefiori DC, Dennison SM, Xia SM, Hwang KK, Liao HX, Alam SM, Haynes BF. Induction of HIV-1 broad neutralizing antibodies in 2F5 knock-in mice: selection against membrane proximal external region-associated autoreactivity limits T-dependent responses. THE JOURNAL OF IMMUNOLOGY 2013; 191:2538-50. [PMID: 23918977 DOI: 10.4049/jimmunol.1300971] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A goal of HIV-1 vaccine development is to elicit broadly neutralizing Abs (BnAbs). Using a knock-in (KI) model of 2F5, a human HIV-1 gp41 membrane proximal external region (MPER)-specific BnAb, we previously demonstrated that a key obstacle to BnAb induction is clonal deletion of BnAb-expressing B cells. In this study of this model, we provide a proof-of-principle that robust serum neutralizing IgG responses can be induced from pre-existing, residual, self-reactive BnAb-expressing B cells in vivo using a structurally compatible gp41 MPER immunogen. Furthermore, in CD40L-deficient 2F5 KI mice, we demonstrate that these BnAb responses are elicited via a type II T-independent pathway, coinciding with expansion and activation of transitional splenic B cells specific for 2F5's nominal gp41 MPER-binding epitope (containing the 2F5 neutralization domain ELDKWA). In contrast, constitutive production of nonneutralizing serum IgGs in 2F5 KI mice is T dependent and originates from a subset of splenic mature B2 cells that have lost their ability to bind 2F5's gp41 MPER epitope. These results suggest that residual, mature B cells expressing autoreactive BnAbs, like 2F5 as BCR, may be limited in their ability to participate in T-dependent responses by purifying selection that selectively eliminates reactivity for neutralization epitope-containing/mimicked host Ags.
Collapse
Affiliation(s)
- Laurent Verkoczy
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
McLean GR, Olsen OA, Watt IN, Rathanaswami P, Leslie KB, Babcook JS, Schrader JW. Recognition of human cytomegalovirus by human primary immunoglobulins identifies an innate foundation to an adaptive immune response. THE JOURNAL OF IMMUNOLOGY 2005; 174:4768-78. [PMID: 15814702 DOI: 10.4049/jimmunol.174.8.4768] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Most primates, including humans, are chronically infected with cospecifically evolved, potentially pathogenic CMV. Abs that bind a 10-aa linear epitope (antigenic determinant 2 site 1) within the extracellular domain of human CMV glycoprotein B neutralize viral infectivity. In this study, we show that genes generated by recombinations involving two well-conserved human germline V elements (IGHV3-30 and IGKV3-11), and IGHJ4, encode primary Ig molecules that bind glycoprotein B at this key epitope. These particular V(H), J(H), and V(kappa) genes enable humans to generate through recombination and N nucleotide addition, a useful frequency of primary Igs that efficiently target this critical site on human CMV and thus confer an innate foundation for a specific adaptive response to this pathogen.
Collapse
Affiliation(s)
- Gary R McLean
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Inhibitory antibodies to factor VIII arise from an alloimmune response in patients with hemophilia A infused with factor VIII and as an autoimmune response in a variety of settings. The immune response to factor VIII is T-cell dependent. Helper T cells recognize numerous epitopes in the factor VIII molecule. B cell epitopes in both the alloimmune and autoimmune responses are much more restricted, usually involving two major epitopes in the A2 and C2 domains and apparently minor epitopes in the light chain activation peptide (ap) region and the A3 domain. Anti-C2 antibodies inhibit the binding of factor VIII to phospholipid and may also interfere with the binding of factor VIII to von Willebrand factor. Anti-A2 and anti-A3 antibodies block the binding of factor VIII to factor X and factor IXa, respectively, in the intrinsic pathway factor X activation complex. The mechanism of inhibition of anti-ap antibodies is unknown. A murine hemophilia A model has been developed to study the immunogenicity of factor VIII. This model may lead to improved approaches to prevent development of inhibitory antibodies and to reverse the immune response if it develops.
Collapse
Affiliation(s)
- Pete Lollar
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
11
|
Diaz M, Flajnik MF, Klinman N. Evolution and the molecular basis of somatic hypermutation of antigen receptor genes. Philos Trans R Soc Lond B Biol Sci 2001; 356:67-72. [PMID: 11205333 PMCID: PMC1087693 DOI: 10.1098/rstb.2000.0750] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Somatic hypermutation of immunoglobulin genes occurs in many vertebrates including sharks, frogs, camels, humans and mice. Similarities among species reveal a common mechanism and these include the AGC/T sequence hot spot, preponderance of base substitutions, a bias towards transitions and strand bias. There are some differences among species, however, that may unveil layers of the mechanism. These include a G:C bias in frog and shark IgM but not in nurse shark antigen receptor (NAR), a high frequency of doublets in NAR hypermutation, and the co-occurrence of somatic hypermutation with gene conversion in some species. Here we argue that some of the similarities and differences among species are best explained by error-prone DNA synthesis by the translesion synthesis DNA polymerase zeta (Pol zeta) and, as suggested by others, induction of DNA synthesis by DNA breaks in antigen receptor variable genes. Finally, targeting of the variable genes is probably obtained via transcription-related elements, and it is the targeting phase of somatic hypermutation that is the most likely to reveal molecules unique to adaptive immunity.
Collapse
Affiliation(s)
- M Diaz
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|