1
|
Yang K, Han W, Jiang X, Piffko A, Bugno J, Han C, Li S, Liang H, Xu Z, Zheng W, Wang L, Wang J, Huang X, Ting JPY, Fu YX, Lin W, Weichselbaum RR. Zinc cyclic di-AMP nanoparticles target and suppress tumours via endothelial STING activation and tumour-associated macrophage reinvigoration. NATURE NANOTECHNOLOGY 2022; 17:1322-1331. [PMID: 36302963 DOI: 10.1038/s41565-022-01225-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 09/05/2022] [Indexed: 05/26/2023]
Abstract
The clinical utility of stimulator of interferon genes (STING) agonists has been limited due to poor tumour-targeting and unwanted toxicity following systemic delivery. Here we describe a robust tumour-targeted STING agonist, ZnCDA, formed by the encapsulation of bacterial-derived cyclic dimeric adenosine monophosphate (CDA) in nanoscale coordination polymers. Intravenously injected ZnCDA prolongs CDA circulation and efficiently targets tumours, mediating robust anti-tumour effects in a diverse set of preclinical cancer models at a single dose. Our findings reveal that ZnCDA enhances tumour accumulation by disrupting endothelial cells in the tumour vasculature. ZnCDA preferentially targets tumour-associated macrophages to modulate antigen processing and presentation and subsequent priming of an anti-tumour T-cell response. ZnCDA reinvigorates the anti-tumour activity of both radiotherapy and immune checkpoint inhibitors in immunologically 'cold' pancreatic and glioma tumour models, offering a promising combination strategy for the treatment of intractable human cancers.
Collapse
Affiliation(s)
- Kaiting Yang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Wenbo Han
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Taiji Group, Chongqing, China
| | - Xiaomin Jiang
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Andras Piffko
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jason Bugno
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL, USA
| | - Chuanhui Han
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Peking University, Beijing, China
| | - Sirui Li
- Lineberger Comprehensive Cancer Center, Department of Genetics, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hua Liang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Ziwan Xu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Wenxin Zheng
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Liangliang Wang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Jiaai Wang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Xiaona Huang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Jenny P Y Ting
- Lineberger Comprehensive Cancer Center, Department of Genetics, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yang-Xin Fu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Wenbin Lin
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA.
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA.
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA.
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Apollonio B, Ioannou N, Papazoglou D, Ramsay AG. Understanding the Immune-Stroma Microenvironment in B Cell Malignancies for Effective Immunotherapy. Front Oncol 2021; 11:626818. [PMID: 33842331 PMCID: PMC8027510 DOI: 10.3389/fonc.2021.626818] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022] Open
Abstract
Cancers, including lymphomas, develop in complex tissue environments where malignant cells actively promote the creation of a pro-tumoral niche that suppresses effective anti-tumor effector T cell responses. Research is revealing that the tumor microenvironment (TME) differs between different types of lymphoma, covering inflamed environments, as exemplified by Hodgkin lymphoma, to non-inflamed TMEs as seen in chronic lymphocytic leukemia (CLL) or diffuse-large B-cell lymphoma (DLBCL). In this review we consider how T cells and interferon-driven inflammatory signaling contribute to the regulation of anti-tumor immune responses, as well as sensitivity to anti-PD-1 immune checkpoint blockade immunotherapy. We discuss tumor intrinsic and extrinsic mechanisms critical to anti-tumor immune responses, as well as sensitivity to immunotherapies, before adding an additional layer of complexity within the TME: the immunoregulatory role of non-hematopoietic stromal cells that co-evolve with tumors. Studying the intricate interactions between the immune-stroma lymphoma TME should help to design next-generation immunotherapies and combination treatment strategies to overcome complex TME-driven immune suppression.
Collapse
Affiliation(s)
- Benedetta Apollonio
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Nikolaos Ioannou
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Despoina Papazoglou
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Alan G Ramsay
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
3
|
Yamaguchi H, Hiroi M, Ohmori Y. Silencing of the interferon-inducible gene Ifi204/p204 induces resistance to interferon-γ-mediated cell growth arrest of tumor cells. Cytokine 2019; 118:80-92. [DOI: 10.1016/j.cyto.2018.06.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022]
|
4
|
Tarasova IA, Tereshkova AV, Lobas AA, Solovyeva EM, Sidorenko AS, Gorshkov V, Kjeldsen F, Bubis JA, Ivanov MV, Ilina IY, Moshkovskii SA, Chumakov PM, Gorshkov MV. Comparative proteomics as a tool for identifying specific alterations within interferon response pathways in human glioblastoma multiforme cells. Oncotarget 2018; 9:1785-1802. [PMID: 29416731 PMCID: PMC5788599 DOI: 10.18632/oncotarget.22751] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022] Open
Abstract
An acquisition of increased sensitivity of cancer cells to viruses is a common outcome of malignant progression that justifies the development of oncolytic viruses as anticancer therapeutics. Studying molecular changes that underlie the sensitivity to viruses would help to identify cases where oncolytic virus therapy would be most effective. We quantified changes in protein abundances in two glioblastoma multiforme (GBM) cell lines that differ in the ability to induce resistance to vesicular stomatitis virus (VSV) infection in response to type I interferon (IFN) treatment. In IFN-treated samples we observed an up-regulation of protein products of some IFN-regulated genes (IRGs). In total, the proteome analysis revealed up to 20% more proteins encoded by IRGs in the glioblastoma cell line, which develops resistance to VSV infection after pre-treatment with IFN. In both cell lines protein-protein interaction and signaling pathway analyses have revealed a significant stimulation of processes related to type I IFN signaling and defense responses to viruses. However, we observed a deficiency in STAT2 protein in the VSV-sensitive cell line that suggests a de-regulation of the JAK/STAT/IRF9 signaling. The study has shown that the up-regulation of IRG proteins induced by the IFNα treatment of GBM cells can be detected at the proteome level. Similar analyses could be applied for revealing functional alterations within the antiviral mechanisms in glioblastoma samples, accompanying by acquisition of sensitivity to oncolytic viruses. The approach can be useful for discovering the biomarkers that predict a potential sensitivity of individual glioblastoma tumors to oncolytic virus therapy.
Collapse
Affiliation(s)
- Irina A Tarasova
- Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alesya V Tereshkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Sciences, 142782 Moscow, Russia
| | - Anna A Lobas
- Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Elizaveta M Solovyeva
- Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Alena S Sidorenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Julia A Bubis
- Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Mark V Ivanov
- Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Irina Y Ilina
- Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Sergei A Moshkovskii
- Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Sciences, 142782 Moscow, Russia
| | - Mikhail V Gorshkov
- Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
5
|
Musella M, Manic G, De Maria R, Vitale I, Sistigu A. Type-I-interferons in infection and cancer: Unanticipated dynamics with therapeutic implications. Oncoimmunology 2017. [PMID: 28638743 DOI: 10.1080/2162402x.2017.1314424] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
If there is a great new hope in the treatment of cancer, the immune system is it. Innate and adaptive immunity either promote or attenuate tumorigenesis and so can have opposing effects on the therapeutic outcome. Originally described as potent antivirals, Type-I interferons (IFNs) were quickly recognized as central coordinators of tumor-immune system interactions. Type-I-IFNs are produced by, and act on, both tumor and immune cells being either host-protecting or tumor-promoting. Here, we discuss Type-I-IFNs in infectious and cancer diseases highlighting their dichotomous role and raising the importance to deeply understand the underlying mechanisms so to reshape the way we can exploit Type-I-IFNs therapeutically.
Collapse
Affiliation(s)
- Martina Musella
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Gwenola Manic
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Ruggero De Maria
- Department of General Pathology and Physiopathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ilio Vitale
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Antonella Sistigu
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
6
|
Yi BR, Kim SU, Choi KC. Additional effects of engineered stem cells expressing a therapeutic gene and interferon-β in a xenograft mouse model of endometrial cancer. Int J Oncol 2015; 47:171-8. [PMID: 25963746 DOI: 10.3892/ijo.2015.2999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/04/2015] [Indexed: 11/06/2022] Open
Abstract
Endometrial cancer is the most common gynecologic malignancy in women worldwide. In the present study, we evaluated the effects of neural stem cell-directed enzyme/prodrug therapy (NDEPT) designed to more selectively target endometrial cancer. For this, we employed two different types of neural stem cells (NSCs), HB1.F3.CD and HB1.F3.CD.IFN-β cells. Cytosine deaminase (CD) can convert the non-toxic prodrug, 5-fluorocytosine (5-FC), into a toxic agent, 5-fluorouracil (5-FU), which inhibits DNA synthesis. IFN-β is a powerful cytotoxic cytokine that is released by activated immune cells or lymphocytes. In an animal model xenografted with endometrial Ishikawa cancer cells, the stem cells stained with CM-DiI were injected into nearby tumor masses and 5-FC was delivered by intraperitoneal injection. Co-expression of CD and IFN-β significantly inhibited the growth of cancer (~50-60%) in the presence of 5-FC. Among migration-induced factors, VEGF gene was highly expressed in endometrial cancer cells. Histological analysis showed that the aggressive nature of cancer was inhibited by 5-FC in the mice treated with the therapeutic stem cells. Furthermore, PCNA expression was more decreased in HB1.F3.CD.IFN-β treated mice rather than HB1.F3.CD treated mice. To confirm the in vitro combined effects of 5-FU and IFN-β, 5-FU was treated in Ishikawa cells. 5-FU increased the IFN-β/receptor 2 (IFNAR2) and BXA levels, indicating that 5-FU increased sensitivity of endometrial cancer cells to IFN-β, leading to apoptosis of cancer cells. Taken together, these results provide evidence for the efficacy of therapeutic stem cell-based immune therapy involving the targeted expression of CD and IFN-β genes at endometrial cancer sites.
Collapse
Affiliation(s)
- Bo-Rim Yi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Seung U Kim
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
7
|
Aris M, Barrio MM. Combining immunotherapy with oncogene-targeted therapy: a new road for melanoma treatment. Front Immunol 2015; 6:46. [PMID: 25709607 PMCID: PMC4321613 DOI: 10.3389/fimmu.2015.00046] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/25/2015] [Indexed: 01/21/2023] Open
Abstract
Cutaneous melanoma arises from the malignant transformation of skin melanocytes; its incidence and mortality have been increasing steadily over the last 50 years, now representing 3% of total tumors. Once melanoma metastasizes, prognosis is somber and therapeutic options are limited. However, the discovery of prevalent BRAF mutations in at least 50% of melanoma tumors led to development of BRAF-inhibitors, and other drugs targeting the MAPK pathway including MEK-inhibitors, are changing this reality. These recently approved treatments for metastatic melanoma have made a significant impact on patient survival; though the results are shadowed by the appearance of drug-resistance. Combination therapies provide a rational strategy to potentiate efficacy and potentially overcome resistance. Undoubtedly, the last decade has also born a renaissance of immunotherapy, and encouraging advances in metastatic melanoma treatment are illuminating the road. Immune checkpoint blockades, such as CTLA-4 antagonist-antibodies, and multiple cancer vaccines are now invaluable arms of anti-tumor therapy. Recent work has brought to light the delicate relationship between tumor biology and the immune system. Host immunity contributes to the anti-tumor activity of oncogene-targeted inhibitors within a complex network of cytokines and chemokines. Therefore, combining immunotherapy with oncogene-targeted drugs may be the key to melanoma control. Here, we review ongoing clinical studies of combination therapies using both oncogene inhibitors and immunotherapeutic strategies in melanoma patients. We will revisit the preclinical evidence that tested sequential and concurrent schemes in suitable animal models and formed the basis for the current trials. Finally, we will discuss potential future directions of the field.
Collapse
Affiliation(s)
- Mariana Aris
- Centro de Investigaciones Oncológicas-Fundación Cáncer , Buenos Aires , Argentina
| | - María Marcela Barrio
- Centro de Investigaciones Oncológicas-Fundación Cáncer , Buenos Aires , Argentina
| |
Collapse
|
8
|
N-acetyl-cysteine prevents toxic oxidative effects induced by IFN-α in human neurons. Int J Neuropsychopharmacol 2013; 16:1849-65. [PMID: 23590859 DOI: 10.1017/s1461145713000266] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Currently IFN-α is widely used for effective treatment of viral infections and several malignancies. However, IFN-α can cause neuropsychiatric disturbances and mental impairments, including fatigue, insomnia, depression, irritability and cognitive deficits. Molecular and cellular mechanisms leading to such side-effects are still poorly understood. Neurons seem to be an important target in mediating cellular effects induced by exposure to this cytokine, but so far little is known about IFN-α-induced effects on these cells. We have investigated the ability of IFN-α (2-100 ng/ml) to induce damage and toxicity to the human neuroblastoma SH-SY5Y cell line, commonly used for studying such phenomena, and the mechanisms underlying these effects. After 24 h treatment, IFN-α increased mitochondrial activity, whereas cell density was reduced in a dose- and time-dependent manner. This effect did not depend on reduced cell proliferation, but rather the activation of apoptosis, as revealed by an increased Bax:Bcl-2 mRNA ratio after 72-h IFN-α exposure. At this time-point, IFN-α also reduced the expression of the brain-derived neurotrophic factor gene, and induced an increase in reactive oxygen species (ROS). A co-treatment with N-acetyl-cysteine (NAC; 5 mm), a potent antioxidant and mitochondrial modulator, was able to counteract all of these IFN-α-induced effects. These findings demonstrated that IFN-α induces neurotoxicity and apoptosis that is, in part, very likely due to mitochondrial damages and production of ROS. We suggest that NAC, already tested for the treatment of psychiatric disorders, may be useful to prevent IFN-α-induced central side-effects in a safe and effective way.
Collapse
|
9
|
Han X, Cheng W, Jing H, Zhang JW, Tang LL. Neuroepithelial transforming protein 1 short interfering RNA-mediated gene silencing with microbubble and ultrasound exposure inhibits the proliferation of hepatic carcinoma cells in vitro. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2012; 31:853-861. [PMID: 22644681 DOI: 10.7863/jum.2012.31.6.853] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
OBJECTIVES Short interfering RNA (siRNA) has been used to knock down the expression of targeted genes in a process known as RNA interference. However, the key to RNA interference is the efficient intracellular delivery of the siRNA. In this study, we sought to enhance the efficiency of transduction and find a novel therapy for hepatic carcinoma. METHODS Three types of neuroepithelial transforming protein 1 (NET-1) siRNAs (labeled fluorescent) were designed and transduced into HepG2 cells. Then the most effective one in silencing NET-1 was determined. The HepG2 cells were divided into 5 groups: untreated control; delivery of siRNA; delivery of siRNA using Lipofectamine 2000 (Invitrogen, Carlsbad, CA; group L); delivery of siRNA using ultrasound exposure and microbubbles (group US); and delivery of siRNA using Lipofectamine, ultrasound exposure, and microbubbles (group LUS). The efficiency of siRNA transfer was determined by detection of luciferase activity on microscopy; NET-1 expression was assayed by reverse transcription-polymerase chain reaction and western blotting; and proliferation investigations of the HepG2 cells were performed. RESULTS- The transfection efficiency of microbubbles combined with ultrasound exposure was nearly equal to Lipofectamine-mediated transfection (P = .609). More importantly, the combination of Lipofectamine, microbubbles, and ultrasound exposure effectively reduced NET-1 expression compared with the other groups (P < .01). Furthermore, the proliferation of cells in groups L, US, and LUS was visibly inhibited between 24 and 72 hours. CONCLUSIONS The use of a microbubble contrast agent combined with ultrasound exposure could be a potent physical method for increasing gene delivery efficiency. This technique is a promising nonviral approach that can be used in liver cancer.
Collapse
Affiliation(s)
- Xue Han
- Department of Ultrasound, Third Affiliated Hospital of Harbin Medical University, 150 Haping Rd, Nangang District, 150081 Harbin, China
| | | | | | | | | |
Collapse
|
10
|
Evasion and subversion of interferon-mediated antiviral immunity by Kaposi's sarcoma-associated herpesvirus: an overview. J Virol 2011; 85:10934-44. [PMID: 21775463 DOI: 10.1128/jvi.00687-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Viral invasion of a host cell triggers immune responses with both innate and adaptive components. The innate immune response involving the induction of type I interferons (alpha and beta interferons [IFN-α and -β]) constitutes the first line of antiviral defenses. The type I IFNs signal the transcription of a group of antiviral effector proteins, the IFN-stimulated genes (ISGs), which target distinct viral components and distinct stages of the viral life cycle, aiming to eliminate invading viruses. In the case of Kaposi's sarcoma-associated herpesvirus (KSHV), the etiological agent of Kaposi's sarcoma (KS), a sudden upsurge of type I IFN-mediated innate antiviral signals is seen immediately following both primary de novo infection and viral lytic reactivation from latency. Potent subversion of these responses thus becomes mandatory for the successful establishment of a primary infection following viral entry as well as for efficient viral assembly and egress. This review gives a concise overview of the induction of the type I IFN signaling pathways in response to viral infection and provides a comprehensive understanding of the antagonizing effects exerted by KSHV on type I IFN pathways wielded at various stages of the viral life cycle. Information garnered from this review should result in a better understanding of KSHV biology essential for the development of immunotherapeutic strategies targeted toward KSHV-associated malignancies.
Collapse
|
11
|
Inhibition of cellular FLICE-like inhibitory protein abolishes insensitivity to interferon-α and death receptor stimulation in resistant variants of the human U937 cell line. Apoptosis 2011; 16:783-94. [DOI: 10.1007/s10495-011-0606-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Shin SR, Paik SW, Gwak GY, Choi MS, Lee JH, Koh KC, Yoo BC. Antiviral therapy in patients after treatment for hepatitis C-related hepatocellular carcinoma. Gut Liver 2011; 5:77-81. [PMID: 21461077 DOI: 10.5009/gnl.2011.5.1.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 12/06/2010] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND/AIMS Despite great progress, antiviral treatment for chronic hepatitis C in patients with prior hepatocellular carcinoma (HCC) has been rarely investigated. We evaluated the efficacy and safety of antiviral therapy following treatment for hepatitis C-related HCC. METHODS Thirteen patients (age 34 to 60 years) who were treated with peginterferon plus ribavirin after treatment for HCC were reviewed. RESULTS There were 6 patients with genotype 1 and 7 patients with genotype 2. All patients showed advanced fibrosis (≥F3) but belonged to the Child-Pugh class A. Treatment was stopped in 2 patients because of recurrent HCC and in 1 patient due to a lack of early virologic response. Seven patients achieved sustained virologic response and three patients relapsed. The sustained virologic response rate was 54% overall, 17% in genotype 1, and 86% in genotype 2. No significant adverse events were reported. CONCLUSIONS Antiviral therapy should not be excluded in patients who were previously treated with HCC with genotype 2 chronic hepatitis C, in which an efficacious antiviral treatment for chronic hepatitis C was feasible. Additional study is needed to prove the validity of antiviral therapy in patients with genotype 1 hepatitis C-related HCC.
Collapse
Affiliation(s)
- Su Rin Shin
- Department of Medicine, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
13
|
Zhu FX, Sathish N, Yuan Y. Antagonism of host antiviral responses by Kaposi's sarcoma-associated herpesvirus tegument protein ORF45. PLoS One 2010; 5:e10573. [PMID: 20485504 PMCID: PMC2868026 DOI: 10.1371/journal.pone.0010573] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 04/15/2010] [Indexed: 12/19/2022] Open
Abstract
Virus infection of a cell generally evokes an immune response by the host to defeat the intruder in its effort. Many viruses have developed an array of strategies to evade or antagonize host antiviral responses. Kaposi's sarcoma-associated herpesvirus (KSHV) is demonstrated in this report to be able to prevent activation of host antiviral defense mechanisms upon infection. Cells infected with wild-type KSHV were permissive for superinfection with vesicular stomatitis virus (VSV), suggesting that KSHV virions fail to induce host antiviral responses. We previously showed that ORF45, a KSHV immediate-early protein as well as a tegument protein of virions, interacts with IRF-7 and inhibits virus-mediated type I interferon induction by blocking IRF-7 phosphorylation and nuclear translocation (Zhu et al., Proc. Natl. Acad. Sci. USA. 99:5573-5578, 2002). Here, using an ORF45-null recombinant virus, we demonstrate a profound role of ORF45 in inhibiting host antiviral responses. Infection of cells with an ORF45-null mutant recombinant KSHV (BAC-stop45) triggered an immune response that resisted VSV super-infection, concomitantly associated with appreciable increases in transcription of type I IFN and downstream anti-viral effector genes. Gain-of-function analysis showed that ectopic expression of ORF45 in human fibroblast cells by a lentivirus vector decreased the antiviral responses of the cells. shRNA-mediated silencing of IRF-7, that predominantly regulates both the early and late phase induction of type I IFNs, clearly indicated its critical contribution to the innate antiviral responses generated against incoming KSHV particles. Thus ORF45 through its targeting of the crucial IRF-7 regulated type I IFN antiviral responses significantly contributes to the KSHV survival immediately following a primary infection allowing for progression onto subsequent stages in its life-cycle.
Collapse
Affiliation(s)
- Fan Xiu Zhu
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Narayanan Sathish
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yan Yuan
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
14
|
Bekisz J, Baron S, Balinsky C, Morrow A, Zoon KC. Antiproliferative Properties of Type I and Type II Interferon. Pharmaceuticals (Basel) 2010; 3:994-1015. [PMID: 20664817 PMCID: PMC2907165 DOI: 10.3390/ph3040994] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 03/15/2010] [Accepted: 03/29/2010] [Indexed: 01/22/2023] Open
Abstract
The clinical possibilities of interferon (IFN) became apparent with early studies demonstrating that it was capable of inhibiting tumor cells in culture and in vivo using animal models. IFN gained the distinction of being the first recombinant cytokine to be licensed in the USA for the treatment of a malignancy in 1986, with the approval of IFN-α2a (Hoffman-La Roche) and IFN-α2b (Schering-Plough) for the treatment of Hairy Cell Leukemia. In addition to this application, other approved antitumor applications for IFN-α2a are AIDS-related Kaposi's Sarcoma and Chronic Myelogenous Leukemia (CML) and other approved antitumor applications for IFN-α2b are Malignant Melanoma, Follicular Lymphoma, and AIDS-related Kapoisi's Sarcoma. In the ensuing years, a considerable number of studies have been conducted to establish the mechanisms of the induction and action of IFN's anti-tumor activity. These include identifying the role of Interferon Regulatory Factor 9 (IRF9) as a key factor in eliciting the antiproliferative effects of IFN-α as well as identifying genes induced by IFN that are involved in recognition of tumor cells. Recent studies also show that IFN-activated human monocytes can be used to achieve >95% eradication of select tumor cells. The signaling pathways by which IFN induces apoptosis can vary. IFN treatment induces the tumor suppressor gene p53, which plays a role in apoptosis for some tumors, but it is not essential for the apoptotic response. IFN-α also activates phosphatidylinositol 3-kinase (PI3K), which is associated with cell survival. Downstream of PI3K is the mammalian target of rapamycin (mTOR) which, in conjunction with PI3K, may act in signaling induced by growth factors after IFN treatment. This paper will explore the mechanisms by which IFN acts to elicit its antiproliferative effects and more closely examine the clinical applications for the anti-tumor potential of IFN.
Collapse
Affiliation(s)
- Joseph Bekisz
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
15
|
Enhancement of survivin gene downregulation and cell apoptosis by a novel combination: liposome microbubbles and ultrasound exposure. Med Oncol 2009; 26:491-500. [PMID: 19137432 DOI: 10.1007/s12032-008-9161-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 12/18/2008] [Indexed: 12/14/2022]
Abstract
Ultrasound-mediated microbubble destruction (sonoporation) is an efficient and safe nonviral technique for gene delivery. In the present work, we hypothesized that short hairpin RNA (shRNA) interference therapy targeting human Survivin gene could be transfected by the novel combination of ultrasound exposure (USE) and liposome microbubbles (LM). ShRNA vectors targeting Survivin were constructed and transfected under USE and LM conditions. The optimal transfection efficiency and cell injury were compared with those of polyethylenimine (PEI)-mediated transfection in different cancer cell lines (HeLa, HepG2, Ishikawa, MCF-7, and B16-F10). The effects of gene downregulation and cell apoptosis were further investigated. The results indicated that P + USE + LM group could significantly increase the gene expression as compared with plasmid group, plasmid + USE group, plasmid + LM group (P < 0.001). The transfection efficiency of the novel combination was nearly equal to PEI-mediated transfection in some cancer cell lines while the cell viability did not decrease markedly. Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis also confirmed that Survivin mRNA and protein expression could be knocked down significantly by shRNA transfection under USE and LM condition (P < 0.001). This is the first study to verify the role of shRNA therapy in vitro with novel combination of USE and LM. We concluded that this nonviral technique would be valuable in the gene transfection of shRNA and Survivin gene downregulation would lead to apparent cell apoptosis.
Collapse
|
16
|
Biesen R, Demir C, Barkhudarova F, Grün JR, Steinbrich-Zöllner M, Backhaus M, Häupl T, Rudwaleit M, Riemekasten G, Radbruch A, Hiepe F, Burmester GR, Grützkau A. Sialic acid-binding Ig-like lectin 1 expression in inflammatory and resident monocytes is a potential biomarker for monitoring disease activity and success of therapy in systemic lupus erythematosus. ACTA ACUST UNITED AC 2008; 58:1136-45. [PMID: 18383365 DOI: 10.1002/art.23404] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Robert Biesen
- Charité Universitätsmedizin Berlin, Humboldt University of Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hasan UA, Caux C, Perrot I, Doffin AC, Menetrier-Caux C, Trinchieri G, Tommasino M, Vlach J. Cell proliferation and survival induced by Toll-like receptors is antagonized by type I IFNs. Proc Natl Acad Sci U S A 2007; 104:8047-52. [PMID: 17463087 PMCID: PMC1876569 DOI: 10.1073/pnas.0700664104] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
TRIF is an adaptor protein associated with the signaling by Toll-like receptor (TLR)3 and TLR4 for the induction of type I IFNs. Here, we demonstrate a mechanism by which TLR signaling controls cell proliferation and survival. We show that TLR3 and TLR4 can induce cell cycle entry via TRIF, which targets the cell cycle inhibitor p27(kip1) for relocalization, phosphorylation by cyclin/cdk complexes, and proteasome degradation. These events are antagonized by type I IFN induced by the TRIF pathway. Furthermore, in human dendritic cells treated with TLR3, TLR4, or TLR5 ligands, we demonstrate that IFN signaling modulates p27(kip1) degradation and apoptosis, identifying an immunoregulatory "switching" function of type I IFNs. These findings reveal a previously uncharacterized function of TLR signaling in cell proliferation and survival.
Collapse
Affiliation(s)
- Uzma A Hasan
- Infections and Cancer Biology Group, International Agency for Research on Cancer (IARC-WHO), 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Damdinsuren B, Nagano H, Wada H, Noda T, Natsag J, Marubashi S, Miyamoto A, Takeda Y, Umeshita K, Doki Y, Dono K, Monden M. Interferon alpha receptors are important for antiproliferative effect of interferon-alpha against human hepatocellular carcinoma cells. Hepatol Res 2007; 37:77-83. [PMID: 17300701 DOI: 10.1111/j.1872-034x.2007.00007.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM Interferon (IFN)-alpha is a promising drug for the prevention and treatment of hepatocellular carcinoma (HCC). We reported that responders to IFN-alpha/5-fluorouracil combination therapy expressed higher IFN alpha receptor (IFNAR)2 in tumor. Herein we studied involvement of IFNARs in response to IFN-alpha in HCC cells. METHODS IFN-alpha sensitivity and expression of IFNARs were studied in six HCC cell lines (HuH7, PLC/PRF/5, HLE, HLF, HepG2, Hep3B) using growth-inhibitory and RT-PCR, Western blot assays. Short interfering RNAs (SiRNAs) against IFNAR1 and 2 were used to analyze the role of the IFNARs in IFN-alpha's effect and signal transduction. RESULTS The expressions of IFNAR1 and 2c mRNAs were higher in PLC/PRF/5 cells than those in other cell lines, and PLC/PRF/5 cells expressed abundant IFNAR2c on their cell membrane. When we examined the sensitivity of the HCC cell lines to the growth-inhibitory effect of IFN-alpha, PLC/PRF/5 exhibited a significant response, while the other cells were much more resistant. Knockdown of either IFNAR1 or 2 using siRNAs suppressed the IFN-alpha's signal transduction (2.5-fold), and decreased the growth-inhibitory effect (down by 69.9% and 67.3%). CONCLUSION The results suggest that the expression of IFNAR1 and IFNAR2c independently are important for the antiproliferative effect of IFN-alpha in HCC cells.
Collapse
|
19
|
Samuel MA, Diamond MS. Alpha/beta interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival. J Virol 2005; 79:13350-61. [PMID: 16227257 PMCID: PMC1262587 DOI: 10.1128/jvi.79.21.13350-13361.2005] [Citation(s) in RCA: 328] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus that is neurotropic in humans, birds, and other animals. While adaptive immunity plays an important role in preventing WNV spread to the central nervous system (CNS), little is known about how alpha/beta interferon (IFN-alpha/beta) protects against peripheral and CNS infection. In this study, we examine the virulence and tropism of WNV in IFN-alpha/beta receptor-deficient (IFN- alpha/betaR-/-) mice and primary neuronal cultures. IFN-alpha/betaR-/- mice were acutely susceptible to WNV infection through subcutaneous inoculation, with 100% mortality and a mean time to death (MTD) of 4.6 +/- 0.7 and 3.8+/- 0.5 days after infection with 10(0) and 10(2) PFU, respectively. In contrast, congenic wild-type 129Sv/Ev mice infected with 10(2) PFU showed 62% mortality and a MTD of 11.9 +/- 1.9 days. IFN-alpha/betaR-/- mice developed high viral loads by day 3 after infection in nearly all tissues assayed, including many that were not infected in wild-type mice. IFN-alpha/betaR-/- mice also demonstrated altered cellular tropism, with increased infection in macrophages, B cells, and T cells in the spleen. Additionally, treatment of primary wild-type neurons in vitro with IFN-beta either before or after infection increased neuronal survival independent of its effect on WNV replication. Collectively, our data suggest that IFN-alpha/beta controls WNV infection by restricting tropism and viral burden and by preventing death of infected neurons.
Collapse
Affiliation(s)
- Melanie A Samuel
- Department of Molecular Microbiology, Washington University School of Medicine, Campus Box 8051, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | |
Collapse
|
20
|
Einav U, Tabach Y, Getz G, Yitzhaky A, Ozbek U, Amariglio N, Izraeli S, Rechavi G, Domany E. Gene expression analysis reveals a strong signature of an interferon-induced pathway in childhood lymphoblastic leukemia as well as in breast and ovarian cancer. Oncogene 2005; 24:6367-75. [PMID: 16007187 DOI: 10.1038/sj.onc.1208797] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
On the basis of epidemiological studies, infection was suggested to play a role in the etiology of human cancer. While for some cancers such a role was indeed demonstrated, there is no direct biological support for the role of viral pathogens in the pathogenesis of childhood leukemia. Using a novel bioinformatic tool that alternates between clustering and standard statistical methods of analysis, we performed a 'double-blind' search of published gene expression data of subjects with different childhood acute lymphoblastic leukemia (ALL) subtypes, looking for unanticipated partitions of patients, induced by unexpected groups of genes with correlated expression. We discovered a group of about 30 genes, related to the interferon response pathway, whose expression levels divide the ALL samples into two subgroups; high in 50, low in 285 patients. Leukemic subclasses prevalent in early childhood (the age most susceptible to infection) are over-represented in the high-expression subgroup. Similar partitions, induced by the same genes, were found also in breast and ovarian cancer but not in lung cancer, prostate cancer and lymphoma. About 40% of breast cancer samples expressed the 'interferon-related' signature. It is of interest that several studies demonstrated mouse mammary tumor virus-like sequences in about 40% of breast cancer samples. Our discovery of an unanticipated strong signature of an interferon-induced pathway provides molecular support for a role for either inflammation or viral infection in the pathogenesis of childhood leukemia as well as breast and ovarian cancer.
Collapse
Affiliation(s)
- Uri Einav
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kim PKM, Armstrong M, Liu Y, Yan P, Bucher B, Zuckerbraun BS, Gambotto A, Billiar TR, Yim JH. IRF-1 expression induces apoptosis and inhibits tumor growth in mouse mammary cancer cells in vitro and in vivo. Oncogene 2004; 23:1125-35. [PMID: 14762441 DOI: 10.1038/sj.onc.1207023] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Interferon regulatory factor-1 (IRF-1) is a nuclear transcription factor that mediates interferon and other cytokine effects and appears to have antitumor activity in vitro and in vivo in cancer cells. We have constructed a recombinant adenoviral vector (Ad-IRF-1) that infects mammary cells with high efficiency and results in high levels of functional IRF-1 protein in transfected cells. Overexpression of IRF-1 in two mouse breast cancer cell lines, C3-L5 and TS/A, resulted in apoptosis in these cell lines as assessed by Annexin V staining. The involvement of caspases was confirmed by significant inhibition of apoptosis by a caspase inhibitor, and by demonstration of caspase-3 activity, cleavage of caspase-3, and PARP cleavage. Interestingly, the growth of nonmalignant breast cell lines C127I and NMuMG did not appear to be inhibited by IRF-1 overexpression. Suppression of growth for breast cancer cell lines in vivo was demonstrated by both preinfection of breast cancer cells ex vivo and by intratumoral injection of Ad-IRF-1 into established tumors in their natural hosts. The mechanism of apoptosis may involve the transcriptional upregulation of bak, caspase-8, and caspase-7 expression. These data support the antitumor potential of IRF-1 and the use of agents that increase IRF-1 in breast cancer.
Collapse
Affiliation(s)
- Peter K M Kim
- Department of Surgery, University of Pittsburgh Medical Center, 497 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kang DC, Gopalkrishnan RV, Lin L, Randolph A, Valerie K, Pestka S, Fisher PB. Expression analysis and genomic characterization of human melanoma differentiation associated gene-5, mda-5: a novel type I interferon-responsive apoptosis-inducing gene. Oncogene 2003; 23:1789-800. [PMID: 14676839 DOI: 10.1038/sj.onc.1207300] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Melanoma differentiation associated gene-5 (mda-5) was identified by subtraction hybridization as a novel upregulated gene in HO-1 human melanoma cells induced to terminally differentiate by treatment with IFN-beta+MEZ. Considering its unique structure, consisting of a caspase recruitment domain (CARD) and an RNA helicase domain, it was hypothesized that mda-5 contributes to apoptosis occurring during terminal differentiation. We have currently examined the expression pattern of mda-5 in normal tissues, during induction of terminal differentiation and after treatment with type I IFNs. In addition, we have defined its genomic structure and chromosomal location. IFN-beta, a type I IFN, induces mda-5 expression in a biphasic and dose-dependent manner. Based on its temporal kinetics of induction and lack of requirement for prior protein synthesis mda-5 is an early type I IFN-responsive gene. The level of mda-5 mRNA is in low abundance in normal tissues, whereas expression is induced in a spectrum of normal and cancer cells by IFN-beta. Expression of mda-5 by means of a replication incompetent adenovirus, Ad.mda-5, induces apoptosis in HO-1 cells as confirmed by morphologic, biochemical and molecular assays. Additionally, the combination of Ad.mda-5+MEZ further augments apoptosis as observed in Ad.null or uninfected HO-1 cells induced to terminally differentiate by treatment with IFN-beta+MEZ. The mda-5 gene is located on human chromosome 2q24 and consists of 16 exons, without pseudogenes, and is conserved in the mouse genome. Present data documents that mda-5 is a novel type I IFN-inducible gene, which may contribute to apoptosis induction during terminal differentiation and during IFN treatment. The conserved genomic and protein structure of mda-5 in human and mouse will permit analysis of the evolution and developmental aspects of this gene.
Collapse
Affiliation(s)
- Dong-Chul Kang
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The interferons (IFNs), in addition to their well-known antiviral activities, have important roles in the control of cell proliferation and are effective agents for the treatment of a limited number of malignant diseases. IFNs not only regulate cell growth and division but also influence cell survival through their effects on apoptosis. This review describes the current state of knowledge about the mechanisms of action of these cytokines on the apoptotic machinery, with particular emphasis on the synergism that exists between the IFNs and other proapoptotic agents, such as members of the tumor necrosis factor (TNF) family. The review also discusses the physiologic and clinical implications of the effects of the IFNs on apoptosis for regulation of viral infection and tumor growth.
Collapse
Affiliation(s)
- Michael J Clemens
- Translational Control Group, Department of Basic Medical Sciences, St. George's Hospital Medical School, London SW17 0RE, UK.
| |
Collapse
|
24
|
Zidovec Lepej S, Vujisić S, Stipoljev F, Mazuran R. Interferon-α-like biological activity in human seminal plasma, follicular fluid, embryo culture medium, amniotic fluid and fetal blood. Reprod Fertil Dev 2003; 15:423-8. [PMID: 15018779 DOI: 10.1071/rd03020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2003] [Accepted: 01/19/2003] [Indexed: 11/23/2022] Open
Abstract
Interferons (IFNs) are a group of cytokines exhibiting antiviral, antiproliferative and immunoregulatory properties. The principal stimulus for the synthesis of IFNs is the presence of viral double-stranded RNA, although rare examples of constitutive synthesis have also been described. The aim of the present study was to determine IFN-α-like biological activity in the seminal plasma, follicular and amniotic fluid, embryo culture medium, and fetal blood obtained from patients without apparent viral or bacterial infections. Interferon-α-like biological activity was determined by a standard cytopathic effect inhibition bioassay. The study included two groups of patients. The first group consisted of 30 married couples participating in the programme for assisted reproduction and the second group consisted of 23 patients scheduled for prenatal diagnosis (15 for amniocentesis and eight for cordocentesis). The seminal plasma of infertile men (asthenozoospermia, oligoasthenozoospermia) contained a high titre of IFN-α-like antiviral activity. Asthenozoospermia was diagnosed in men with a normal sperm concentration but less than 50% progressively motile sperm and oligoasthenozoospermia was diagnosed in men with a sperm count less than 1 × 106 mL−1. Despite slightly higher antiviral titres in the seminal plasma obtained from asthenozoospermic patients, no clear association between IFN-α-like biological activity and sperm concentration was found. Interferon-α-like biological activity was found in all samples of follicular and amniotic fluid and in fetal blood of patients with intrauterine growth retardation and trisomy 18. Antiviral titres from seminal plasma and follicular fluids were significantly higher compared with amniotic fluids and fetal blood. Embryo culture medium did not contain IFN-α-like biological activity. Our results demonstrate that IFN-α-like activity in biological fluids is relevant for reproduction, even in the absence of infection.
Collapse
Affiliation(s)
- Snjezana Zidovec Lepej
- Division for Cellular Immunology (Flow Cytometry), University Hospital for Infectious Diseases Dr Fran Mihaljević, Mirogojska 8, Zagreb, Croatia.
| | | | | | | |
Collapse
|
25
|
Damdinsuren B, Nagano H, Sakon M, Kondo M, Yamamoto T, Umeshita K, Dono K, Nakamori S, Monden M. Interferon-? Is More Potent Than Interferon-? in Inhibition of Human Hepatocellular Carcinoma Cell Growth When Used Alone and in Combination With Anticancer Drugs. Ann Surg Oncol 2003; 10:1184-90. [PMID: 14654475 DOI: 10.1245/aso.2003.03.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND The prognosis of advanced hepatocellular carcinoma (HCC) is extremely poor, but promising effects of chemotherapies combined with interferon (IFN) have been reported. METHODS To develop more effective combination therapies for HCC, we compared the antiproliferative effects of IFN-alpha and IFN-beta in combination with various cytotoxic drugs on hepatoma cell lines using MTT assay and isobologram analysis. RESULTS IFN-beta was more potent than IFN-alpha in inhibiting the cell growth of all cell lines (P <.05, two-way ANOVA). PLC/PRF/5 was more sensitive to either IFN, than HLE and HuH7. Cell growth of all cell lines was inhibited in a dose-dependent manner by 5-fluorouracil (5-FU), cisplatin (CDDP), and doxorubicin (DOX), but the sensitivities of these cells were considerably different. As for IFN-alpha, synergistic effects were observed when combined with 5-FU and DOX on PLC/PRF/5 cells only, whereas IFN-beta showed synergistic effects with 5-FU and CDDP on HuH7 and PLC/PRF/5 cell lines. CONCLUSION The spectra of the antiproliferative activity and synergistic effect of IFN-beta when combined with anticancer drugs are more potent than those of IFN-alpha. Combinations of IFN-beta and anticancer drugs may provide a better treatment of HCC when combinations with IFN-alpha are ineffective.
Collapse
Affiliation(s)
- Bazarragchaa Damdinsuren
- Department of Surgery and Clinical Oncology (E2), Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|