1
|
Bjerke IE, Cullity ER, Kjelsberg K, Charan KM, Leergaard TB, Kim JH. DOPAMAP, high-resolution images of dopamine 1 and 2 receptor expression in developing and adult mouse brains. Sci Data 2022; 9:175. [PMID: 35440585 PMCID: PMC9018709 DOI: 10.1038/s41597-022-01268-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
The dopaminergic system undergoes major reorganization during development, a period especially vulnerable to mental disorders. Forebrain neurons expressing dopamine 1 and 2 receptors (D1R and D2R, respectively) play a key role in this system. However, neuroanatomical information about the typical development of these neurons is sparse and scattered across publications investigating one or a few brain regions. We here present a public online collection of microscopic images of immunohistochemically stained serial sections from male and female mice at five stages of development (postnatal day 17 (P17), P25, P35, P49, and adult), showing the distribution of D1R and D2R expressing neurons across the forebrain. All images from adult brains are registered to the Allen Mouse brain Common Coordinate Framework, while images from P17-P35 age groups are registered to spatially modified atlas versions matching the morphology of young brains. This online resource provides microscopic visualization of the developing dopaminergic system in mice, which is suitable as a benchmark reference for performing new experiments and building computational models of the brain.
Collapse
Affiliation(s)
- I E Bjerke
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - E R Cullity
- Mental Health Theme, Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - K Kjelsberg
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - K M Charan
- ISN Psychology, Institute for Social Neuroscience, Ivanhoe, Australia
| | - T B Leergaard
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - J H Kim
- Mental Health Theme, Florey Institute of Neuroscience and Mental Health, Melbourne, Australia.
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia.
| |
Collapse
|
2
|
Papp EA, Leergaard TB, Csucs G, Bjaalie JG. Brain-Wide Mapping of Axonal Connections: Workflow for Automated Detection and Spatial Analysis of Labeling in Microscopic Sections. Front Neuroinform 2016; 10:11. [PMID: 27148038 PMCID: PMC4835481 DOI: 10.3389/fninf.2016.00011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/26/2016] [Indexed: 01/11/2023] Open
Abstract
Axonal tracing techniques are powerful tools for exploring the structural organization of neuronal connections. Tracers such as biotinylated dextran amine (BDA) and Phaseolus vulgaris leucoagglutinin (Pha-L) allow brain-wide mapping of connections through analysis of large series of histological section images. We present a workflow for efficient collection and analysis of tract-tracing datasets with a focus on newly developed modules for image processing and assignment of anatomical location to tracing data. New functionality includes automatic detection of neuronal labeling in large image series, alignment of images to a volumetric brain atlas, and analytical tools for measuring the position and extent of labeling. To evaluate the workflow, we used high-resolution microscopic images from axonal tracing experiments in which different parts of the rat primary somatosensory cortex had been injected with BDA or Pha-L. Parameters from a set of representative images were used to automate detection of labeling in image series covering the entire brain, resulting in binary maps of the distribution of labeling. For high to medium labeling densities, automatic detection was found to provide reliable results when compared to manual analysis, whereas weak labeling required manual curation for optimal detection. To identify brain regions corresponding to labeled areas, section images were aligned to the Waxholm Space (WHS) atlas of the Sprague Dawley rat brain (v2) by custom-angle slicing of the MRI template to match individual sections. Based on the alignment, WHS coordinates were obtained for labeled elements and transformed to stereotaxic coordinates. The new workflow modules increase the efficiency and reliability of labeling detection in large series of images from histological sections, and enable anchoring to anatomical atlases for further spatial analysis and comparison with other data.
Collapse
Affiliation(s)
- Eszter A Papp
- Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | | | - Gergely Csucs
- Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | - Jan G Bjaalie
- Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| |
Collapse
|
3
|
Yetman MJ, Lillehaug S, Bjaalie JG, Leergaard TB, Jankowsky JL. Transgene expression in the Nop-tTA driver line is not inherently restricted to the entorhinal cortex. Brain Struct Funct 2015; 221:2231-49. [PMID: 25869275 DOI: 10.1007/s00429-015-1040-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/02/2015] [Indexed: 01/07/2023]
Abstract
The entorhinal cortex (EC) plays a central role in episodic memory and is among the earliest sites of neurodegeneration and neurofibrillary tangle formation in Alzheimer's disease. Given its importance in memory and dementia, the ability to selectively modulate gene expression or neuronal function in the EC is of widespread interest. To this end, several recent studies have taken advantage of a transgenic line in which the tetracycline transactivator (tTA) was placed under control of the neuropsin (Nop) promoter to limit transgene expression within the medial EC and pre-/parasubiculum. Although the utility of this driver is contingent on its spatial specificity, no detailed neuroanatomical analysis of its expression has yet been conducted. We therefore undertook a systematic analysis of Nop-tTA expression using a lacZ reporter and have made the complete set of histological sections available through the Rodent Brain Workbench tTA atlas, www.rbwb.org . Our findings confirm that the highest density of tTA expression is found in the EC and pre-/parasubiculum, but also reveal considerable expression in several other cortical areas. Promiscuous transgene expression may account for the appearance of pathological protein aggregates outside of the EC in mouse models of Alzheimer's disease using this driver, as we find considerable overlap between sites of delayed amyloid deposition and regions with sparse β-galactosidase reporter labeling. While different tet-responsive lines can display individual expression characteristics, our results suggest caution when designing experiments that depend on precise localization of gene products controlled by the Nop-tTA or other spatially restrictive transgenic drivers.
Collapse
Affiliation(s)
- Michael J Yetman
- Departments of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, BCM295, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sveinung Lillehaug
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G Bjaalie
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Joanna L Jankowsky
- Departments of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, BCM295, One Baylor Plaza, Houston, TX, 77030, USA. .,Departments of Neurology and Neurosurgery, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Boccara CN, Kjonigsen LJ, Hammer IM, Bjaalie JG, Leergaard TB, Witter MP. A three-plane architectonic atlas of the rat hippocampal region. Hippocampus 2015; 25:838-57. [PMID: 25533645 DOI: 10.1002/hipo.22407] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2014] [Indexed: 11/06/2022]
Abstract
The hippocampal region, comprising the hippocampal formation and the parahippocampal region, has been one of the most intensively studied parts of the brain for decades. Better understanding of its functional diversity and complexity has led to an increased demand for specificity in experimental procedures and manipulations. In view of the complex 3D structure of the hippocampal region, precisely positioned experimental approaches require a fine-grained architectural description that is available and readable to experimentalists lacking detailed anatomical experience. In this paper, we provide the first cyto- and chemoarchitectural description of the hippocampal formation and parahippocampal region in the rat at high resolution and in the three standard sectional planes: coronal, horizontal and sagittal. The atlas uses a series of adjacent sections stained for neurons and for a number of chemical marker substances, particularly parvalbumin and calbindin. All the borders defined in one plane have been cross-checked against their counterparts in the other two planes. The entire dataset will be made available as a web-based interactive application through the Rodent Brain WorkBench (http://www.rbwb.org) which, together with this paper, provides a unique atlas resource.
Collapse
Affiliation(s)
- Charlotte N Boccara
- Centre for Neural Computation, Kavli Institute for System Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Institute of Science and Technology IST, Klosterneuburg, Austria
| | - Lisa J Kjonigsen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ingvild M Hammer
- Centre for Neural Computation, Kavli Institute for System Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jan G Bjaalie
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Menno P Witter
- Centre for Neural Computation, Kavli Institute for System Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
5
|
Lillehaug S, Syverstad GH, Nilsson LN, Bjaalie JG, Leergaard TB, Torp R. Brainwide distribution and variance of amyloid-beta deposits in tg-ArcSwe mice. Neurobiol Aging 2014; 35:556-64. [DOI: 10.1016/j.neurobiolaging.2013.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/03/2013] [Accepted: 09/07/2013] [Indexed: 11/27/2022]
|
6
|
Stensrud M, Chaudhry F, Leergaard T, Bjaalie J, Gundersen V. Vesicular glutamate transporter-3 in the rodent brain: Vesicular colocalization with vesicular γ-aminobutyric acid transporter. J Comp Neurol 2013; 521:3042-56. [DOI: 10.1002/cne.23331] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/08/2013] [Accepted: 03/13/2013] [Indexed: 01/12/2023]
Affiliation(s)
- M.J. Stensrud
- Department of Anatomy; Institute of Basic Medical Sciences, and Centre for Molecular Biology and Neuroscience (CMBN), University of Oslo; 0317 Oslo; Norway
| | - F.A. Chaudhry
- The Biotechnology Centre of Oslo and The Centre for Molecular Biology and Neuroscience (CMBN); University of Oslo; 0317 Oslo; Norway
| | - T.B. Leergaard
- Department of Anatomy; Institute of Basic Medical Sciences, and Centre for Molecular Biology and Neuroscience (CMBN), University of Oslo; 0317 Oslo; Norway
| | - J.G. Bjaalie
- Department of Anatomy; Institute of Basic Medical Sciences, and Centre for Molecular Biology and Neuroscience (CMBN), University of Oslo; 0317 Oslo; Norway
| | | |
Collapse
|
7
|
Osten P, Margrie TW. Mapping brain circuitry with a light microscope. Nat Methods 2013; 10:515-23. [PMID: 23722211 PMCID: PMC3982327 DOI: 10.1038/nmeth.2477] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 04/15/2013] [Indexed: 12/16/2022]
Abstract
The beginning of the 21st century has seen a renaissance in light microscopy and anatomical tract tracing that together are rapidly advancing our understanding of the form and function of neuronal circuits. The introduction of instruments for automated imaging of whole mouse brains, new cell type–specific and trans-synaptic tracers, and computational methods for handling the whole-brain data sets has opened the door to neuroanatomical studies at an unprecedented scale. We present an overview of the present state and future opportunities in charting long-range and local connectivity in the entire mouse brain and in linking brain circuits to function.
Collapse
Affiliation(s)
- Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.
| | | |
Collapse
|
8
|
Schmitt O, Eipert P. neuroVIISAS: approaching multiscale simulation of the rat connectome. Neuroinformatics 2012; 10:243-67. [PMID: 22350719 DOI: 10.1007/s12021-012-9141-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
neuroVIISAS is a generic platform which allows the integration of neuroontologies, mapping functions for brain atlas development, and connectivity data administration; all of which are required for the analysis of structurally and neurobiologically realistic simulations of networks. What makes neuroVIISAS unique is the ability to integrate neuroontologies, image stacks, mappings, visualizations, analyzes and simulations to use them for modelling and simulations. Based on the analysis of over 2020 tracing studies, atlas terminologies and registered histological stacks of images, neuroVIISAS permits the definition of neurobiologically realistic networks that are transferred to the simulation engine NEST. The analysis on a local and global level, the visualization of connectivity data and the results of simulations offer new possibilities to study structural and functional relationships of neural networks. This paper describes the major components and techniques of how to analyse, visualize and simulate with neuroVIISAS shown on a model network at a coarse CNS level (106 regions, 1566 connections) out of 13681 regions and 134043 connections of the left and right part of the CNS. This network of major components of the left and right hemisphere has small-world properties of the Watts-Strogatz model. Furthermore, synchronized subpopulations, oscillations of rate distributions and a time shift of population activities of the left and right hemisphere were observed in the neurocomputational simulations. In summary, a generic platform has been developed that realizes data-analysis-visualization integration for the exploration of network dynamics on multiple levels.
Collapse
Affiliation(s)
- Oliver Schmitt
- Department of Anatomy, Gertrudenstrasse 9, 18055 Rostock, Germany.
| | | |
Collapse
|
9
|
Hare DJ, Lee JK, Beavis AD, van Gramberg A, George J, Adlard PA, Finkelstein DI, Doble PA. Three-dimensional atlas of iron, copper, and zinc in the mouse cerebrum and brainstem. Anal Chem 2012; 84:3990-7. [PMID: 22462591 DOI: 10.1021/ac300374x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atlases depicting molecular and functional features of the brain are becoming an integral part of modern neuroscience. In this study we used laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS) to quantitatively measure iron (Fe), copper (Cu), and zinc (Zn) levels in a serially sectioned C57BL/6 mouse brain (cerebrum and brainstem). Forty-six sections were analyzed in a single experiment of approximately 158 h in duration. We constructed a 46-plate reference atlas by aligning quantified images of metal distribution with corresponding coronal sections from the Allen Mouse Brain Reference Atlas. The 46 plates were also used to construct three-dimensional models of Fe, Cu, and Zn distribution. This atlas represents the first reconstruction of quantitative trace metal distribution through the brain by LA-ICPMS and will facilitate the study of trace metals in the brain and help to elucidate their role in neurobiology.
Collapse
Affiliation(s)
- Dominic J Hare
- Elemental Bio-imaging Facility, University of Technology, Sydney, New South Wales, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Prodanov D. Data ontology and an information system realization for web-based management of image measurements. Front Neuroinform 2011; 5:25. [PMID: 22275893 PMCID: PMC3254173 DOI: 10.3389/fninf.2011.00025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 10/15/2011] [Indexed: 11/13/2022] Open
Abstract
Image acquisition, processing, and quantification of objects (morphometry) require the integration of data inputs and outputs originating from heterogeneous sources. Management of the data exchange along this workflow in a systematic manner poses several challenges, notably the description of the heterogeneous meta-data and the interoperability between the software used. The use of integrated software solutions for morphometry and management of imaging data in combination with ontologies can reduce meta-data loss and greatly facilitate subsequent data analysis. This paper presents an integrated information system, called LabIS. The system has the objectives to automate (i) the process of storage, annotation, and querying of image measurements and (ii) to provide means for data sharing with third party applications consuming measurement data using open standard communication protocols. LabIS implements 3-tier architecture with a relational database back-end and an application logic middle tier realizing web-based user interface for reporting and annotation and a web-service communication layer. The image processing and morphometry functionality is backed by interoperability with ImageJ, a public domain image processing software, via integrated clients. Instrumental for the latter feat was the construction of a data ontology representing the common measurement data model. LabIS supports user profiling and can store arbitrary types of measurements, regions of interest, calibrations, and ImageJ settings. Interpretation of the stored measurements is facilitated by atlas mapping and ontology-based markup. The system can be used as an experimental workflow management tool allowing for description and reporting of the performed experiments. LabIS can be also used as a measurements repository that can be transparently accessed by computational environments, such as Matlab. Finally, the system can be used as a data sharing tool.
Collapse
Affiliation(s)
- Dimiter Prodanov
- Bioelectronic Systems Group, Interuniversity Microelectronics Centre (Imec)Leuven, Belgium
| |
Collapse
|
11
|
Zakiewicz IM, van Dongen YC, Leergaard TB, Bjaalie JG. Workflow and atlas system for brain-wide mapping of axonal connectivity in rat. PLoS One 2011; 6:e22669. [PMID: 21829640 PMCID: PMC3148247 DOI: 10.1371/journal.pone.0022669] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Accepted: 07/03/2011] [Indexed: 11/22/2022] Open
Abstract
Detailed knowledge about the anatomical organization of axonal connections is important for understanding normal functions of brain systems and disease-related dysfunctions. Such connectivity data are typically generated in neuroanatomical tract-tracing experiments in which specific axonal connections are visualized in histological sections. Since journal publications typically only accommodate restricted data descriptions and example images, literature search is a cumbersome way to retrieve overviews of brain connectivity. To explore more efficient ways of mapping, analyzing, and sharing detailed axonal connectivity data from the rodent brain, we have implemented a workflow for data production and developed an atlas system tailored for online presentation of axonal tracing data. The system is available online through the Rodent Brain WorkBench (www.rbwb.org; Whole Brain Connectivity Atlas) and holds experimental metadata and high-resolution images of histological sections from experiments in which axonal tracers were injected in the primary somatosensory cortex. We here present the workflow and the data system, and exemplify how the online image repository can be used to map different aspects of the brain-wide connectivity of the rat primary somatosensory cortex, including not only presence of connections but also morphology, densities, and spatial organization. The accuracy of the approach is validated by comparing results generated with our system with findings reported in previous publications. The present study is a contribution to a systematic mapping of rodent brain connections and represents a starting point for further large-scale mapping efforts.
Collapse
Affiliation(s)
- Izabela M. Zakiewicz
- Centre for Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Yvette C. van Dongen
- Centre for Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B. Leergaard
- Centre for Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G. Bjaalie
- Centre for Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
12
|
Kjonigsen LJ, Leergaard TB, Witter MP, Bjaalie JG. Digital atlas of anatomical subdivisions and boundaries of the rat hippocampal region. Front Neuroinform 2011; 5:2. [PMID: 21519393 PMCID: PMC3078752 DOI: 10.3389/fninf.2011.00002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 03/26/2011] [Indexed: 11/30/2022] Open
Abstract
The rat hippocampal region is frequently studied in relation to learning and memory processes and brain diseases. The region is complex, consisting of multiple subdivisions that are challenging to delineate anatomically. Published atlases of the rat brain typically lack the underlying histological criteria necessary to identify boundaries, and textbooks descriptions of the region are often inadequately illustrated and thus difficult to relate to experimental data. An overview of both anatomical features and criteria used to delineate boundaries is required to assign location to experimental material from the hippocampal region. To address this issue, we have developed a web-based atlas application in which images of histological sections are integrated with new and up-to-date criteria for subdividing the rat hippocampus formation, fasciola, and associated parahippocampal regions. The atlas application consists of an interactive image viewer with high-resolution images of an extensive series of sections stained for NeuN, calbindin, and parvalbumin, and an index of structures with detailed descriptions of the criteria used to define the boundaries. Images can be inspected with a graphical overlay of selected subregions. Bi-directional links between images and the index of structures are provided. In summary, we provide a novel content-rich digital atlas resource facilitating identification of morphological features relevant for delineating the anatomical subdivisions of the rat hippocampal region. The atlas application is available at http://www.rbwb.org.
Collapse
Affiliation(s)
- Lisa J Kjonigsen
- Centre for Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | | | | | | |
Collapse
|
13
|
SynapticDB, effective web-based management and sharing of data from serial section electron microscopy. Neuroinformatics 2010; 9:39-57. [PMID: 21181305 PMCID: PMC3063557 DOI: 10.1007/s12021-010-9088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serial section electron microscopy (ssEM) is rapidly expanding as a primary tool to investigate synaptic circuitry and plasticity. The ultrastructural images collected through ssEM are content rich and their comprehensive analysis is beyond the capacity of an individual laboratory. Hence, sharing ultrastructural data is becoming crucial to visualize, analyze, and discover the structural basis of synaptic circuitry and function in the brain. We devised a web-based management system called SynapticDB (http://synapses.clm.utexas.edu/synapticdb/) that catalogues, extracts, analyzes, and shares experimental data from ssEM. The management strategy involves a library with check-in, checkout and experimental tracking mechanisms. We developed a series of spreadsheet templates (MS Excel, Open Office spreadsheet, etc) that guide users in methods of data collection, structural identification, and quantitative analysis through ssEM. SynapticDB provides flexible access to complete templates, or to individual columns with instructional headers that can be selected to create user-defined templates. New templates can also be generated and uploaded. Research progress is tracked via experimental note management and dynamic PDF forms that allow new investigators to follow standard protocols and experienced researchers to expand the range of data collected and shared. The combined use of templates and tracking notes ensures that the supporting experimental information is populated into the database and associated with the appropriate ssEM images and analyses. We anticipate that SynapticDB will serve future meta-analyses towards new discoveries about the composition and circuitry of neurons and glia, and new understanding about structural plasticity during development, behavior, learning, memory, and neuropathology.
Collapse
|
14
|
Atlas of transgenic Tet-Off Ca2+/calmodulin-dependent protein kinase II and prion protein promoter activity in the mouse brain. Neuroimage 2010; 54:2603-11. [PMID: 21093594 DOI: 10.1016/j.neuroimage.2010.11.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/31/2010] [Accepted: 11/08/2010] [Indexed: 01/20/2023] Open
Abstract
Conditional transgenic mouse models are important tools for investigations of neurodegenerative diseases and evaluation of potential therapeutic interventions. A popular conditional transgenic system is the binary tetracycline-responsive gene (Tet-Off) system, in which the expression of the gene of interest depends on a tetracycline-regulatable transactivator (tTA) under the control of a specific promoter construct. The most frequently used Tet-Off promoter mouse lines are the Ca(2+)/calmodulin-dependent protein kinase II (CamKII) and prion protein (PrP) promoter lines, respectively. To target the regulated gene of interest to relevant brain regions, a priori knowledge about the spatial distribution of the regulated gene expression in the brain is important. Such distribution patterns can be investigated using double transgenic mice in which the promoter construct regulates a LacZ reporter gene encoding the marker β-galactosidase which can be histologically detected using its substrate X-gal. We have previously published an atlas showing the brain-wide expression mediated by the Tet-Off PrP promoter mouse line, but the distribution of activity in the Tet-Off CamKII promoter mouse line is less well known. To compare promoter activity distributions in these two Tet-Off mouse lines, we have developed an online digital atlas tailored for side-by-side comparison of histological section images. The atlas provides a comprehensive list of brain regions containing X-gal labeling and an interactive dual image viewer tool for panning and zooming of corresponding section images. Comparison of spatial expression patterns between the two lines show considerable regional and cellular differences, relevant in context of generation and analysis of inducible models based on these two tetracycline responsive promoter mouse lines.
Collapse
|
15
|
Holmseth S, Scott HA, Real K, Lehre KP, Leergaard TB, Bjaalie JG, Danbolt NC. The concentrations and distributions of three C-terminal variants of the GLT1 (EAAT2; slc1a2) glutamate transporter protein in rat brain tissue suggest differential regulation. Neuroscience 2009; 162:1055-71. [PMID: 19328838 DOI: 10.1016/j.neuroscience.2009.03.048] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/11/2009] [Accepted: 03/16/2009] [Indexed: 12/13/2022]
Abstract
The neurotransmitter glutamate is inactivated by cellular uptake; mostly catalyzed by the glutamate transporter GLT1 (slc1a2, excitatory amino acid transporter [EAAT2]) subtype which is expressed at high levels in brain astrocytes and at lower levels in neurons. Three coulombs-terminal variants of GLT1 exist (GLT1a, GLT1b and GLT1c). Their cellular distributions are currently being debated (that of GLT1b in particular). Here we have made antibodies to the variants and produced pure preparations of the individual variant proteins. The immunoreactivities of each variant per amount of protein were compared to that of total GLT1 immunoisolated from Wistar rat brains. At eight weeks of age GLT1a, GLT1b and GLT1c represented, respectively 90%+/-1%, 6+/-1% and 1%+/-0.5% (mean+/-SEM) of total hippocampal GLT1. The levels of all three variants were low at birth and increased towards adulthood, but GLT1a increased relatively more than the other two. At postnatal day 14 the levels of GLT1b and GLT1c relative to total GLT1 were, respectively, 1.7+/-0.1 and 2.5+/-0.1 times higher than at eight weeks. In tissue sections, antibodies to GLT1a gave stronger labeling than antibodies to GLT1b, but the distributions of GLT1a and GLT1b were similar in that both were predominantly expressed in astroglia, cell bodies as well as their finest ramifications. GLT1b was not detected in nerve terminals in normal brain tissue. The findings illustrate the need for quantitative measurements and support the notion that the importance of the variants may not be due to the transporter molecules themselves, but rather that their expression represents the activities of different regulatory pathways.
Collapse
Affiliation(s)
- S Holmseth
- Center for Molecular Biology and Neuroscience, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, PO Box 1105 Blindern, N 0317 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
16
|
Leergaard TB, Bjaalie JG. Topography of the complete corticopontine projection: from experiments to principal Maps. Front Neurosci 2007; 1:211-23. [PMID: 18982130 PMCID: PMC2518056 DOI: 10.3389/neuro.01.1.1.016.2007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 09/01/2007] [Indexed: 11/13/2022] Open
Abstract
The mammalian brain is characterized by orderly spatial distribution of its cellular components, commonly referred to as topographical organization. The topography of cortical and subcortical maps is thought to represent functional or computational properties. In the present investigation, we have studied map transformations and organizing principles in the projections from the cerebral cortex to the pontine nuclei, with emphasis on the mapping of the cortex as a whole onto the pontine nuclei. Following single or multiple axonal tracer injections into different cortical regions, three-dimensional (3-D) distributions of anterogradely labeled axons in the pontine nuclei were mapped. All 3-D reconstructed data sets were normalized to a standardized local coordinate system for the pontine nuclei and uploaded in a database application (FACCS, Functional Anatomy of the Cerebro-Cerebellar System, available via The Rodent Brain Workbench, http://www.rbwb.org). The database application allowed flexible use of the data in novel combinations, and use of a previously published data sets. Visualization of different combinations of data was used to explore alternative principles of organization. As a result of these analyses, a principal map of the topography of corticopontine projections was developed. This map followed the organization of early spatiotemporal gradients present in the cerebral cortex and the pontine nuclei. With the principal map for corticopontine projections, a fairly accurate prediction of pontine target area can be made for any site of origin in the cerebral cortex. The map and the underlying shared data sets represent a basis for modeling of topographical organization and structure-function relationships in this system.
Collapse
Affiliation(s)
- Trygve B Leergaard
- Centre for Molecular Biology and Neuroscience & Institute of Basic Medical Sciences, University of Oslo Norway
| | | |
Collapse
|
17
|
Bolstad I, Leergaard TB, Bjaalie JG. Branching of individual somatosensory cerebropontine axons in rat: evidence of divergence. Brain Struct Funct 2007; 212:85-93. [PMID: 17717700 DOI: 10.1007/s00429-007-0145-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 05/09/2007] [Indexed: 12/21/2022]
Abstract
The cerebral cortex conveys major input to the granule cell layer of the cerebellar hemispheres by way of the pontine nuclei. Cerebrocortical projections terminate in multiple, widely distributed clusters in the pontine nuclei. This clustered organization is thought to provide the transition between the different organizational principles of the cerebrum and cerebellum, and indicates that parallel processing occurs at multiple sites in the pontine nuclei. At a cellular level, however, it is unknown whether individual cerebropontine neurons target pontocerebellar cells located in different clusters or not. We have employed anterograde axonal tracing and 3D computerized reconstruction techniques to characterize the branching pattern and morphology of individual cerebropontine axons from the primary somatosensory cortex (SI). Our findings show that 43% of the cerebrobulbar fibers arising from SI whisker representations provide two or three fibers entering the pontine nuclei, whereas 39% have only one fiber, and the remaining 18% do not project to the pontine nuclei. Thus, it appears that a majority of cerebropontine axons originating in SI whisker representations diverge to contact multiple, separated pontocerebellar cells. Further, 84% of the somatosensory cerebropontine fibers are collateral branches from cerebrobulbar and/or cerebrospinal parent fibers, while 16% are direct cerebropontine projections without a further descending projection. A range of thicknesses of the fibers entering the pontine nuclei were observed, with collaterals of corticobulbar fibers having the smallest diameter. Taken together, these findings may be related to previously described separate cerebropontine transmission lines with different properties.
Collapse
Affiliation(s)
- Ingeborg Bolstad
- Centre for Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo, P.O Box 1105, Blindern, 0317 Oslo, Norway
| | | | | |
Collapse
|