1
|
van Amerom JFP, Goolaub DS, Schrauben EM, Sun L, Macgowan CK, Seed M. Fetal cardiovascular blood flow MRI: techniques and applications. Br J Radiol 2023; 96:20211096. [PMID: 35687661 PMCID: PMC10321246 DOI: 10.1259/bjr.20211096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 11/05/2022] Open
Abstract
Fetal cardiac MRI is challenging due to fetal and maternal movements as well as the need for a reliable cardiac gating signal and high spatiotemporal resolution. Ongoing research and recent technical developments to address these challenges show the potential of MRI as an adjunct to ultrasound for the assessment of the fetal heart and great vessels. MRI measurements of blood flow have enabled the assessment of normal fetal circulation as well as conditions with disrupted circulations, such as congenital heart disease, along with associated organ underdevelopment and hemodynamic instability. This review provides details of the techniques used in fetal cardiovascular blood flow MRI, including single slice and volumetric imaging sequences, post-processing and analysis, along with a summary of applications in human studies and animal models.
Collapse
Affiliation(s)
- Joshua FP van Amerom
- Division of Translational Medicine, SickKids Research Institute, Toronto, Canada
| | | | - Eric M Schrauben
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | | | | | | |
Collapse
|
2
|
Ismail NI. Relative expression of receptors in uterine natural killer cells compared to peripheral blood natural killer cells. Front Immunol 2023; 14:1166451. [PMID: 37051244 PMCID: PMC10083503 DOI: 10.3389/fimmu.2023.1166451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
One would expect maternal immune cells to attack the invading trophoblast as the placenta is semi-allogenic. However, they appear to cooperate with the trophoblast in disrupting the arterial wall which has been determined in several studies. uNK cells are a particular type of immune cell that appears to play a role in pregnancy. As in pregnancy, the key contributors to trophoblast invasion appear to be a unique combination of genes, which appear to regulate multiple components of the interactions between placental and maternal cells, called HLA class 1b genes. The HLA class 1b genes have few alleles, which makes them unlikely to be recognized as foreign by the maternal cells. The low polymorphic properties of these particular HLAs may aid trophoblasts in actively avoiding immune attacks. This review gives a complete description of the mechanisms of interaction between HLAs and maternal uNK cells in humans.
Collapse
|
3
|
Carter AM. Unique Aspects of Human Placentation. Int J Mol Sci 2021; 22:8099. [PMID: 34360862 PMCID: PMC8347521 DOI: 10.3390/ijms22158099] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022] Open
Abstract
Human placentation differs from that of other mammals. A suite of characteristics is shared with haplorrhine primates, including early development of the embryonic membranes and placental hormones such as chorionic gonadotrophin and placental lactogen. A comparable architecture of the intervillous space is found only in Old World monkeys and apes. The routes of trophoblast invasion and the precise role of extravillous trophoblast in uterine artery transformation is similar in chimpanzee and gorilla. Extended parental care is shared with the great apes, and though human babies are rather helpless at birth, they are well developed (precocial) in other respects. Primates and rodents last shared a common ancestor in the Cretaceous period, and their placentation has evolved independently for some 80 million years. This is reflected in many aspects of their placentation. Some apparent resemblances such as interstitial implantation and placental lactogens are the result of convergent evolution. For rodent models such as the mouse, the differences are compounded by short gestations leading to the delivery of poorly developed (altricial) young.
Collapse
Affiliation(s)
- Anthony M Carter
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, DK-5230 Odense, Denmark
| |
Collapse
|
4
|
Li M, Brokaw A, Furuta AM, Coler B, Obregon-Perko V, Chahroudi A, Wang HY, Permar SR, Hotchkiss CE, Golos TG, Rajagopal L, Adams Waldorf KM. Non-human Primate Models to Investigate Mechanisms of Infection-Associated Fetal and Pediatric Injury, Teratogenesis and Stillbirth. Front Genet 2021; 12:680342. [PMID: 34290739 PMCID: PMC8287178 DOI: 10.3389/fgene.2021.680342] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
A wide array of pathogens has the potential to injure the fetus and induce teratogenesis, the process by which mutations in fetal somatic cells lead to congenital malformations. Rubella virus was the first infectious disease to be linked to congenital malformations due to an infection in pregnancy, which can include congenital cataracts, microcephaly, hearing impairment and congenital heart disease. Currently, human cytomegalovirus (HCMV) is the leading infectious cause of congenital malformations globally, affecting 1 in every 200 infants. However, our knowledge of teratogenic viruses and pathogens is far from complete. New emerging infectious diseases may induce teratogenesis, similar to Zika virus (ZIKV) that caused a global pandemic in 2016-2017; thousands of neonates were born with congenital microcephaly due to ZIKV exposure in utero, which also included a spectrum of injuries to the brain, eyes and spinal cord. In addition to congenital anomalies, permanent injury to fetal and neonatal organs, preterm birth, stillbirth and spontaneous abortion are known consequences of a broader group of infectious diseases including group B streptococcus (GBS), Listeria monocytogenes, Influenza A virus (IAV), and Human Immunodeficiency Virus (HIV). Animal models are crucial for determining the mechanism of how these various infectious diseases induce teratogenesis or organ injury, as well as testing novel therapeutics for fetal or neonatal protection. Other mammalian models differ in many respects from human pregnancy including placentation, labor physiology, reproductive tract anatomy, timeline of fetal development and reproductive toxicology. In contrast, non-human primates (NHP) most closely resemble human pregnancy and exhibit key similarities that make them ideal for research to discover the mechanisms of injury and for testing vaccines and therapeutics to prevent teratogenesis, fetal and neonatal injury and adverse pregnancy outcomes (e.g., stillbirth or spontaneous abortion). In this review, we emphasize key contributions of the NHP model pre-clinical research for ZIKV, HCMV, HIV, IAV, L. monocytogenes, Ureaplasma species, and GBS. This work represents the foundation for development and testing of preventative and therapeutic strategies to inhibit infectious injury of human fetuses and neonates.
Collapse
Affiliation(s)
- Miranda Li
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Alyssa Brokaw
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Anna M. Furuta
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Brahm Coler
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Veronica Obregon-Perko
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Hsuan-Yuan Wang
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Charlotte E. Hotchkiss
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Thaddeus G. Golos
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Lakshmi Rajagopal
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Kristina M. Adams Waldorf
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Block LN, Bowman BD, Schmidt JK, Keding LT, Stanic AK, Golos TG. The promise of placental extracellular vesicles: models and challenges for diagnosing placental dysfunction in utero†. Biol Reprod 2021; 104:27-57. [PMID: 32856695 PMCID: PMC7786267 DOI: 10.1093/biolre/ioaa152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/04/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Monitoring the health of a pregnancy is of utmost importance to both the fetus and the mother. The diagnosis of pregnancy complications typically occurs after the manifestation of symptoms, and limited preventative measures or effective treatments are available. Traditionally, pregnancy health is evaluated by analyzing maternal serum hormone levels, genetic testing, ultrasonographic imaging, and monitoring maternal symptoms. However, researchers have reported a difference in extracellular vesicle (EV) quantity and cargo between healthy and at-risk pregnancies. Thus, placental EVs (PEVs) may help to understand normal and aberrant placental development, monitor pregnancy health in terms of developing placental pathologies, and assess the impact of environmental influences, such as infection, on pregnancy. The diagnostic potential of PEVs could allow for earlier detection of pregnancy complications via noninvasive sampling and frequent monitoring. Understanding how PEVs serve as a means of communication with maternal cells and recognizing their potential utility as a readout of placental health have sparked a growing interest in basic and translational research. However, to date, PEV research with animal models lags behind human studies. The strength of animal pregnancy models is that they can be used to assess placental pathologies in conjunction with isolation of PEVs from fluid samples at different time points throughout gestation. Assessing PEV cargo in animals within normal and complicated pregnancies will accelerate the translation of PEV analysis into the clinic for potential use in prognostics. We propose that appropriate animal models of human pregnancy complications must be established in the PEV field.
Collapse
Affiliation(s)
- Lindsey N Block
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Brittany D Bowman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Logan T Keding
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Aleksandar K Stanic
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
6
|
Jain VG, Kong F, Kallapur SG, Presicce P, Senthamaraikannnan P, Cappelletti M, Chougnet CA, Bhattacharyya S, Pasare C, Muglia LJ. IRAK1 Is a Critical Mediator of Inflammation-Induced Preterm Birth. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2651-2660. [PMID: 32238461 PMCID: PMC7366796 DOI: 10.4049/jimmunol.1901368] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/10/2020] [Indexed: 01/09/2023]
Abstract
Preterm birth (PTB) is a major cause of neonatal mortality and morbidity, often triggered by chorioamnionitis or intrauterine inflammation (IUI) with or without infection. Recently, there has been a strong association of IL-1 with PTB. We hypothesized that IL-1R-associated kinase 1 (IRAK1), a key signaling mediator in the TLR/IL-1 pathway, plays a critical role in PTB. In human fetal membranes (FM) collected immediately after birth from women delivering preterm, p-IRAK1 was significantly increased in all the layers of FM with chorioamnionitis, compared with no-chorioamnionitis subjects. In a preterm rhesus macaque model of IUI given intra-amniotic LPS, induction of p-IRAK1 and downstream proinflammatory signaling mediators were seen in the FM. In a C57BL/6J wild-type PTB mouse model of IUI given intrauterine LPS, an IRAK1 inhibitor significantly decreased PTB and increased live birth in a dose-dependent manner. Furthermore, IRAK1 knockout mice were protected from LPS-induced PTB, which was seen in wild-type controls. Activation of IRAK1 was maintained by K63-mediated ubiquitination in preterm FM of humans with chorioamnionitis and rhesus and mouse IUI models. Mechanistically, IRAK1 induced PTB in the mouse model of IUI by upregulating expression of COX-2. Thus, our data from human, rhesus, and mouse demonstrates a critical role IRAK1 in IUI and inflammation-associated PTB and suggest it as potential therapeutic target in IUI-induced PTB.
Collapse
Affiliation(s)
- Viral G Jain
- Division of Neonatology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Fansheng Kong
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Suhas G Kallapur
- Division of Neonatology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Division of Neonatology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095
| | - Pietro Presicce
- Division of Neonatology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Division of Neonatology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095
| | | | - Monica Cappelletti
- Division of Neonatology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095
| | - Claire A Chougnet
- Division of Immunobiology, Center for Inflammation and Tolerance, Cincinnati Children's Hospital, Cincinnati, OH 45229; and
| | - Sandip Bhattacharyya
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Chandrashekhar Pasare
- Division of Immunobiology, Center for Inflammation and Tolerance, Cincinnati Children's Hospital, Cincinnati, OH 45229; and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Louis J Muglia
- Division of Neonatology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229;
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| |
Collapse
|
7
|
Ludwig KD, Fain SB, Nguyen SM, Golos TG, Reeder SB, Bird IM, Shah DM, Wieben OE, Johnson KM. Perfusion of the placenta assessed using arterial spin labeling and ferumoxytol dynamic contrast enhanced magnetic resonance imaging in the rhesus macaque. Magn Reson Med 2019; 81:1964-1978. [PMID: 30357902 PMCID: PMC6715150 DOI: 10.1002/mrm.27548] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/29/2018] [Accepted: 09/03/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE To investigate the correspondence between arterial spin labeling (ASL) flow-sensitive alternating inversion recovery (FAIR) and ferumoxytol DCE MRI for the assessment of placental intervillous perfusion. METHODS Ten pregnant macaques in late second trimester were imaged at 3 T using a 2D ASL FAIR, with and without outer-volume saturation pulses used to control the bolus width, and a 3D ferumoxytol DCE-MRI acquisition. The ASL tagged/control pairs were averaged, subtracted, and normalized to create perfusion ratio maps. Contrast arrival time and uptake slope were estimated by fitting the DCE data to a sigmoid function. Macaques (N = 4) received interleukin-1β to induce inflammation and disrupt perfusion. RESULTS The FAIR tag modification with outer-volume saturation reduced the median ASL ratio percentage compared with conventional FAIR (0.64% ± 1.42% versus 0.71% ± 2.00%; P < .05). Extended ferumoxytol arrival times (34 ± 25 seconds) were observed across the placenta. No significant DCE signal change was measured in fetal tissue ( - 0.6% ± 3.0%; P = .52) or amniotic fluid (1.9% ± 8.8%; P = .59). High ASL ratio was significantly correlated with early arrival time and high uptake slope (P < .05), but ASL signal was not above noise in late-DCE-enhancing regions. No significant differences were observed in perfusion measurements between the interleukin-1β and controls (P > .05). CONCLUSION The ASL-FAIR and ferumoxytol DCE-MRI methods are feasible to detect early blood delivery to the macaque placenta. Outer volume saturation reduced the high macrovascular ASL signal. Interleukin-1β exposure did not alter placental intervillous perfusion. An endogenous-labeling perfusion technique is limited due to extended transit times for flow within the placenta beyond the immediate vicinity of the maternal spiral arteries.
Collapse
Affiliation(s)
- Kai D. Ludwig
- Medical Physics, University of Wisconsin, 1111 Highland Ave, Madison, Madison, WI, USA 53705
| | - Sean B. Fain
- Medical Physics, University of Wisconsin, 1111 Highland Ave, Madison, Madison, WI, USA 53705
- Radiology, University of Wisconsin, 600 Highland Ave, Madison, Madison, WI, USA 53792
- Biomedical Engineering, University of Wisconsin, 1415 Engineering Dr, Madison, Madison, WI, USA 53706
| | - Sydney M. Nguyen
- Wisconsin National Primate Research Center, 1220 Capitol Court, Madison, WI, USA 53715
- Obstetrics and Gynecology, University of Wisconsin, 600 Highland Ave, Madison, WI, USA 53792
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center, 1220 Capitol Court, Madison, WI, USA 53715
- Obstetrics and Gynecology, University of Wisconsin, 600 Highland Ave, Madison, WI, USA 53792
- Comparative Biosciences, University of Wisconsin, 2015 Linden Dr, Madison, Madison, WI, USA 53706
| | - Scott B. Reeder
- Medical Physics, University of Wisconsin, 1111 Highland Ave, Madison, Madison, WI, USA 53705
- Radiology, University of Wisconsin, 600 Highland Ave, Madison, Madison, WI, USA 53792
- Biomedical Engineering, University of Wisconsin, 1415 Engineering Dr, Madison, Madison, WI, USA 53706
- Medicine, University of Wisconsin, 600 Highland Ave, Madison, Madison, WI, USA 53792
- Emergency Medicine, University of Wisconsin, 600 Highland Ave, Madison, Madison, WI, USA 53792
| | - Ian M. Bird
- Obstetrics and Gynecology, University of Wisconsin, 600 Highland Ave, Madison, WI, USA 53792
| | - Dinesh M. Shah
- Obstetrics and Gynecology, University of Wisconsin, 600 Highland Ave, Madison, WI, USA 53792
| | - Oliver E. Wieben
- Medical Physics, University of Wisconsin, 1111 Highland Ave, Madison, Madison, WI, USA 53705
- Radiology, University of Wisconsin, 600 Highland Ave, Madison, Madison, WI, USA 53792
| | - Kevin M. Johnson
- Medical Physics, University of Wisconsin, 1111 Highland Ave, Madison, Madison, WI, USA 53705
- Radiology, University of Wisconsin, 600 Highland Ave, Madison, Madison, WI, USA 53792
| |
Collapse
|
8
|
Macdonald JA, Corrado PA, Nguyen SM, Johnson KM, Francois CJ, Magness RR, Shah DM, Golos TG, Wieben O. Uteroplacental and Fetal 4D Flow MRI in the Pregnant Rhesus Macaque. J Magn Reson Imaging 2018; 49:534-545. [PMID: 30102431 DOI: 10.1002/jmri.26206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 05/15/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Pregnancy complications are often associated with poor uteroplacental vascular adaptation and standard diagnostics are unable to reliably quantify flow in all uteroplacental vessels and have poor sensitivity early in gestation. PURPOSE To investigate the feasibility of using 4D flow MRI to assess total uteroplacental blood flow in pregnant rhesus macaques as a precursor to human studies. STUDY TYPE Retrospective feasibility study. ANIMAL MODEL Fifteen healthy, pregnant rhesus macaques ranging from the 1st trimester to 3rd trimester of gestation. FIELD STRENGTH/SEQUENCE Abdominal 4D flow MRI was performed on a 3.0T scanner with a radially undersampled phase contrast (PC) sequence. Reference ferumoxytol-enhanced angiograms were acquired with a 3D ultrashort echo time sequence with a center-out radial trajectory. ASSESSMENT Repeatability of flow measurements was assessed with scans performed same-day and on consecutive days in the uterine arteries and ovarian veins. In-flow was compared against out-flow in the uterus, umbilical cord, and fetal heart with a conservation of mass analysis. Conspicuity of uteroplacental vessels was qualitatively compared between PC angiograms derived from 4D flow data and ferumoxytol-enhanced angiograms. STATISTICAL TESTS Bland-Altman analysis was used to quantify same-day and consecutive-day repeatability. RESULTS Same-day flow measurements showed an average difference between scans of 13% in both the uterine arteries and ovarian veins, while consecutive-day measurements showed average differences of 22% and 24%, respectively. Comparisons of in-flow and out-flow showed average differences of 15% in the uterus, 8% in fetal heart, and 15% in the umbilical cord. PC angiograms showed similar depiction of main uteroplacental vessels as high-resolution, ferumoxytol-enhanced angiograms. DATA CONCLUSION 4D flow MRI could be used in the rhesus macaque for repeatable flow measurements in the uteroplacental and fetal vasculature, setting the stage for future human studies. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:534-545.
Collapse
Affiliation(s)
- Jacob A Macdonald
- Department of Medical Physics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Philip A Corrado
- Department of Medical Physics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Sydney M Nguyen
- Wisconsin National Primate Center, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | | | - Ronald R Magness
- Department of Obstetrics & Gynecology, University of South Florida, Tampa, Florida, USA
| | - Dinesh M Shah
- Department of Obstetrics & Gynecology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Center, University of Wisconsin - Madison, Madison, Wisconsin, USA.,Department of Comparative Biosciences, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin - Madison, Madison, Wisconsin, USA.,Department of Radiology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| |
Collapse
|
9
|
Schmidt JK, Block LN, Golos TG. Defining the rhesus macaque placental miRNAome: Conservation of expression of placental miRNA clusters between the macaque and human. Placenta 2018; 65:55-64. [PMID: 29908642 DOI: 10.1016/j.placenta.2018.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Expression of microRNAs (miRNAs) in the human placenta is dynamic across gestation, with expression of miRNAs belonging to the C14MC, C19MC and miR-371-3 clusters. Specifically, miRNAs within the C19MC cluster are exclusively expressed in primates with predominant expression in the placenta. Non-human primates can be utilized to study developmental processes of placentation in vivo that cannot be assessed in the human placenta, however, miRNA expression has not been defined in the macaque placenta. Our objective was to profile miRNAs in the macaque placenta, hypothesizing that expression is conserved between the macaque and human placenta. METHODS Total RNA from first trimester and term macaque placentas (n = 4 per group) was analyzed through RNA-sequencing and validated by quantitative real-time PCR (qRT-PCR). RESULTS A total of 607 pre-miRNAs previously annotated in the macaque reference database (miRBase21) were detected, and 166 miRNAs were differentially expressed between first trimester and term placentas. A total of 457 unannotated sequences were detected and deemed candidate novel miRNAs by miRDeep2 software. Differential expression was confirmed for six of nine miRNAs evaluated by qRT-PCR. Comparative analysis demonstrated expression of several miRNA orthologs of human pregnancy-associated miRNA clusters in the macaque placenta. CONCLUSIONS Profiling placental miRNAs of the macaque revealed conserved expression of a number of miRNAs within the C14MC, C19MC and miR-371-3 clusters between the human and macaque. These results establish non-human primates as a model for human placentation and miRNA biology, with the prediction of their functional significance in placental development and function.
Collapse
Affiliation(s)
- Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| | - Lindsey N Block
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, 53715, USA
| |
Collapse
|
10
|
Presicce P, Park CW, Senthamaraikannan P, Bhattacharyya S, Jackson C, Kong F, Rueda CM, DeFranco E, Miller LA, Hildeman DA, Salomonis N, Chougnet CA, Jobe AH, Kallapur SG. IL-1 signaling mediates intrauterine inflammation and chorio-decidua neutrophil recruitment and activation. JCI Insight 2018; 3:98306. [PMID: 29563340 DOI: 10.1172/jci.insight.98306] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/13/2018] [Indexed: 12/31/2022] Open
Abstract
Neutrophil infiltration of the chorioamnion-decidua tissue at the maternal-fetal interface (chorioamnionitis) is a leading cause of prematurity, fetal inflammation, and perinatal mortality. We induced chorioamnionitis in preterm rhesus macaques by intraamniotic injection of LPS. Here, we show that, during chorioamnionitis, the amnion upregulated phospho-IRAK1-expressed neutrophil chemoattractants CXCL8 and CSF3 in an IL-1-dependent manner. IL-1R blockade decreased chorio-decidua neutrophil accumulation, neutrophil activation, and IL-6 and prostaglandin E2 concentrations in the amniotic fluid. Neutrophils accumulating in the chorio-decidua had increased survival mediated by BCL2A1, and IL-1R blockade also decreased BCL2A1+ chorio-decidua neutrophils. Readouts for inflammation in a cohort of women with preterm delivery and chorioamnionitis were similar to findings in the rhesus macaques. IL-1 is a potential therapeutic target for chorioamnionitis and associated morbidities.
Collapse
Affiliation(s)
| | | | | | | | - Courtney Jackson
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Cesar M Rueda
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Emily DeFranco
- Department of Obstetrics/Gynecology, Maternal-Fetal Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Lisa A Miller
- California National Primate Research Center, Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, UCD, Davis, California, USA
| | - David A Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nathan Salomonis
- Division of Biomedical informatics, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, USA
| | - Claire A Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | |
Collapse
|
11
|
Stouffer RL, Woodruff TK. Nonhuman Primates: A Vital Model for Basic and Applied Research on Female Reproduction, Prenatal Development, and Women's Health. ILAR J 2017; 58:281-294. [PMID: 28985318 PMCID: PMC5886348 DOI: 10.1093/ilar/ilx027] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 06/30/2017] [Indexed: 12/20/2022] Open
Abstract
The comparative biology of reproduction and development in mammalian species is remarkable. Hence, because of similarities in environmental and neuroendocrine control of the reproductive axis, the cyclic function of the ovary and reproductive tract, establishment and control of the maternal-fetal-placental unit during pregnancy, and reproductive aging from puberty through menopause, nonhuman primates (NHPs) are valuable models for research related to women's reproductive health and its disorders. This chapter provides examples of research over the past 10+ years using Old World monkeys (notably macaque species), baboons, and to a lesser extent New World monkeys (especially marmosets) that contributed to our understanding of the etiology and therapies or prevention of: (1) ovarian disorders, e.g., polycystic ovary syndrome, mitochondrial DNA-based diseases from the oocyte; (2) uterine disorders, for example, endometriosis and uterine transplantation; and (3) pregnancy disorders, for example, preterm labor and delivery, environmental factors. Also, emerging opportunities such as viral (e.g., Zika) induced fetal defects and germline genomic editing to generate valuable primate models of human diseases (e.g., Huntington and muscular dystrophy) are addressed. Although the high costs, specialized resources, and ethical debate challenge the use of primates in biomedical research, their inclusion in fertility and infertility research is vital for continued improvements in women's reproductive health.
Collapse
Affiliation(s)
- Richard L Stouffer
- Richard L. Stouffer, Ph.D., is Professor in the Division of Reproductive and Developmental Sciences at the Oregon National Primate Research Center in Beaverton, Oregon and Professor in the Department of Obstetrics and Gynecology at Oregon Health & Sciences University in Portland, Oregon. Teresa K. Woodruff, Ph.D., is Thomas J. Watkins Professor of Obstetrics and Gynecology, Vice Chair of Research (OB/GYN), and Chief of the Division of Reproductive Science in Medicine at the Feinberg School of Medicine, and Professor of Molecular Biosciences at Weinberg College of Arts and Sciences, Northwestern University in Chicago, Illinois.
| | - Teresa K Woodruff
- Richard L. Stouffer, Ph.D., is Professor in the Division of Reproductive and Developmental Sciences at the Oregon National Primate Research Center in Beaverton, Oregon and Professor in the Department of Obstetrics and Gynecology at Oregon Health & Sciences University in Portland, Oregon. Teresa K. Woodruff, Ph.D., is Thomas J. Watkins Professor of Obstetrics and Gynecology, Vice Chair of Research (OB/GYN), and Chief of the Division of Reproductive Science in Medicine at the Feinberg School of Medicine, and Professor of Molecular Biosciences at Weinberg College of Arts and Sciences, Northwestern University in Chicago, Illinois.
| |
Collapse
|
12
|
Aliota MT, Bassit L, Bradrick SS, Cox B, Garcia-Blanco MA, Gavegnano C, Friedrich TC, Golos TG, Griffin DE, Haddow AD, Kallas EG, Kitron U, Lecuit M, Magnani DM, Marrs C, Mercer N, McSweegan E, Ng LFP, O'Connor DH, Osorio JE, Ribeiro GS, Ricciardi M, Rossi SL, Saade G, Schinazi RF, Schott-Lerner GO, Shan C, Shi PY, Watkins DI, Vasilakis N, Weaver SC. Zika in the Americas, year 2: What have we learned? What gaps remain? A report from the Global Virus Network. Antiviral Res 2017; 144:223-246. [PMID: 28595824 PMCID: PMC5920658 DOI: 10.1016/j.antiviral.2017.06.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 12/25/2022]
Abstract
In response to the outbreak of Zika virus (ZIKV) infection in the Western Hemisphere and the recognition of a causal association with fetal malformations, the Global Virus Network (GVN) assembled an international taskforce of virologists to promote basic research, recommend public health measures and encourage the rapid development of vaccines, antiviral therapies and new diagnostic tests. In this article, taskforce members and other experts review what has been learned about ZIKV-induced disease in humans, its modes of transmission and the cause and nature of associated congenital manifestations. After describing the make-up of the taskforce, we summarize the emergence of ZIKV in the Americas, Africa and Asia, its spread by mosquitoes, and current control measures. We then review the spectrum of primary ZIKV-induced disease in adults and children, sites of persistent infection and sexual transmission, then examine what has been learned about maternal-fetal transmission and the congenital Zika syndrome, including knowledge obtained from studies in laboratory animals. Subsequent sections focus on vaccine development, antiviral therapeutics and new diagnostic tests. After reviewing current understanding of the mechanisms of emergence of Zika virus, we consider the likely future of the pandemic.
Collapse
Affiliation(s)
- Matthew T Aliota
- Department of Pathobiological Sciences, University of Wisconsin-Madison, USA
| | - Leda Bassit
- Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Shelton S Bradrick
- Department of Biochemistry and Molecular Biology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Bryan Cox
- Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Christina Gavegnano
- Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, USA; Department of Comparative Biosciences, University of Wisconsin-Madison, USA; Department of Obstetrics and Gynecology, University of Wisconsin-Madison, USA
| | - Diane E Griffin
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Andrew D Haddow
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Virology Division, United States Army Medical Research Institute of Infectious Diseases, Ft. Detrick, MD, 21702, USA
| | - Esper G Kallas
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, Brazil
| | - Uriel Kitron
- Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | - Marc Lecuit
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Institut Pasteur, Biology of Infection Unit and INSERM Unit 1117, France; Paris Descartes University, Sorbonne Paris Cité, Division of Infectious Diseases and Tropical Medicine, Necker- Enfants Malades University Hospital, Institut Imagine, Paris, France
| | - Diogo M Magnani
- Department of Pathology, University of Miami, Miami, FL, USA
| | - Caroline Marrs
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Natalia Mercer
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA
| | | | - Lisa F P Ng
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - David H O'Connor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, USA
| | - Jorge E Osorio
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Department of Pathobiological Sciences, University of Wisconsin-Madison, USA
| | - Guilherme S Ribeiro
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz and Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | | | - Shannan L Rossi
- Department of Microbiology & Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - George Saade
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Raymond F Schinazi
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Geraldine O Schott-Lerner
- Department of Biochemistry and Molecular Biology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Chao Shan
- Department of Biochemistry and Molecular Biology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - David I Watkins
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Department of Pathology, University of Miami, Miami, FL, USA
| | - Nikos Vasilakis
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- Global Virus Network, 725 West Lombard St., Baltimore, MD, USA; Department of Microbiology & Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
13
|
Ferreira LMR, Meissner TB, Tilburgs T, Strominger JL. HLA-G: At the Interface of Maternal-Fetal Tolerance. Trends Immunol 2017; 38:272-286. [PMID: 28279591 DOI: 10.1016/j.it.2017.01.009] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 12/22/2022]
Abstract
During pregnancy, semiallogeneic fetal extravillous trophoblasts (EVT) invade the uterine mucosa without being rejected by the maternal immune system. Several mechanisms were initially proposed by Peter Medawar half a century ago to explain this apparent violation of the laws of transplantation. Then, three decades ago, an unusual human leukocyte antigen (HLA) molecule was identified: HLA-G. Uniquely expressed in EVT, HLA-G has since become the center of the present understanding of fetus-induced immune tolerance. Despite slow progress in the field, the last few years have seen an explosion in our knowledge of HLA-G biology. Here, we critically review new insights into the mechanisms controlling the expression and function of HLA-G at the maternal-fetal interface, and discuss their relevance for fetal tolerance.
Collapse
Affiliation(s)
- Leonardo M R Ferreira
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Torsten B Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Tamara Tilburgs
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jack L Strominger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
14
|
Senthamaraikannan P, Presicce P, Rueda CM, Maneenil G, Schmidt AF, Miller LA, Waites KB, Jobe AH, Kallapur SG, Chougnet CA. Intra-amniotic Ureaplasma parvum-Induced Maternal and Fetal Inflammation and Immune Responses in Rhesus Macaques. J Infect Dis 2016; 214:1597-1604. [PMID: 27601620 DOI: 10.1093/infdis/jiw408] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/22/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Although Ureaplasma species are the most common organisms associated with prematurity, their effects on the maternal and fetal immune system remain poorly characterized. METHODS Rhesus macaque dams at approximately 80% gestation were injected intra-amniotically with 107 colony-forming units of Ureaplasma parvum or saline (control). Fetuses were delivered surgically 3 or 7 days later. We performed comprehensive assessments of inflammation and immune effects in multiple fetal and maternal tissues. RESULTS Although U. parvum grew well in amniotic fluid, there was minimal chorioamnionitis. U. parvum colonized the fetal lung, but fetal systemic microbial invasion was limited. Fetal lung inflammation was mild, with elevations in CXCL8, tumor necrosis factor (TNF) α, and CCL2 levels in alveolar washes at day 7. Inflammation was not detected in the fetal brain. Significantly, U. parvum decreased regulatory T cells (Tregs) and activated interferon γ production in these Tregs in the fetus. It was detected in uterine tissue by day 7 and induced mild inflammation and increased expression of connexin 43, a gap junction protein involved with labor. CONCLUSIONS U. parvum colonized the amniotic fluid and caused uterine inflammation, but without overt chorioamnionitis. It caused mild fetal lung inflammation but had a more profound effect on the fetal immune system, decreasing Tregs and polarizing them toward a T-helper 1 phenotype.
Collapse
Affiliation(s)
| | | | - Cesar M Rueda
- Perinatal Institute.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Ohio
| | - Gunlawadee Maneenil
- Perinatal Institute.,Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | | | - Lisa A Miller
- California National Primate Research Center.,Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis
| | - Ken B Waites
- Department of Pathology, University of Alabama at Birmingham
| | | | | | - Claire A Chougnet
- Perinatal Institute.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Ohio
| |
Collapse
|
15
|
Trophoblast-microbiome interaction: a new paradigm on immune regulation. Am J Obstet Gynecol 2015; 213:S131-7. [PMID: 26428492 DOI: 10.1016/j.ajog.2015.06.039] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/12/2015] [Accepted: 06/16/2015] [Indexed: 01/12/2023]
Abstract
The immunologic paradigm of pregnancy led to the conceptualization of pregnancy as an organ transplant that requires, for its success, suppression of the maternal immune system. Growing scientific evidence suggests that in many ways the placenta functions as a tumor rather than a transplant and the immune regulation of the maternal-fetal interface is the result of the coordinated interaction between all its cellular components, including bacteria. Examining the role of microbiota in reproduction is in its infancy, but there is growing literature that supports its relevance. We discuss a potential normal function of bacteria in the establishment of immune tolerance and compelling evidence that a viral infection might be the underlying cause of perturbation of homeostasis. There is compelling evidence that many infectious diseases of human beings are caused by >1 microorganism and are defined as polymicrobial infections. We propose that pregnancy complications, such as preterm birth, are the result of polymicrobial infections. We examine the potential cellular and molecular mechanisms by which a viral infection of the placenta might disrupt the normal interaction between the cellular component of the implantation site and bacteria. As we better understand the normal homeostasis among the maternal immune system, placenta, and commensal, we will be able to elucidate pathogenic conditions and design better approaches to treat pregnancy complications associated with infection.
Collapse
|
16
|
Presicce P, Senthamaraikannan P, Alvarez M, Rueda CM, Cappelletti M, Miller LA, Jobe AH, Chougnet CA, Kallapur SG. Neutrophil recruitment and activation in decidua with intra-amniotic IL-1beta in the preterm rhesus macaque. Biol Reprod 2015; 92:56. [PMID: 25537373 PMCID: PMC4342792 DOI: 10.1095/biolreprod.114.124420] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/26/2014] [Accepted: 12/22/2014] [Indexed: 11/01/2022] Open
Abstract
Chorioamnionitis, an infection/inflammation of the fetomaternal membranes, is frequently associated with preterm delivery. The mechanisms of inflammation in chorioamnionitis are poorly understood. We hypothesized that neutrophils recruited to the decidua would be the major producers of proinflammatory cytokines. We injected intra-amniotic (IA) interleukin 1beta (IL-1beta) at ∼80% gestation in rhesus macaque monkeys, Macaca mulatta, delivered the fetuses surgically 24 h or 72 h after IA injections, and investigated the role of immune cells in the chorion-amnion decidua. IA IL-1beta induced a robust infiltration of neutrophils and significant increases of proinflammatory cytokines in the chorioamnion decidua at 24 h after exposure, with a subsequent decrease at 72 h. Neutrophils in the decidua were the major source of tumor necrosis factor alpha (TNFalpha) and IL-8. Interestingly, IA IL-1beta also induced a significant increase in anti-inflammatory indoleamine 2,3-dioxygenase (IDO) expression in the decidua neutrophils. The frequency of regulatory T cells (Tregs) and FOXP3 mRNA expression in the decidua did not change after IA IL-1beta injection. Collectively, our data demonstrate that in this model of sterile chorioamnionitis, the decidua neutrophils cause the inflammation in the gestational tissues but may also act as regulators to dampen the inflammation. These results help to understand the contribution of neutrophils to the pathogenesis of chorioamnionitis-induced preterm labor.
Collapse
Affiliation(s)
- Pietro Presicce
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | | | - Manuel Alvarez
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Cesar M Rueda
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Monica Cappelletti
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Lisa A Miller
- California National Primate Research Center, University of California Davis, Davis, California Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California
| | - Alan H Jobe
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Claire A Chougnet
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Suhas G Kallapur
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
17
|
Placental Evolution within the Supraordinal Clades of Eutheria with the Perspective of Alternative Animal Models for Human Placentation. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/639274] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Here a survey of placental evolution is conducted. Placentation is a key factor for the evolution of placental mammals that had evolved an astonishing diversity. As a temporary organ that does not allow easy access, it is still not well understood. The lack of data also is a restriction for better understanding of placental development, structure, and function in the human. Animal models are essential, because experimental access to the human placenta is naturally restricted. However, there is not a single ideal model that is entirely similar to humans. It is particularly important to establish other models than the mouse, which is characterised by a short gestation period and poorly developed neonates that may provide insights only for early human pregnancy. In conclusion, current evolutionary studies have contributed essentially to providing a pool of experimental models for recent and future approaches that may also meet the requirements of a long gestation period and advanced developmental status of the newborn in the human. Suitability and limitations of taxa as alternative animal models are discussed. However, further investigations especially in wildlife taxa should be conducted in order to learn more about the full evolutionary plasticity of the placenta system.
Collapse
|
18
|
Deleterious impact of feto-maternal MHC compatibility on the success of pregnancy in a macaque model. Immunogenetics 2013; 66:105-13. [PMID: 24374979 DOI: 10.1007/s00251-013-0752-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/07/2013] [Indexed: 12/21/2022]
Abstract
The impact of feto-maternal histocompatibility on reproduction has inspired long-lasting debates. However, after the review of numerous articles, the impact of HLA allele sharing within couples on fecundity remains questionable. We decided to explore the impact of major histocompatibility complex (MHC) feto-maternal compatibility on reproduction in a cynomolgus macaque facility composed of animals of Mauritian descent. The Mauritian-derived macaque population presents a very restricted MHC polymorphism (only seven founding haplotypes) due to a strong founding bottleneck effect. The MHC polymorphism was investigated in 237 trios (male, female and offspring) using 17 microsatellite markers distributed across the MHC. Haplotypes were confirmed by segregation analysis. We evaluated the relative frequencies of MHC-compatible and MHC-semi-compatible offspring with the mothers. Among the 237 trios, we selected 42 trios for which the identity of the father is certain and for which the theoretical probabilities of fully compatible and semi-compatible offspring were equal. We found 11 offspring fully compatible and 31 offspring semi-compatible with their respective mother. The observed proportions were clearly outside the interval of confidence of 99 % and therefore most probably resulted from a selection of the semi-compatible offspring during pregnancy. We concluded that MHC fully compatible cynomolgus macaque offspring have a selective survival disadvantage in comparison with offspring inheriting a paternal MHC haplotype differing from maternal haplotypes.
Collapse
|
19
|
Bonney EA. Demystifying animal models of adverse pregnancy outcomes: touching bench and bedside. Am J Reprod Immunol 2013; 69:567-84. [PMID: 23448345 DOI: 10.1111/aji.12102] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 01/28/2013] [Indexed: 01/21/2023] Open
Abstract
This represents an overview of the use of animal models to study the adverse pregnancy outcomes seen in humans. The purpose is to entice clinicians to utilize some of this information to seek out the literature and have more meaningful and profitable discussions with their academic colleagues and enhance transdisciplinary research in reproductive health.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Burlington, VT, USA.
| |
Collapse
|
20
|
Bondarenko GI, Durning M, Golos TG. Immunomorphological changes in the rhesus monkey endometrium and decidua during the menstrual cycle and early pregnancy. Am J Reprod Immunol 2012; 68:309-321. [PMID: 22784010 PMCID: PMC3440518 DOI: 10.1111/j.1600-0897.2012.01174.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/10/2012] [Indexed: 04/23/2024] Open
Abstract
PROBLEM Throughout the reproductive cycle and into early pregnancy, the normal endometrium undergoes changes in a range of leukocytes, epithelia, stromal fibroblasts, and vascular structures caused by intersecting effects of hormone balance and embryo implantation. The direct investigation in humans of reproductive tract responses during normal and physiologically altered cycles is not practical or feasible. METHOD AND STUDY: The aim of this study was to define immunological and morphological changes through immunohistological and morphometric evaluation of the endometrium throughout the menstrual cycle and the decidua during early gestation in the rhesus monkey, a tractable experimental animal model. RESULTS A zone-dependent method for the immunohistological description of the rhesus uterine mucosa was established and showed that leukocyte infiltration, stromal cell decidualization, glandular and vascular responses were zone- and cell type-dependent, and changed throughout the cycle and early pregnancy. Morphological heterogeneity of uterine natural killer cells in the cycling endometrium and gestational decidua were consistent with the recent characterization of phenotypic subsets. CONCLUSIONS These data establish a morphological platform upon which to further study the regulation of endometrial responses to the hormonal mileau of pregnancy, the control of local leukocyte populations, and the responses to threatened pregnancy, infection, and inflammation.
Collapse
Affiliation(s)
- Gennadiy I. Bondarenko
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Maureen Durning
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Dept. of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Dept. of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
21
|
Noronha LE, Huggler KE, de Mestre AM, Miller DC, Antczak DF. Molecular evidence for natural killer-like cells in equine endometrial cups. Placenta 2012; 33:379-86. [PMID: 22357194 DOI: 10.1016/j.placenta.2012.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 01/11/2012] [Accepted: 01/31/2012] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To identify equine orthologs of major NK cell marker genes and utilize them to determine whether NK cells are present among the dense infiltration of lymphocytes that surround the endometrial cup structures of the horse placenta during early pregnancy. STUDY DESIGN PCR primers were developed to detect the equine orthologs of NKP46, CD16, CD56, and CD94; gene expression was detected in RNA isolated from lymphocytes using standard 2-step reverse transcriptase (RT) PCR and products were cloned and sequenced. Absolute real-time RT-PCR was used to quantitate gene expression in total, CD3+, and CD3- peripheral lymphocytes, and invasive trophoblast. Lymphocytes surrounding the endometrial cups (ECL) of five mares in early pregnancy were isolated and NK marker gene expression levels were assayed by quantitative RT-PCR. MAIN OUTCOME MEASURES Absolute mRNA transcript numbers were determined by performing quantitative RT-PCR and comparing values to plasmid standards of known quantities. RESULTS NKP46 gene expression in peripheral CD3- lymphocytes was higher than in CD3+ lymphocytes, CD16 levels were higher in the CD3+ population, and no significant differences were detected for CD56 and CD94 between the two groups. Expression of all four NK cell markers was significantly higher in lymphocytes isolated from the endometrial cups of pregnant mares compared to PBMC isolated from the same animal on the same day (NKP46, 14-fold higher; CD94, 8-fold higher; CD16, 20-fold higher; CD56, 44-fold higher). CONCLUSIONS These data provide the first evidence for the expression of major NK cell markers by horse cells and an enrichment of NK-like cells in the equine endometrium during pregnancy.
Collapse
Affiliation(s)
- L E Noronha
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Hungerford Hill Road, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
22
|
Holmberg JC, Haddad S, Wünsche V, Yang Y, Aldo PB, Gnainsky Y, Granot I, Dekel N, Mor G. An in vitro model for the study of human implantation. Am J Reprod Immunol 2012; 67:169-78. [PMID: 22151560 PMCID: PMC3703643 DOI: 10.1111/j.1600-0897.2011.01095.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PROBLEM Implantation remains the rate-limiting step for the success of in vitro fertilization. Appropriate models to study the molecular aspects of human implantation are necessary in order to improve fertility. METHODS First trimester trophoblast cells are differentiated into blastocyst-like spheroids (BLS) by culturing them in low attachment plates. Immortalized human endometrial stromal cells and epithelial cells (ECC-1) were stably transfected with GFP or tdTomato. Co-culture experiments were monitored using Volocity imaging analysis system. RESULTS This method demonstrates attachment and invasion of BLS, formed by trophoblast cells, into stromal cells, but not to uterine epithelial cells. CONCLUSION We have developed an in vitro model of uterine implantation. The manipulation of this system allows for dual color monitoring of the cells over time. Additionally, specific compounds can be added to the culture media to test how this may affect implantation and invasion. This model is a helpful tool in understanding the complexity of human implantation.
Collapse
Affiliation(s)
- Jennie C. Holmberg
- Department of Obstetrics and Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven CT 06510
| | - Severina Haddad
- Department of Obstetrics and Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven CT 06510
| | - Vera Wünsche
- Department of Obstetrics and Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven CT 06510
| | - Yang Yang
- Department of Obstetrics and Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven CT 06510
| | - Paulomi B. Aldo
- Department of Obstetrics and Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven CT 06510
| | - Yulia Gnainsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Irit Granot
- Department of Obstetrics and Gynecology, IVF Unit, Kaplan Medical Center, Rehovot, 76100 Israel
| | - Nava Dekel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Gil Mor
- Department of Obstetrics and Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven CT 06510
| |
Collapse
|
23
|
Dambaeva SV, Durning M, Rozner AE, Golos TG. Immunophenotype and cytokine profiles of rhesus monkey CD56bright and CD56dim decidual natural killer cells. Biol Reprod 2012; 86:1-10. [PMID: 21900681 DOI: 10.1095/biolreprod.111.094383] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The primate endometrium is characterized in pregnancy by a tissue-specific population of CD56(bright) natural killer (NK) cells. These cells are observed in human, rhesus, and other nonhuman primate decidua. However, other subsets of NK cells are present in the decidua and may play distinct roles in pregnancy. The purpose of this study was to define the surface marker phenotype of rhesus monkey decidual NK (dNK) cell subsets, and to address functional differences by profiling cytokine and chemokine secretion in contrast with decidual T cells and macrophages. Rhesus monkey decidual leukocytes were obtained from early pregnancy tissues, and were characterized by flow cytometry and multiplex assay of secreted factors. We concluded that the major NK cell population in rhesus early pregnancy decidua are CD56(bright) CD16(+)NKp30(-) decidual NK cells, with minor CD56(dim) and CD56(neg) dNK cells. Intracellular cytokine staining demonstrated that CD56(dim) and not CD56(bright) dNK cells are the primary interferon-gamma (IFNG) producers. In addition, the profile of other cytokines, chemokines, and growth factors secreted by these two dNK cell populations was generally similar, but distinct from that of peripheral blood NK cells. Finally, analysis of multiple pregnancies from eight dams revealed that the decidual immune cell profile is characteristic of an individual animal and is consistently maintained across successive pregnancies, suggesting that the uterine immune environment in pregnancy is carefully regulated in the rhesus monkey decidua.
Collapse
Affiliation(s)
- Svetlana V Dambaeva
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, USA
| | | | | | | |
Collapse
|
24
|
Regulation of non-classical major histocompatability complex class I mRNA expression in bovine embryos. J Reprod Immunol 2011; 91:31-40. [DOI: 10.1016/j.jri.2011.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 05/10/2011] [Accepted: 05/17/2011] [Indexed: 01/28/2023]
|
25
|
Rozner AE, Dambaeva SV, Drenzek JG, Durning M, Golos TG. Modulation of cytokine and chemokine secretions in rhesus monkey trophoblast co-culture with decidual but not peripheral blood monocyte-derived macrophages. Am J Reprod Immunol 2011; 66:115-27. [PMID: 21276119 DOI: 10.1111/j.1600-0897.2010.00979.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PROBLEM Decidual macrophages are thought to promote pregnancy success, in part through interactions with invading trophoblast cells in hemochorial placentation. However, the factors that constitute this regulatory cross talk are not well understood. METHOD OF STUDY Rhesus monkey decidual and peripheral blood-derived macrophages were co-cultured with primary Rhesus trophoblasts. Macrophage functions including cell-surface marker expression, antigen uptake and processing, in vitro migration, and cytokine and chemokine secretions were evaluated. RESULTS While most macrophage functions were unchanged by trophoblast co-culture, changes in the secretion of selected cytokines and the migration of trophoblasts were noted when decidual (but generally, not peripheral blood monocyte-derived) macrophages were cultured with trophoblasts. In addition, basal secretion differed significantly between peripheral blood-derived and decidual macrophages for a broad spectrum of cytokines. When trophoblasts were pre-treated with an anti-Mamu-AG antibody, 25D3, there was no change in cytokine or chemokine secretion. CONCLUSION Macrophage cytokine expression can be modulated by trophoblast co-culture, but it remains unclear how Mamu-AG is involved.
Collapse
Affiliation(s)
- Ann E Rozner
- Department of Comparative Biosciences, University of Wisconsin-Madison, 1223 Capitol Court, Madison,WI 53715-1299, USA.
| | | | | | | | | |
Collapse
|
26
|
Parham P, Abi-Rached L, Matevosyan L, Moesta AK, Norman PJ, Older Aguilar AM, Guethlein LA. Primate-specific regulation of natural killer cells. J Med Primatol 2010; 39:194-212. [PMID: 20618586 DOI: 10.1111/j.1600-0684.2010.00432.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Natural killer (NK) cells are circulating lymphocytes that function in innate immunity and placental reproduction. Regulating both development and function of NK cells is an array of variable and conserved receptors that interact with major histocompatibility complex (MHC) class I molecules. Families of lectin-like and immunoglobulin-like receptors are determined by genes in the natural killer complex (NKC) and leukocyte receptor complex (LRC), respectively. As a consequence of the strong, varying pressures on the immune and reproductive systems, NK cell receptors and their MHC class I ligands evolve rapidly, are highly diverse and exhibit dramatic species-specific differences. The variable, polymorphic family of killer cell immunoglobulin-like receptors (KIR) that regulate human NK cell development and function arose recently, from a single-copy gene during the evolution of simian primates. Our studies of KIR and MHC class I genes in representative species show how these two unlinked but functionally intertwined genetic complexes have co-evolved. In humans, combinations of KIR and HLA class I factors are associated with infectious diseases, including HIV/AIDS, autoimmunity, reproductive success and the outcome of therapeutic transplantation. The extraordinary, and unanticipated, divergence of human NK cell receptors and MHC class I ligands from their mouse counterparts can in part explain the difficulties experienced in finding informative mouse models for human diseases. Non-human primate models have far greater potential, but to realize their promise will first require more complete definition of the genetics and function of KIR and MHC variation in non-human primate species, at a level comparable to that achieved for the human species.
Collapse
Affiliation(s)
- Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Rajagopalan S. Endosomal signaling and a novel pathway defined by the natural killer receptor KIR2DL4 (CD158d). Traffic 2010; 11:1381-90. [PMID: 20854369 DOI: 10.1111/j.1600-0854.2010.01112.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In addition to ligand-induced activation of receptors at the cell surface, certain internalized receptor-ligand complexes are activated in endosomes which are, now recognized as important intracellular platforms of signal transduction. The major receptor families that signal from endosomes and illustrate the diversity and complexity of endosomal signaling include receptor tyrosine kinases (RTKs), G-protein-coupled receptors (GPCRs) and toll-like receptors (TLRs). Natural killer (NK) cells, an important component of the innate immune system, not only provide a rapid defense against foreign invaders, such as bacteria and viruses, but also positively shape local responses by cytokine and chemokine secretion. The NK cell receptor KIR2DL4 (CD158d) utilizes a new mode of endosomal signaling after binding its ligand, soluble HLA-G, in the extracellular milieu. Internalization of the receptor and its ligand into endosomes and initiation of signaling at this site result in a proinflammatory and proangiogenic response with important functions at sites of ligand expression, such as at the maternal-fetal interface during early pregnancy. After a brief overview of the modes of endosomal signaling and its value in generating distinct physiological responses, this review will highlight the mechanism and physiological significance of a novel intracellular signaling pathway used by the endosome-resident immune receptor KIR2DL4.
Collapse
Affiliation(s)
- Sumati Rajagopalan
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
28
|
Setchell JM, Huchard E. The hidden benefits of sex: evidence for MHC-associated mate choice in primate societies. Bioessays 2010; 32:940-8. [PMID: 20827785 DOI: 10.1002/bies.201000066] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Major histocompatibility complex (MHC)-associated mate choice is thought to give offspring a fitness advantage through disease resistance. Primates offer a unique opportunity to understand MHC-associated mate choice within our own zoological order, while their social diversity provides an exceptional setting to examine the genetic determinants and consequences of mate choice in animal societies. Although mate choice is constrained by social context, increasing evidence shows that MHC-dependent mate choice occurs across the order in a variety of socio-sexual systems and favours mates with dissimilar, diverse or specific genotypes non-exclusively. Recent research has also identified phenotypic indicators of MHC quality. Moreover, novel findings rehabilitate the importance of olfactory cues in signalling MHC genes and influencing primate mating decisions. These findings underline the importance to females of selecting a sexual partner of high genetic quality, as well as the generality of the role of MHC genes in sexual selection.
Collapse
Affiliation(s)
- Joanna M Setchell
- Evolutionary Anthropology Research Group, Department of Anthropology, Durham University, Durham, UK.
| | | |
Collapse
|
29
|
Bondarenko GI, Dambaeva SV, Grendell RL, Hughes AL, Durning M, Garthwaite MA, Golos TG. Characterization of cynomolgus and vervet monkey placental MHC class I expression: diversity of the nonhuman primate AG locus. Immunogenetics 2009; 61:431-42. [PMID: 19468726 PMCID: PMC2810720 DOI: 10.1007/s00251-009-0376-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 05/07/2009] [Indexed: 10/20/2022]
Abstract
Nonhuman primates are important animal models for the study of the maternal immune response to implantation within the decidua. The objective of this study was to define the placental expression of major histocompatibility complex (MHC) class I molecules in the cynomolgus (Macaca fascicularis) and vervet (African green) (Chlorocebus aethiops) monkeys. Early pregnancy (d36-42) cynomolgus and vervet placentas were obtained by fetectomy and prepared for histological evaluation. A pan-MHC class I monoclonal antibody demonstrated MHC class I expression in both vervet and cynomolgus placental trophoblasts, with particularly high expression in the villous syncytium, as previously shown in the rhesus and baboon. Placental cytotrophoblasts were isolated by enzymatic dispersion and gradient centrifugation and cultured, and multicolor flow cytometry was used to phenotype cell populations. Culture of isolated villous cytotrophoblasts demonstrated that MHC class I expression was linked to syncytiotrophoblast differentiation. A monoclonal antibody against Mamu-AG, the nonclassical MHC class I homolog of HLA-G in the rhesus monkey, demonstrated intense immunostaining and cell surface expression in cynomolgus placental trophoblasts; however, staining with vervet placenta and cells was low and inconsistent. Reverse transcriptase polymerase chain reaction was used to clone MHC class I molecules expressed in cynomolgus and vervet placentas. While Mafa-AG messenger RNA (mRNA) was readily detectable in cynomolgus placental RNA and was >99% identical at the amino acid level with Mamu-AG, 7/8 Chae-AG complementary DNAs had an unusual 16 amino acid repeat in the alpha1 domain, and all clones had an unexpected absence of the early stop codon at the 3'-end of the mRNA diagnostic for rhesus, cynomolgus, and baboon AG mRNAs, as well as HLA-G. We conclude that while the vervet monkey has retained the placental expression of a primate-specific nonclassical MHC class I locus, diversity is also revealed in this locus expressed at the maternal-fetal interface, thought to participate in placental regulation of the maternal immune response to embryo implantation and pregnancy.
Collapse
Affiliation(s)
- Gennadiy I. Bondarenko
- Wisconsin National Primate Research Center, University of Wisconsin, 1223 Capitol Court, Madison, WI 53715-1299, USA
| | - Svetlana V. Dambaeva
- Wisconsin National Primate Research Center, University of Wisconsin, 1223 Capitol Court, Madison, WI 53715-1299, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53715, USA
| | - Richard L. Grendell
- Wisconsin National Primate Research Center, University of Wisconsin, 1223 Capitol Court, Madison, WI 53715-1299, USA
| | - Austin L. Hughes
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Maureen Durning
- Wisconsin National Primate Research Center, University of Wisconsin, 1223 Capitol Court, Madison, WI 53715-1299, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53715, USA
| | - Mark A. Garthwaite
- Wisconsin National Primate Research Center, University of Wisconsin, 1223 Capitol Court, Madison, WI 53715-1299, USA
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53715, USA
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center, University of Wisconsin, 1223 Capitol Court, Madison, WI 53715-1299, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53715, USA
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53715, USA
| |
Collapse
|