1
|
Bose D, Famurewa AC, Akash A, Othman EM. The Therapeutic Mechanisms of Honey in Mitigating Toxicity from Anticancer Chemotherapy Toxicity: A Review. J Xenobiot 2024; 14:1109-1129. [PMID: 39189178 PMCID: PMC11348124 DOI: 10.3390/jox14030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
Within the domain of conventional oncochemotherapeutics, anticancer chemotherapy (AC) has emerged as a potent strategy for the treatment of cancers. AC is the mainstay strategy for solid and non-solid cancer treatment. Its mechanistic action targets the blockage of DNA transcription and the dysregulation of cell cycle machinery in cancer cells, leading to the activation of death pathways. However, the attendant side effect of toxicity inflicted by AC on healthy tissues presents a formidable challenge. The crucial culprit in the AC side effect of toxicity is unknown, although oxidative stress, mitochondrial impairment, inflammatory cascades, autophagy dysregulation, apoptosis, and certain aberrant signaling have been implicated. Honey is a natural bee product with significant health benefits and pharmacological properties. Interestingly, the literature reports that honey may proffer a protection mechanism for delicate tissue/organs against the side effect of toxicity from AC. Thus, this review delves into the prospective role of honey as an alleviator of the AC side effect of toxicity; it provides an elucidation of the mechanisms of AC toxicity and honey's molecular mechanisms of mitigation. The review endeavors to unravel the specific molecular cascades by which honey orchestrates its mitigating effects, with the overarching objective of refining its application as an adjuvant natural product. Honey supplementation prevents AC toxicity via the inhibition of oxidative stress, NF-κB-mediated inflammation, and caspase-dependent apoptosis cascades. Although there is a need for increased mechanistic studies, honey is a natural product that could mitigate the various toxicities induced by AC.
Collapse
Affiliation(s)
- Debalina Bose
- P.K. Sinha Centre for Bioenergy and Renewables, Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302, West Bengal, India;
| | - Ademola C. Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, P.M.B. 1010, Abakaliki 482131, Nigeria
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Aman Akash
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany;
| | - Eman M. Othman
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany;
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Cancer Therapy Research Center (CTRC), Department of Biochemistry-I, Biocenter, University of Wuerzburg, Theodor-Boveri-Weg 1, 97074 Wuerzburg, Germany
| |
Collapse
|
2
|
Assaggaf H, El Hachlafi N, Elbouzidi A, Taibi M, Benkhaira N, El Kamari F, Alnasseri SM, Laaboudi W, Bouyahya A, Ardianto C, Goh KW, Ming LC, Mrabti HN. Unlocking the combined action of Mentha pulegium L. essential oil and Thym honey: In vitro pharmacological activities, molecular docking, and in vivo anti-inflammatory effect. Heliyon 2024; 10:e31922. [PMID: 38947443 PMCID: PMC11214453 DOI: 10.1016/j.heliyon.2024.e31922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Mentha pulegium L., a plant widely embraced for its therapeutic properties by populations worldwide, including Morocco, has long been recognized for its potential in treating various ailments. This study aims to comprehensively evaluate the antioxidant, anti-inflammatory, and dermatoprotective properties of essential oil derived from M. pulegium, and thyme honey as well as their combined effects. To unravel the chemical composition, a rigorous GC-MS analysis was conducted. Subsequently, we examined their antioxidant potential through three distinct assays: DPPH●, hydrogen peroxide assay, and xanthine oxidase assay. The anti-inflammatory properties were scrutinized through both in vitro and in vivo experiments. Simultaneously, the dermatoprotective efficacy was investigated in vitro by evaluating tyrosinase inhibition. Our findings revealed that pulegone constitutes the predominant compound in M. pulegium essential oil (MPEO), constituting a remarkable 74.82 % of the composition. Significantly, when the essential oil was combined with thym honey, it exhibited superior anti-inflammatory and dermatoprotective effects across all in vivo and in vitro tests. Moreover, our in silico molecular docking analysis hinted at the potential role of cyclohexanone, 3-methyl, an element found in the MPEO, in contributing to the observed outcomes. While this study has unveiled promising results regarding the combined in vitro, in vivo and in silico biological activities of the essential oil and honey, it is imperative to delve further into the underlying mechanisms through additional experimentation and alternative experimental methods. Understanding these mechanisms in greater detail will not only enhance our comprehension of the therapeutic potential but also pave the way for the development of innovative treatments and applications rooted in the synergy of these natural compounds. Furthermore, it would be advantageous to test different possible combinations using experimental design model. Moreover, it would be better to test the effect of single compounds of MPEO to clearly elucidate their efficiency. MPEO alone or combined with thyme honey may be a useful for the development of novel biopharmaceuticals.
Collapse
Affiliation(s)
- Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Naoufal El Hachlafi
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat BP 6203, Morocco
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Oujda, 60000, Morocco des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
| | - Mohamed Taibi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Oujda, 60000, Morocco des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda, 60000, Morocco
| | - Nesrine Benkhaira
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| | - Fatima El Kamari
- Laboratoire d’Ingénierie des Matériaux Organométalliques, Moléculaires et Environnement, Sidi Mohamed Ben Abdellah University, Fez, B.P. 1796, Morocco
| | - Sulaiman Mohammed Alnasseri
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| | - Wafa Laaboudi
- High Institute of Nursing Professions and Health Techniques Fez, Fez, 30050, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115, Surabaya, Indonesia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115, Surabaya, Indonesia
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Hanae Naceiri Mrabti
- High Institute of Nursing Professions and Health Techniques Casablanca, Casablanca, 20250, Morocco
- Euromed Research Center, Euromed Faculty of Pharmacy and School of Engineering and Biotechnology, Euromed University of Fes(UEMF), Meknes Road, 30000, Fez, Morocco
| |
Collapse
|
3
|
Zulkifli MF, Radzi MNFM, Saludes JP, Dalisay DS, Ismail WIW. Potential of Natural Honey in Controlling Obesity and its Related Complications. J Evid Based Integr Med 2022; 27:2515690X221103304. [PMID: 36263596 PMCID: PMC9585569 DOI: 10.1177/2515690x221103304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Honey has a long history of therapeutic properties for multiple diseases, including inflammation and oxidative stress. This review aimed to provide a better understanding and renewed interest in the potential role of honey in obesity control, obesity-related diseases treatment and weight management, with specific reference to its components and the effect of honey overall. There is compelling evidence that honey possesses the desired properties for this purpose, as seen in the in vitro, in silico, in vivo and clinical analyses discussed in this review. This review also highlights the components potentially responsible for the health benefits of honey. Honey and its components reduce blood sugar levels, improve insulin sensitivity and lipid metabolism by reducing triglycerides, and reduce total cholesterol and LDL levels while increasing HDL levels that prevent excessive weight gain and reduce the risk of obesity and its complications. Further controlled studies are necessary to validate the role of honey in the management of obesity, both as a preventive and as a therapeutic agent.
Collapse
Affiliation(s)
- Muhammad Faiz Zulkifli
- Cell Signaling and Biotechnology Research Group (CesBTech), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Mohd Naim Fadhli Mohd Radzi
- Cell Signaling and Biotechnology Research Group (CesBTech), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Jonel P. Saludes
- Center for Chemical Biology & Biotechnology (C2B2) and Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City, Philippines,Balik Scientist Program, Philippine Council for Health Research and Development, Department of Science and Technology, Taguig, Philippines
| | - Doralyn S. Dalisay
- Center for Chemical Biology & Biotechnology (C2B2) and Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City, Philippines,Balik Scientist Program, Philippine Council for Health Research and Development, Department of Science and Technology, Taguig, Philippines
| | - Wan Iryani Wan Ismail
- Cell Signaling and Biotechnology Research Group (CesBTech), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia,Biological Security and Sustainability (BIOSES) Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia,Wan Iryani Wan Ismail, Cell Signaling and Biotechnology Research Group (CesBTech), Biological Security and Sustainability (BIOSES) Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21300, Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
4
|
Mekkaoui M, Bouidida EH, Naceiri Mrabti H, Ouaamr A, Lee LH, Bouyahya A, Cherrah Y, Alaoui K. Investigation of Chemical Compounds and Evaluation of Toxicity, Antibacterial, and Anti-Inflammatory Activities of Three Selected Essential Oils and Their Mixtures with Moroccan Thyme Honey. Foods 2022; 11:3141. [PMID: 36230218 PMCID: PMC9564067 DOI: 10.3390/foods11193141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 01/18/2023] Open
Abstract
Throughout history, honey has been used to treat various diseases. The present work examined and assessed the in vivo anti-inflammatory potential of Moroccan thyme honey and its association with essential oils from three selected plants: Origanum vulgare L.; Mentha spicata L.; Eucalyptus globulus L. The chemical composition of the essential oils was studied, and preliminary toxicity, in vitro anti-inflammatory, and antibacterial tests were conducted. Then the anti-inflammatory effect was determined by applying carrageenan and an experimental trauma-induced paw edema test in rats. The essential oils were rich in phytochemicals and showed significant antibacterial activity against four selected ATCC bacterial strains. The results revealed the significant anti-inflammatory potential of honey and mixtures with essential oils and indicated higher efficiency of mixtures compared to honey alone. It can be concluded that the mixtures of honey and essential oils have advantageous anti-inflammatory effects and may be used for treating different types of inflammation in humans after certain clinical trials.
Collapse
Affiliation(s)
- Mouna Mekkaoui
- Pharmacodynamics Research Team ERP, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat 554, Morocco
| | | | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat 554, Morocco
| | - Ahmed Ouaamr
- Pharmacodynamics Research Team ERP, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat 554, Morocco
- High Institute of Nursing Professions and Health Techniques, ISPITS, Tiznit 85000, Morocco
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, University Mohammed V, Rabat 554, Morocco
| | - Yahya Cherrah
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat 554, Morocco
| | - Katim Alaoui
- Pharmacodynamics Research Team ERP, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat 554, Morocco
| |
Collapse
|
5
|
Characterization of Various Honey Samples from Different Regions of Morocco Using Physicochemical Parameters, Minerals Content, Antioxidant Properties, and Honey-Specific Protein Pattern. J FOOD QUALITY 2022. [DOI: 10.1155/2022/6045792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Honey is a bee product relatively expensive; therefore, it has been a target of adulteration by many sweeteners. In this work, we evaluated the good quality, authenticity, and content in bioactive molecules of twenty-two Moroccan honey from different botanical origins and geographical areas. For that, the following analyses were determined: the content in total protein and especially the major royal jelly protein (apalbumin 1), the analysis of total acidity, free acidity, lactonic acidity, pH, ash, Pfund, electrical conductivity, and moisture. In addition, the content of sodium, potassium, calcium, and magnesium, the dosage of polyphenols, flavones, and flavonols, and the antioxidant activities were assessed. All analyzed samples had good antioxidant activities and present a source of antioxidant compounds, the predominant mineral in all honey samples was potassium, and the physicochemical parameters are in line with the standards’ recommended limits. The content of honey samples in total protein and apalbumin 1 ranged between 212 μg/g and 4121.2 μg/g and between 27.4 μg/g and 790.82 μg/g, respectively. Overall, the detection of apalbumin 1 in all honey samples and the results of physicochemical parameters, minerals, bioactive compounds, and antioxidant activities confirm the authenticity and no adulteration of Moroccan honey.
Collapse
|
6
|
Nikhat S, Fazil M. History, phytochemistry, experimental pharmacology and clinical uses of honey: A comprehensive review with special reference to Unani medicine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114614. [PMID: 34508800 DOI: 10.1016/j.jep.2021.114614] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/19/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Honey is one of the most popular functional foods, speculated to be in use since the advent of human civilization. Its health-protective activity is endorsed by many religions and traditional medicines. In Unani medicine, honey is prescribed for many health conditions as wound-healing, anti-inflammatory, anti-diabetic, etc. In the present era, honey is gaining popularity over sugar for its myriad health benefits and low glycemic index. This review attempts to provide a comprehensive account of the biological activities and potential therapeutic uses of honey, with scientific evidence. METHODOLOGY In this paper, we have provided a comprehensive overview of historical uses, types, physical characteristics, bioactive constituents and pharmacological activities of honey. The information was gathered from Classical Unani textbooks and leading scientific databases. There is a plethora of information regarding various therapeutic activities of honey, and it is daunting to draw practical conclusions. Hence, in this paper, we have tried to summarize those aspects which are most relevant to clinical application. OBSERVATIONS AND CONCLUSIONS Many important bioactive constituents are identified in different honey types, e.g. phenolics, proteins, vitamins, carbohydrates, organic acids, etc., which exert important biological activities like anti-microbial, wound healing, immunomodulatory, anti-toxin, antioxidant, and many others. Honey has the potential to alleviate many lifestyle disorders, mitigate the adverse effects of drugs and toxins, and also provide healthy nutrition. Although conclusive clinical evidence is not available, yet honey may potentially be a safer alternative to sucrose for diabetic patients.
Collapse
Affiliation(s)
- Sadia Nikhat
- Dept. of Ilaj bit Tadbeer, School of Unani Medical Education and Research, Jamia Hamdard, New Delhi, India.
| | - Mohammad Fazil
- HAK Institute for Literary and Historical Research in Unani Medicine, CCRUM, Jamia Millia Islamia Campus, New Delhi, India.
| |
Collapse
|
7
|
Mekkaoui M, Assaggaf H, Qasem A, El-Shemi A, Abdallah EM, Bouidida EH, Naceiri Mrabti H, Cherrah Y, Alaoui K. Ethnopharmacological Survey and Comparative Study of the Healing Activity of Moroccan Thyme Honey and Its Mixture with Selected Essential Oils on Two Types of Wounds on Albino Rabbits. Foods 2021; 11:foods11010028. [PMID: 35010154 PMCID: PMC8750595 DOI: 10.3390/foods11010028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 01/18/2023] Open
Abstract
Wound healing consists of several continuous phases involving various cells and chemical intermediates. As a rich source of nutrition elements, honey has proved to have potential benefits in the treatment of various diseases. The present study was designed to investigate the healing effect of a honey mixture with selected essential oils on chemical and thermal wound models in rabbits. Dressing mixtures of Thymus vulgaris honey with three essential oils (Origanum vulgare, Rosmarinus officinalis, and Thymus vulgaris) were prepared and applied daily in the treatment groups. These essential oils were rich in phytochemicals and had significant antibacterial activity against four selected ATCC bacterial strains. Madecasol ointment was used as a standard control. The healing effect of the mixtures was evaluated by measuring wound surface area and comparing healing time. The results showed that the healing rate in the treatment groups was significantly higher than that of the untreated group and standard group. The best healing effect for burns was seen in the mixture of honey and Thymus vulgaris essential oil, which had wound closure rates of 85.21% and 82.14% in thermal- and chemical-induced burns, respectively, and showed the shortest healing time (14 days) in comparison to other groups. Therefore, it can be concluded that honey mixtures have significant beneficial effects on skin wound healing and, thus, they may be used as a healing agent in different types of wounds in humans after specific clinical trials.
Collapse
Affiliation(s)
- Mouna Mekkaoui
- Pharmacodynamics Research Team ERP, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat BP 6203, Morocco;
- Correspondence: ; Tel.: +21-26-2202-3704
| | - Hamza Assaggaf
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (H.A.); (A.Q.); (A.E.-S.)
| | - Ahmed Qasem
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (H.A.); (A.Q.); (A.E.-S.)
| | - Adel El-Shemi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (H.A.); (A.Q.); (A.E.-S.)
| | - Emad M. Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia;
| | | | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat BP 6203, Morocco;
| | - Yahya Cherrah
- Biopharmaceutical and Toxicological Analysis Research Team, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat BP 6203, Morocco;
| | - Katim Alaoui
- Pharmacodynamics Research Team ERP, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat BP 6203, Morocco;
| |
Collapse
|
8
|
Arigela CS, Nelli G, Gan SH, Sirajudeen KNS, Krishnan K, Abdul Rahman N, Pasupuleti VR. Bitter Gourd Honey Ameliorates Hepatic and Renal Diabetic Complications on Type 2 Diabetes Rat Models by Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Mechanisms. Foods 2021; 10:2872. [PMID: 34829154 PMCID: PMC8618080 DOI: 10.3390/foods10112872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 12/13/2022] Open
Abstract
Honey has several pharmacological effects, including anti-diabetic activity. However, the effectiveness of bitter gourd honey (BGH) in the treatment of diabetes mellitus (DM) is unknown. The aim of this study was to determine the antioxidant, anti-inflammatory, and anti-apoptotic properties of BGH on the kidney and liver of a streptozotocin-induced diabetes rat model. METHODS A single dose (nicotinamide 110 mg/kg, streptozotocin (STZ) 55 mg/kg, intraperitoneal (i.p.)) was used to induce DM in male rats. For 28 days, normal or diabetic rats were administered 1 g/kg/day and 2 g/kg/day of BGH orally. After the treatment, blood, liver, and kidney samples were collected and analysed for biochemical, histological, and molecular parameters. In addition, liquid chromatography-mass spectrometry (LC-MS) was used to identify the major bioactive components in BGH. RESULTS The administration of BGH to diabetic rats resulted in significant reductions in alanine transaminase (ALT),aspartate aminotransferase (AST), creatinine, and urea levels. Diabetic rats treated with BGH showed lesser pathophysiological alterations in the liver and kidney as compared to non-treated control rats. BGH-treated diabetic rats exhibited reduced levels of oxidative stress (MDA levels), inflammatory (MYD88, NFKB, p-NFKB, IKKβ), and apoptotic (caspase-3) markers, as well as higher levels of antioxidant enzymes (SOD, CAT, and GPx) in the liver and kidney. BGH contains many bioactive compounds that may have antioxidative stress, anti-inflammatory, and anti-apoptotic effects. CONCLUSION BGH protected the liver and kidney in diabetic rats by reducing oxidative stress, inflammation, and apoptosis-induced damage. As a result, BGH can be used as a potential therapy to ameliorate diabetic complications.
Collapse
Affiliation(s)
- Chandra Sekhar Arigela
- Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Campus Jeli, Kota Bharu 17600, Kelantan, Malaysia; (C.S.A.); (K.K.)
| | - Giribabu Nelli
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Selangor, Malaysia;
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia;
| | - Kuttulebbai Nainamohamed Salam Sirajudeen
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia;
| | - Kumarathevan Krishnan
- Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Campus Jeli, Kota Bharu 17600, Kelantan, Malaysia; (C.S.A.); (K.K.)
| | - Nurhanan Abdul Rahman
- Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Campus Jeli, Kota Bharu 17600, Kelantan, Malaysia; (C.S.A.); (K.K.)
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 44800, Sabah, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru 28291, Riau, Indonesia
- Centre for Excellence in Biomaterials Engineering (CoEBE), AIMST University, Bedong 08100, Kedah, Malaysia
| |
Collapse
|
9
|
Hussain S, Hussain A, Rehman A, George D, Li J, Zeb J, Khan A, Sparagano O. Spatio-temporal distribution of identified tick species from small and large ruminants of Pakistan. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00865-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Anacyclus pyrethrum var. pyrethrum (L.) and Anacyclus pyrethrum var. depressus (Ball) Maire: Correlation between Total Phenolic and Flavonoid Contents with Antioxidant and Antimicrobial Activities of Chemically Characterized Extracts. PLANTS 2021; 10:plants10010149. [PMID: 33451098 PMCID: PMC7828480 DOI: 10.3390/plants10010149] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/26/2020] [Accepted: 01/08/2021] [Indexed: 02/05/2023]
Abstract
In this work, two varieties of Anacyclus pyrethrum (L.) including Anacyclus pyrethrum var. pyrethrum (L.) and Anacyclus pyrethrum var. depressus (Ball) Maire were evaluated for their mineral and chemical compositions, total phenolic and flavonoid contents, and antimicrobial and antioxidant activities using hydroalcoholic extracts from their different parts (leaves, capitula, roots, and seeds). The phytochemical and mineral compositions were carried out using standard methods. The antioxidant activity was determined using the DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2-azino-bis 3-ethylbenzothiazolin-6-sulfonic acid), and FRAP (ferric reducing antioxidant power) tests. The antimicrobial activity was assayed using the agar diffusion, minimum inhibitory concentration, and minimum bactericidal concentration methods. The results of the chemical analysis showed that both varieties contained interesting mineral and chemical compositions with potentially active compounds; among them, N-isobutyl-2,4-heptadiene-6-monoynamide and cinnamic acid were detected in the Anacyclus pyrethrum var. pyrethrum (L.) only while thiadiazolo [5,4-d] pyrimidin-7-amine and N-isobutyl-2,4-undecadiene-8,10-diynamide compounds were limited to the Anacyclus pyrethrum var. depressus (Ball) Maire. In vitro antioxidant and antimicrobial activities of the two varieties demonstrated that the different parts had prominent antioxidant and antimicrobial properties. The principal component analysis (PCA) showed great similarity in the activity of the leaves, capitula, and seeds of both plants and a high difference in roots. Anacyclus pyrethrum var. pyrethrum roots were characterized by a high content in phenols and flavonoids and better antibacterial activities compared to Anacyclus pyrethrum var. depressus (Ball) Maire roots, which were characterized by better antioxidant activities. From this study, it can be concluded that the two varieties of Anacyclus pyrethrum (L.) showed promising mineral and chemical compositions with antioxidant and antimicrobial properties.
Collapse
|
11
|
Hossain KS, Hossain MG, Moni A, Rahman MM, Rahman UH, Alam M, Kundu S, Rahman MM, Hannan MA, Uddin MJ. Prospects of honey in fighting against COVID-19: pharmacological insights and therapeutic promises. Heliyon 2020; 6:e05798. [PMID: 33363261 PMCID: PMC7750705 DOI: 10.1016/j.heliyon.2020.e05798] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Honey and its compounds are drawing attention as an effective natural therapy because of its ability to attenuate acute inflammation through enhancing immune response. Several studies have proved its potential healing capability against numerous chronic diseases/conditions, including pulmonary disorders, cardiac disorders, diabetes, hypertension, autophagy dysfunction, bacterial, and fungal infections. More importantly, honey has proved its virucidal effect on several enveloped viruses such as HIV, influenza virus, herpes simplex, and varicella-zoster virus. Honey may be beneficial for patients with COVID-19 which is caused by an enveloped virus SARS-CoV-2 by boosting the host immune system, improving comorbid conditions, and antiviral activities. Moreover, a clinical trial of honey on COVID-19 patients is currently undergoing. In this review, we have tried to summarize the potential benefits of honey and its ingredients in the context of antimicrobial activities, some chronic diseases, and the host immune system. Thus, we have attempted to establish a relationship with honey for the treatment of COVID-19. This review will be helpful to reconsider the insights into the possible potential therapeutic effects of honey in the context of the COVID-19 pandemic. However, the effects of honey on SARS-CoV-2 replication and/or host immune system need to be further investigated by in vitro and in vivo studies.
Collapse
Affiliation(s)
| | - Md. Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Akhi Moni
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | | | | | - Mohaimanul Alam
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Sushmita Kundu
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Md. Masudur Rahman
- Department of Pathology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md. Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| |
Collapse
|
12
|
Anacyclus pyrethrum (L): Chemical Composition, Analgesic, Anti-Inflammatory, and Wound Healing Properties. Molecules 2020; 25:molecules25225469. [PMID: 33238392 PMCID: PMC7700217 DOI: 10.3390/molecules25225469] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 11/29/2022] Open
Abstract
Background: Anacyclus pyrethrum (A. pyrethrum) is a wild species belonging to the family Asteraceae, which is used in traditional medicines. Aim of the study: This work was undertaken to study the chemical composition, analgesic, anti-inflammatory, and wound healing properties of hydroalcoholic extracts of different parts (roots, seeds, leaves, and capitula) of A. pyrethrum. Material and Methods: The phytochemical analysis of the studied extracts was conducted by GC-MS. The analgesic activity was evaluated in mice using acetic acid and formaldehyde methods. The anti-inflammatory activity was tested using the inhibitory method of edema induced in rats. The healing activity of the hydroethanolic extracts was explored by excision and incision wound healing models in rats. Results: The phytochemical analysis of the studied plant extracts affirmed the presence of interesting compounds, including some newly detected elements, such as sarcosine, N-(trifluoroacetyl)-butyl ester, levulinic acid, malonic acid, palmitic acid, morphinan-6-One, 4,5.alpha.-epoxy-3-hydroxy-17-methyl, 2,4-undecadiene-8,10-diyne-N-tyramide, and isovaleric acid. The extracts of different parts (roots, seeds, leaves, and capitula) exhibited promising anti-inflammatory, analgesic, and wound healing effects, with percentages of inhibition up to 98%, 94%, and 100%, respectively. Conclusion: This study might contribute towards the well-being of society as it provides evidence on the potential analgesic, anti-inflammatory, and wound healing properties of A. pyrethrum.
Collapse
|
13
|
In Vitro Evaluation of Palestinian Propolis as a Natural Product with Antioxidant Properties and Antimicrobial Activity against Multidrug-Resistant Clinical Isolates. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8861395] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present work reveals, for the first time, the antioxidant and antibacterial properties of propolis samples collected from different regions of Palestine. The content on bioactive compounds has been estimated by total phenolic and flavone and flavonol content, while their antioxidant activity has been determined by radical scavenging methods of 1,2-diphenyl-1-picrylhydrazyl radical (DPPH), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) radical (ABTS), and ferric reducing power assay (FRAP). The disc diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) methods were carried out to evaluate the antibacterial activity of Palestinian propolis against multidrug-resistant clinical isolates, includingEscherichia coli,Pseudomonas aeruginosa,Staphylococcus aureus,andStreptococcus faecalis. The results showed that the total phenolic content ranged from 9.62 mg to 124.94 mg gallic acid equivalent GAE/g of propolis, and the flavone and flavonol content ranged from 1.06 to 75.31 mg quercetin equivalent QE/g of propolis. The samples S6 from Al-Khalil presented the strongest radical scavenging activity toward DPPH, ABTS free radicals, and FRAP assay with IC50values of 0.02, 0.03, and 0.05 mg/mL, respectively. The results of antibacterial activity indicated that the propolis samples inhibit the growth of Gram-positive strains better than Gram-negative ones. In addition, a strong correlation was observed between the pH, resin, balsam, total phenolic, flavones and flavonol, and total antioxidant capacity (TAC) from one side and the antibacterial activity of propolis samples except onPseudomonas aeruginosa.
Collapse
|
14
|
Alwis US, Haddad R, Monaghan TF, Abrams P, Dmochowski R, Bower W, Wein AJ, Roggeman S, Weiss JP, Mourad S, Delanghe J, Everaert K. Impact of food and drinks on urine production: A systematic review. Int J Clin Pract 2020; 74:e13539. [PMID: 32441853 DOI: 10.1111/ijcp.13539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/14/2020] [Indexed: 12/09/2022] Open
Abstract
CONTEXT The impact of food and drinks on body fluid metabolism is of direct clinical relevance but current evidence remains fragmented. AIM Synthesise current evidence on the role of food and drinks in urine production. METHODS Systematic review as per PRISMA guidelines using MEDLINE and EMBASE databases (completed October 2019). Studies reporting on the effect of food, food constituents, and drinks on urine production were included. Two authors performed an independent extraction of relevant articles using predetermined data sets and completed quality-of-study indicators. RESULTS A total of 49 studies were included, of which 21 enroled human subjects, and 28 were clinically relevant animal studies (all of which utilised rodent models). The included studies were determined to be of variable quality. High dietary sodium, as well as wine, spirits, high-caffeine coffee, and caffeinated energy drinks, increased urine production in human studies. Decreased urine production was associated with low dietary sodium and consumption of milk, orange juice, and high-salt/high-sugar drinks. In animal models, a variety of fruits, vegetables, herbs, spices, and honey were associated with increased urine production. CONCLUSION Current evidence suggests that although several types of food and drinks may impact body fluid metabolism, the quality of the data is variable. Urine production appears to be influenced by multiple factors including composition (ie, moisture, macronutrients, and electrolytes), metabolite load, and the presence of specific diuresis-promoting substances (eg, caffeine, alcohol) and other bioactive phytochemicals. Future research is needed to support current evidence and the physiologic mechanisms underlying these findings.
Collapse
Affiliation(s)
- Upeksha S Alwis
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Rebecca Haddad
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
- Sorbonne Université, GRC 001, GREEN Groupe de recherche en Neuro-Urologie, AP-HP, Hôpital Rothschild, Paris, France
| | - Thomas F Monaghan
- Department of Urology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Paul Abrams
- Department of Urology, Bristol Urological Institute, Bristol, UK
| | - Roger Dmochowski
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wendy Bower
- Department of Medicine and Community Care, University of Melbourne, Melbourne, Australia
| | - Alan J Wein
- Department of Urology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Saskia Roggeman
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Jeffrey P Weiss
- Department of Urology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Sherif Mourad
- Department of Urology, Ain Shams University, Cairo, Egypt
| | - Joris Delanghe
- Department of Diagnostic Sciences, Ghent University Hospital, Ghent, Belgium
| | - Karel Everaert
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
15
|
Terzo S, Mulè F, Amato A. Honey and obesity-related dysfunctions: a summary on health benefits. J Nutr Biochem 2020; 82:108401. [PMID: 32454412 DOI: 10.1016/j.jnutbio.2020.108401] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022]
Abstract
Honey is a natural product, containing flavonoids and phenolic acids, appreciated for its therapeutic abilities since ancient times. Although the bioactive potential is linked to the composition, that is variable depending on mainly the botanical origin, honey has antioxidant and anti-inflammatory properties. Therefore, honey, administered alone or in combination with conventional therapy, might result useful in the management of chronic diseases that are commonly associated with oxidative stress and inflammation state. Obesity is a metabolic disorder characterized by visceral adiposity. The adipose tissue becomes hypertrophic and undergoes hyperplasia, resulting in a hypoxic environment, oxidative stress and production of pro-inflammatory mediators that can be responsible for other disorders, such as metabolic syndrome and neurodegeneration. Experimental evidence from animals have shown that honey improves glycemic control and lipid profile with consequent protection from endothelial dysfunction and neurodegeneration. The purpose of the present review is to summarize the current literature concerning the beneficial effects of honey in the management of the obesity-related dysfunctions, including neurodegeneration. Based on the key constituents of honey, the paper also highlights polyphenols to be potentially responsible for the health benefits of honey. Further well-designed and controlled studies are necessary to validate these benefits in humans.
Collapse
Affiliation(s)
- Simona Terzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy; Department of Neuroscience and cell biology, University of Palermo, Palermo, Italy.
| | - Flavia Mulè
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy.
| | - Antonella Amato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy.
| |
Collapse
|
16
|
El-Haskoury R, Al-Waili N, El-Hilaly J, Al-Waili W, Lyoussi B. Antioxidant, hypoglycemic, and hepatoprotective effect of aqueous and ethyl acetate extract of carob honey in streptozotocin-induced diabetic rats. Vet World 2020; 12:1916-1923. [PMID: 32095041 PMCID: PMC6989319 DOI: 10.14202/vetworld.2019.1916-1923] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/04/2019] [Indexed: 12/01/2022] Open
Abstract
Aim: The aim of the study included the effect of aqueous extract (AE) and ethyl acetate extract (EAE) on blood sugar in diabetic rats and their effects on liver enzymes and lipid panel in control and diabetic rats. Furthermore, the antioxidant activity of the EAE was studied in vitro and compared with AE. Materials and Methods: Sugar and antioxidant content of AE and EAE were determined. In vitro antioxidant activity of AE and EAE was estimated by 2, 2-diphenyl-1-picrylhydrazyl and ABTS*+ radical scavenging assay, ferric-reducing antioxidant power assay, and total antioxidant assay. To study the effect of the extracts on blood glucose level (BGL), lipid profile, and liver function in non-diabetic and diabetic rats, five groups of six rats each were treated with distilled water, AE, EAE, glibenclamide (GLB), and sucrose for 8 days. Plasma glucose level (PGL), total cholesterol (TC), triglycerides (TG), transaminases (alanine transaminase [ALT] and aspartate transaminase [AST]), and alkaline phosphatase (ALP) were determined. The effect of the interventions on BGL after acute administration also was investigated. Diabetes was induced by streptozotocin injection. Results: EAE contains significantly lower content of fructose and glucose than AE (p<0.05), and it has no sucrose. AE and EAE exhibited a significant antioxidant activity and high antioxidant content; the antioxidant content was higher in AE than EAE (p<0.05). In diabetic rats, acute treatment by AE increased PGL, while EAE significantly lowered BGL as compared to the untreated diabetic rats. Both interventions significantly decreased BGL as compared to the sucrose treated group in diabetic rats (p<0.05). EAE was more potent than GLB. Sucrose caused 13% increment in BGL after 8 days of induction of diabetes, while AE caused only 1.3% increment. Daily treatment by EAE decreased significantly AST, ALT, ALP, and TC. EAE decreased significantly TC and TG level in diabetic rats in comparison to the untreated diabetic group. Conclusion: The study showed for the 1st time that EAE has more hypoglycemic effect than AE, and both extracts prevent the increment in BGL on day 8 after induction of diabetes observed in the control and sucrose treated group. EAE significantly ameliorated the lipid and liver function disorders induced by diabetes.
Collapse
Affiliation(s)
- Redouan El-Haskoury
- Department of Biology Physiology-Pharmacology and Environmental Health Laboratory, Faculty of Sciences Dhar-Mahraz, Sidi Mohamed Ben Abdallah University, Fez, Morocco
| | - Noori Al-Waili
- Department of Scientific Research, New York Medical Care for Nephrology, Richmond Hill, NY 11418, USA
| | - Jaouad El-Hilaly
- Department of Biology Physiology-Pharmacology and Environmental Health Laboratory, Faculty of Sciences Dhar-Mahraz, Sidi Mohamed Ben Abdallah University, Fez, Morocco.,Department of Biology and Earth Sciences, Laboratory of Pedagogical Engineering and Didactics of Sciences and Mathematics (IPDSM), Regional Center for Education Careers and Training, Fez, Morocco
| | - Waili Al-Waili
- Department of Scientific Research, New York Medical Care for Nephrology, Richmond Hill, NY 11418, USA
| | - Badiaa Lyoussi
- Department of Biology Physiology-Pharmacology and Environmental Health Laboratory, Faculty of Sciences Dhar-Mahraz, Sidi Mohamed Ben Abdallah University, Fez, Morocco
| |
Collapse
|
17
|
In Vitro Evaluation of the Potential Use of Propolis as a Multitarget Therapeutic Product: Physicochemical Properties, Chemical Composition, and Immunomodulatory, Antibacterial, and Anticancer Properties. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4836378. [PMID: 31915694 PMCID: PMC6930758 DOI: 10.1155/2019/4836378] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
Propolis is a resin that honeybees produce by mixing saliva and beeswax with exudate gathered from botanical sources. The present in vitro study investigated the potential use of propolis as a multitarget therapeutic product and the physicochemical properties, chemical composition, and immunomodulatory, antioxidant, antibacterial, and anticancer properties of a propolis extract from the northern Morocco region (PNM). Pinocembrin, chrysin, and quercetin were the main phenolic compounds of PNM as measured in HPLC. The PNM showed significant inhibitory effects against all tested Gram-positive and Gram-negative strains and showed high antioxidant activities by scavenging free radicals with IC50 (DPPH = 0.02, ABTS = 0.04, and FRAP = 0.04 mg/ml). In addition, PNM induced a dose-dependent cytostatic effect in MCF-7, HCT, and THP-1 cell lines at noncytotoxic concentrations with IC50 values of 479.22, 108.88, and 50.54 μg/ml, respectively. The production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) was decreased in a dose-dependent manner in LPS-stimulated human peripheral blood mononuclear cells (PBMNCs), whereas the production of the anti-inflammatory interleukin-10 (IL-10) was increased in a dose-dependent manner reaching 15-fold compared to the levels measured in untreated PBMNCs. Overall, the results showed that the traditionally known multitarget therapeutic properties of the PNM seem to be mediated, at least in part, through cytostatic, antibacterial, and immunomodulatory effects.
Collapse
|
18
|
Imtara H, Kmail A, Touzani S, Khader M, Hamarshi H, Saad B, Lyoussi B. Chemical Analysis and Cytotoxic and Cytostatic Effects of Twelve Honey Samples Collected from Different Regions in Morocco and Palestine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:8768210. [PMID: 31263506 PMCID: PMC6556802 DOI: 10.1155/2019/8768210] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 04/23/2019] [Indexed: 11/18/2022]
Abstract
The aim of this in vitro study is to characterize the phenolic compounds of twelve honey samples collected from different locations in Palestine (H1-6) and Morocco (H7-12) and to evaluate their cytotoxic and cytostatic effects in cells from the human colorectal carcinoma cell line HCT-116 and breast cancer cell line MCF-7. Quantitative HPLC analysis revealed nine phenolic compounds in three Moroccan honey samples, namely, syringic acid, tannic acid, caffeic acid, ferulic acid, coumaric acid, gallic acid, rosmarinic acid, epicatechin, and pyrogallol. Syringic acid, abundant in numerous types of honey with strong antioxidant capacities, was present at values ranging between 0.10 mg/100 g and 1.24 mg/100 g of Daghmos (H11) and Kabbar (H10) samples, respectively. No significant reductions in cell viability were observed in both cell lines treated with the Palestinian samples as measured with MTT assay. Significant cytostatic effects were after treatment of HCT cells with Morar honey H1 with IC50 of 1789 μg/ml. Three Moroccan samples, H7 (Zaâtar), H9 (Bochnikha), and H10 (Kabbar), showed slight, but significant cytostatic effects in HCT cells. A strong correlation was observed between cytostatic activity of MCF cells and antioxidant content (phenols, flavonoids, and flavonol). Furthermore, a strong negative correlation was detected between the cytostatic activity in HCT cells and the contents of syringic acid (r= -0.756) and tannic acid (r= -0.610). These results indicate that the traditionally known anticancer effects of honey might be mediated in part through cytostatic effects.
Collapse
Affiliation(s)
- Hamada Imtara
- Physiology-Pharmacology, University of Fez, P.O. Box 1796, Fez Atlas, Fez, Morocco
| | - Abdalsalam Kmail
- Qasemi Research Center, Al-Qasemi Academic College and Faculty of Arts and Sciences, Arab American University, Palestine, P.O. Box 240, Jenin, State of Palestine
| | - Soumaya Touzani
- Physiology-Pharmacology, University of Fez, P.O. Box 1796, Fez Atlas, Fez, Morocco
| | - Mira Khader
- Qasemi Research Center, Al-Qasemi Academic College and Faculty of Arts and Sciences, Arab American University, Palestine, P.O. Box 240, Jenin, State of Palestine
| | - Hadeel Hamarshi
- Qasemi Research Center, Al-Qasemi Academic College and Faculty of Arts and Sciences, Arab American University, Palestine, P.O. Box 240, Jenin, State of Palestine
| | - Bashar Saad
- Qasemi Research Center, Al-Qasemi Academic College and Faculty of Arts and Sciences, Arab American University, Palestine, P.O. Box 240, Jenin, State of Palestine
| | - Badiaa Lyoussi
- Physiology-Pharmacology, University of Fez, P.O. Box 1796, Fez Atlas, Fez, Morocco
| |
Collapse
|