1
|
Wang ZL, Lao J, Xie ZN, He W, Zhong C, Zhang SH, Jin J. Fermentation of Polygonati Rhizoma aqueous extract using Lactiplantibacillus plantarum under the condition of eutrophication. Arch Microbiol 2024; 206:359. [PMID: 39033087 DOI: 10.1007/s00203-024-04082-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
In this experiment, the eutrophication system was established by adding sucrose and yeast powder, and the pH and dissolved oxygen were measured in a bioreactor in real time to study the effect of aerobic environment on the fermentation process of Polygonati Rhizoma extract by Lactiplantibacillus plantarum. To further analyze metabolic changes, UPLC-Q-Exactive MS was used for metabolomic analysis and metabolic profiling. Multivariate analysis was performed using principal component analysis and Orthogonal projections to latent structures discriminant analysis. Finally, 313 differential metabolites were selected, 196 of which were annotated through database matching. After fermentation, the content of short-chain fatty acids, lactic acid, and their derivatives increased significantly, and there were 13 kinds and 4 kinds, respectively. Both compounds and their derivatives are beneficial to the intestinal flora. Consequently, incorporating L. plantarum into the aerobic fermentation process of Polygonati Rhizoma extract within the eutrophic system is potentially advantageous in enhancing the impact of its fermentation solution on the gut microbiota and its effects on human health. Our findings for this kind of edible and medicinal material research and development offer useful insights.
Collapse
Affiliation(s)
- Zi-Ling Wang
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410013, China
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jia Lao
- Resgreen Group International Inc., Changsha, 410329, China
| | - Zhen-Ni Xie
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410013, China
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Wei He
- Resgreen Group International Inc., Changsha, 410329, China
| | - Can Zhong
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410013, China
- Hunan Shenzhou Chinese Medicine Inc., Zhangjiajie, 427200, China
| | - Shui-Han Zhang
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410013, China
| | - Jian Jin
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410013, China.
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
2
|
Zhu F, Hu S, Mei L. Production and quality evaluation of a novel γ-aminobutyric acid-enriched yogurt. Front Nutr 2024; 11:1404743. [PMID: 38784135 PMCID: PMC11112111 DOI: 10.3389/fnut.2024.1404743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Objective γ-aminobutyric acid (GABA) is a neurotransmitter inhibitor that has beneficial effects on various health conditions such as hypertension, cognitive dysfunction, and anxiety. In this study, we investigated a novel yogurt naturally enriched with GABA using a Levilactobacillus brevis strain isolated in our laboratory; the specific optimum yogurt production conditions for this strain were determined. Methods We isolated an L. brevis strain and used it to produce yogurt naturally enriched with GABA. We explored the optimal conditions to enhance GABA yield, including fermentation temperature, inoculation amount, L-monosodium glutamate (L-MSG) concentration, fermentation time, and sucrose content. We also performed mixed fermentation with Streptococcus thermophilus and evaluated the quality of the yogurt. Results Following optimization (43°C, 8% inoculation amount, 1.5 g/L L-MSG, and 8% sucrose for 40 h of fermentation), the GABA yield of the yogurt increased by 2.2 times, reaching 75.3 mg/100 g. Mixed fermentation with S. thermophilus demonstrated favorable results, achieving a GABA yield akin to that found in some commercially available functional foods. Moreover, the viable microbe count in the GABA-enriched yogurt exceeded 1 × 108 cfu/mL, which is higher than that of commercial standards. The yogurt also exhibited a suitable water-holding capacity, viscosity, 3-week storage time, and favorable sensory test results. Conclusion This study highlights the potential of naturally enriched GABA yogurt as a competitive commercial yogurt with beneficial health effects.
Collapse
Affiliation(s)
- Fei Zhu
- Department of Food Science, Zhejiang Pharmaceutical University, Ningbo, China
| | - Sheng Hu
- Country School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| | - Lehe Mei
- Jinhua Advanced Research Institute, Jinhua, China
- College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Han J, Zhao X, Zhao X, Wang Q, Li P, Gu Q. Microbial-Derived γ-Aminobutyric Acid: Synthesis, Purification, Physiological Function, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14931-14946. [PMID: 37792666 DOI: 10.1021/acs.jafc.3c05269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
γ-Aminobutyric acid (GABA) is an important nonprotein amino acid that extensively exists in nature. At present, GABA is mainly obtained through chemical synthesis, plant enrichment, and microbial production, among which microbial production has received widespread attention due to its safety and environmental benefits. After using microbial fermentation to obtain GABA, it is necessary to be isolated and purified to ensure its quality and suitability for various industries such as food, agriculture, livestock, pharmaceutics, and others. This article provides a comprehensive review of the different sources of GABA, including its presence in nature and the synthesis methods. The factors affecting the production of microbial-derived GABA and its isolation and purification methods are further elucidated. Moreover, the main physiological functions of GABA and its application in different fields are also reviewed. By advancing our understanding of GABA, we can unlock its full potential and further utilize it in various fields to improve human health and well-being.
Collapse
Affiliation(s)
- Jiarun Han
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xilian Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xin Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| |
Collapse
|
4
|
Starkutė V, Mockus E, Klupšaitė D, Zokaitytė E, Tušas S, Mišeikienė R, Stankevičius R, Rocha JM, Bartkienė E. Ascertaining the Influence of Lacto-Fermentation on Changes in Bovine Colostrum Amino and Fatty Acid Profiles. Animals (Basel) 2023; 13:3154. [PMID: 37835761 PMCID: PMC10571792 DOI: 10.3390/ani13193154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
The aim of this study was to collect samples of bovine colostrum (BCOL) from different sources (agricultural companies A, B, C, D and E) in Lithuania and to ascertain the influence of lacto-fermentation with Lactiplantibacillus plantarum strain 135 and Lacticaseibacillus paracasei strain 244 on the changes in bovine colostrum amino (AA), biogenic amine (BA), and fatty acid (FA) profiles. It was established that the source of the bovine colostrum, the used LAB, and their interaction had significant effects (p < 0.05) on AA contents; lactic acid bacteria (LAB) used for fermentation was a significant factor for aspartic acid, threonine, glycine, alanine, methionine, phenylalanine, lysine, histidine, and tyrosine; and these factor's interaction is significant on most of the detected AA concentrations. Total BA content showed significant correlations with glutamic acid, serine, aspartic acid, valine, methionine, phenylalanine, histidine, and gamma amino-butyric acid content in bovine colostrum. Despite the differences in individual FA contents in bovine colostrum, significant differences were not found in total saturated (SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids. Finally, the utilization of bovine colostrum proved to be challenging because of the variability on its composition. These results suggest that processing bovine colostrum into value-added formulations for human consumption requires the adjustment of its composition since the primary production stage. Consequently, animal rearing should be considered in the employed bovine colostrum processing technologies.
Collapse
Affiliation(s)
- Vytautė Starkutė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| | - Ernestas Mockus
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Dovilė Klupšaitė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Eglė Zokaitytė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Saulius Tušas
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Ramutė Mišeikienė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Rolandas Stankevičius
- Department of Animal Nutrition, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Elena Bartkienė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
5
|
Biosynthesis of gamma-aminobutyric acid by Lactiplantibacillus plantarum K16 as an alternative to revalue agri-food by-products. Sci Rep 2022; 12:18904. [PMID: 36344571 PMCID: PMC9640535 DOI: 10.1038/s41598-022-22875-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
Probiotic metabolites, known as postbiotics, have received attention due to their wide variety of promoting health effects. One of the most exciting postbiotic is gamma-aminobutyric acid (GABA), widely produced by lactic acid bacteria, due to its benefits in health. In addition, the performance of the biosynthesis of GABA by Lactiplantibacillus plantarum could be modulated through the modification of fermentation parameters. Due to their high nutritional value, agri-food by-products could be considered a useful fermentation source for microorganisms. Therefore, these by-products were proposed as fermentation substrates to produce GABA in this study. Previously, several experiments in Man Rogosa Sharpe (MRS) broth were performed to identify the most critical parameters to produce GABA using the strain Lactiplantibacillus plantarum K16. The percentage of inoculum, the initial pH, and the concentration of nutrients, such as monosodium glutamate or glucose, significantly affected the biosynthetic pathway of GABA. The highest GABA yield was obtained with 500 mM of monosodium glutamate and 25 g/L of glucose, and an initial pH of 5.5 and 1.2% inoculum. Furthermore, these investigated parameters were used to evaluate the possibility of using tomato, green pepper, apple, or orange by-products to get GABA-enriched fermented media, which is an excellent way to revalorise them.
Collapse
|
6
|
Sassi S, Ilham Z, Jamaludin NS, Halim-Lim SA, Shin Yee C, Weng Loen AW, Poh Suan O, Ibrahim MF, Wan-Mohtar WAAQI. Critical Optimized Conditions for Gamma-Aminobutyric Acid (GABA)-Producing Tetragenococcus Halophilus Strain KBC from a Commercial Soy Sauce Moromi in Batch Fermentation. FERMENTATION-BASEL 2022; 8:409. [DOI: 10.3390/fermentation8080409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Gamma-aminobutyric acid (GABA) has several health-promoting qualities, leading to a growing demand for natural GABA production via microbial fermentation. The GABA-producing abilities of the new Tetragenococcus halophilus (THSK) isolated from a commercial soy sauce moromi were proven in this investigation. Under aerobic conditions, the isolate produced 293.43 mg/L of GABA after 5 days of cultivation, compared to 217.13 mg/L under anaerobic conditions. Critical parameters such as pH, monosodium glutamate (MSG), and sodium chloride (NaCl) concentrations were examined to improve GABA yield. MSG had the most significant impact on GABA and GABA synthesis was not suppressed even at high NaCl concentrations. Data showed that a pH of 8, MSG content of 5 g/L, and 20% NaCl were the best culture conditions. The ultimate yield was improved to 653.101 mg/L, a 2.22-fold increase (293.43 mg/L). This design shows that the bacteria THSK has industrial GABA production capability and can be incorporated into functional food.
Collapse
|
7
|
Kim J, Lee MH, Kim MS, Kim GH, Yoon SS. Probiotic Properties and Optimization of Gamma-Aminobutyric Acid Production by Lactiplantibacillus plantarum FBT215. J Microbiol Biotechnol 2022; 32:783-791. [PMID: 35586927 PMCID: PMC9628908 DOI: 10.4014/jmb.2204.04029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/15/2022]
Abstract
Gamma-aminobutyric acid (GABA) improves various physiological illnesses, including diabetes, hypertension, depression, memory lapse, and insomnia in humans. Therefore, interest in the commercial production of GABA is steadily increasing. Lactic acid bacteria (LAB) have widely been reported as a GABA producer and are safe for human consumption. In this study, GABA-producing LAB were preliminarily identified and quantified via GABase assay. The acid and bile tolerance of the L. plantarum FBT215 strain were evaluated. The one-factor-at-a-time (OFAT) strategy was applied to determine the optimal conditions for GABA production using HPLC. Response surface methodology (RSM) with Box-Behnken design was used to predict the optimum GABA production. The strain FBT215 was shown to be acid and bile tolerant. The optimization of GABA production via the OFAT strategy resulted in an average GABA concentration of 1688.65 ± 14.29 μg/ml, while it was 1812.16 ± 23.16 μg/ml when RSM was applied. In conclusion, this study provides the optimum culture conditions for GABA production by the strain FBT215 and indicates that L. plantarum FBT215 is potentially promising for commercial functional probiotics with health claims.
Collapse
Affiliation(s)
- Jaegon Kim
- Department of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Myung-Hyun Lee
- Department of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Min-Sun Kim
- Department of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Gyeong-Hwuii Kim
- Department of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Sung-Sik Yoon
- Department of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea,Corresponding author Phone: +82-33-760-2251 Fax: +82-33-760-5576 E-mail:
| |
Collapse
|
8
|
Sharma P, Singh N, Singh S, Khare SK, Nain PKS, Nain L. Potent γ-amino butyric acid producing psychobiotic Lactococcus lactis LP-68 from non-rhizospheric soil of Syzygium cumini (Black plum). Arch Microbiol 2021; 204:82. [PMID: 34958412 DOI: 10.1007/s00203-021-02629-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022]
Abstract
Gamma amino butyric acid (GABA) is a chemical messenger that plays a significant role in muscle relaxation and brain health. Certain lactic acid bacteria (LAB) produce significant levels of GABA and thus act as potential psychobiotic cultures. In the present study, LAB were isolated from non-rhizospheric soil sample of Syzygium cumini (Black plum). A total of 57 LAB were isolated on the basis of their morphological and acid producing characteristic on de Man Rogosa Sharpe (MRS) agar. Only seven isolates were found to produce GABA (0.09-1.13 gL-1) in MRS broth and were identified as Lactococcus. However, L. lactis LP-68 produced highest amount of GABA and was selected for further optimization of culture conditions (pH, temperature and MSG) by response surface methodology (RSM). The optimization resulted in approximately four-fold increase in GABA production (4.11 gL-1). The results indicate that the L. lactis LP-68 can be used as starter culture for production of GABA-enriched functional foods.
Collapse
Affiliation(s)
- Pushpendra Sharma
- Division of Microbiology, ICAR-Indian Agriculture Research Institute, New Delhi, 110012, India
| | - Neera Singh
- Division of Agricultural Chemicals, ICAR-Indian Agriculture Research Institute, New Delhi, India
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh, 123031, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Pawan Kumar Singh Nain
- Design and Mechatronic Division, School of Civil and Mechanical Engineering, Galgotias University, Greater Noida, Gautam Budh Nagar, Uttar Pradesh, 201310, India
| | - Lata Nain
- Division of Microbiology, ICAR-Indian Agriculture Research Institute, New Delhi, 110012, India.
| |
Collapse
|
9
|
Adikari A, Priyashantha H, Disanayaka J, Jayatileka D, Kodithuwakku S, Jayatilake J, Vidanarachchi J. Isolation, identification and characterization of L actobacillus species diversity from Meekiri: traditional fermented buffalo milk gels in Sri Lanka. Heliyon 2021; 7:e08136. [PMID: 34660933 PMCID: PMC8503854 DOI: 10.1016/j.heliyon.2021.e08136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/02/2021] [Accepted: 10/01/2021] [Indexed: 12/30/2022] Open
Abstract
Traditional fermented buffalo milk gel; Meekiri, is a popular buffalo milk-derived product in Sri Lanka. Predominantly, it is produced using the back-slopping (adding a small amount of the previous fermentate) technique, following the life-long traditions available at the cottage level. Hence, diverse and unclassified starter cultures are likely to be established across the varying geographical regions of Meekiri production. In the present study, we aimed to elucidate the diversity of lactic acid bacteria (LAB) and their characteristics including probiotic properties from major Meekeri production areas (n = 22) in Sri Lanka. Lactic acid bacteria was isolated from locally produced Meekiri samples (n = 23) and characterized based on morphological, biochemical, physiological profiles and potential of probiotic properties. The isolates revealed five different colony and cell morphologies and were classified as heterofermenters, homofermenters and facultative heterofermenters based on CO2 production using glucose. None of the isolates showed the ability to grow either at 5 °C or 0 °C, while 71 % and 100 % survival of the isolates were observed at 15 °C and 45 °C, respectively. Amplified ribosomal DNA restriction analysis (ARDRA) primarily grouped the isolates into three distinct clusters based on their DNA banding patterns. Subsequently, 16S rRNA sequencing of isolates revealed the presence of four species namely, Limosilactobacillus fermentum (n = 18), Latilactobacillus curvatus (n = 2), Lactobacillus acidophilus (n = 2) and Lactiplantibacillus plantarum (n = 1) and in the phylogenetic analysis, it was represented by four distinctive clades. All the isolated species demonstrated promising probiotic potential with antibiotic sensitivity, antimicrobial properties, bile acid tolerance and acid tolerance. In conclusion, traditional back-slopping Meekiri in Sri Lanka contains diverse LAB, with a negligible geographical variation at species-level. Our work provides a strong foundation and insights into future applications in starter culture development for the fermentation of buffalo's milk.
Collapse
Affiliation(s)
- A.M.M.U. Adikari
- Department of Food Science and Technology, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka
| | - Hasitha Priyashantha
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-750 07 Uppsala, Sweden
| | - J.N.K. Disanayaka
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - D.V. Jayatileka
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - S.P. Kodithuwakku
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - J.A.M.S. Jayatilake
- Department of Oral Medicine and Periodontology, Faculty of Dental Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - J.K. Vidanarachchi
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| |
Collapse
|
10
|
Abstract
Dadih or dadiah is traditional fermented buffalo milk of Minangkabau, which occurs spontaneously. Dadih is commonly served as ampiang dadih, or other dishes. The microbiota found in dadih are dominated by lactic acid bacteria, and yeasts are also found. The lactic acid bacteria provide functional value, such as antimicrobial, hypocholesterolemic, antimutagenic, antioxidant, and immunomodulatory properties, as well as being the source of γ-aminobutyric acid (GABA) as an anti-stress agent and folate. Nevertheless, many challenges were observed in dadih production, including the limitation of buffalo milk production due to decreasing populations of buffalo in the last two decades, unstandardized dadih production due to the spontaneous fermentation in natural bamboo tubes, and safety problems as no heat treatment is applied in the production of dadih. These problems impede the development of dadih production, thus is it important to improve buffalo cultivation through artificial insemination programs, using different types of milk and pasteurization processes in dadih production, and incubator development to accelerate the fermentation period.
Collapse
|
11
|
Kwoji ID, Aiyegoro OA, Okpeku M, Adeleke MA. Multi-Strain Probiotics: Synergy among Isolates Enhances Biological Activities. BIOLOGY 2021; 10:322. [PMID: 33924344 PMCID: PMC8070017 DOI: 10.3390/biology10040322] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
The use of probiotics for health benefits is becoming popular because of the quest for safer products with protective and therapeutic effects against diseases and infectious agents. The emergence and spread of antimicrobial resistance among pathogens had prompted restrictions over the non-therapeutic use of antibiotics for prophylaxis and growth promotion, especially in animal husbandry. While single-strain probiotics are beneficial to health, multi-strain probiotics might be more helpful because of synergy and additive effects among the individual isolates. This article documents the mechanisms by which multi-strain probiotics exert their effects in managing infectious and non-infectious diseases, inhibiting antibiotic-resistant pathogens and health improvement. The administration of multi-strain probiotics was revealed to effectively alleviate bowel tract conditions, such as irritable bowel syndrome, inhibition of pathogens and modulation of the immune system and gut microbiota. Finally, while most of the current research focuses on comparing the effects of multi-strain and single-strain probiotics, there is a dearth of information on the molecular mechanisms of synergy among multi-strain probiotics isolates. This forms a basis for future research in the development of multi-strain probiotics for enhanced health benefits.
Collapse
Affiliation(s)
- Iliya D. Kwoji
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4000, South Africa; (I.D.K.); (M.O.)
| | - Olayinka A. Aiyegoro
- Gastrointestinal Microbiology and Biotechnology Unit, Agricultural Research Council-Animal Production, Irene 0062, South Africa;
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4000, South Africa; (I.D.K.); (M.O.)
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4000, South Africa; (I.D.K.); (M.O.)
| |
Collapse
|
12
|
Sahab NR, Subroto E, Balia RL, Utama GL. γ-Aminobutyric acid found in fermented foods and beverages: current trends. Heliyon 2020; 6:e05526. [PMID: 33251370 PMCID: PMC7680766 DOI: 10.1016/j.heliyon.2020.e05526] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/13/2020] [Accepted: 11/12/2020] [Indexed: 01/13/2023] Open
Abstract
γ-aminobutyric acid (GABA) is synthesised by glutamic acid decarboxylase which catalyses the decarboxylation of L-glutamic acid. L-glutamic acid is formed by α-ketoglutarate in the TCA cycle by glutamic acid dehydrogenase (GDH). GABA is found in the human brain, plants, animals and microorganisms. GABA functions as an antidepressant, antihypertensive, antidiabetic and immune system enhancer and has a good effect on neural disease. As GABA have pharmaceutical properties, conditions for GABA production need to be established. Microbiological GABA production is more safe and eco-friendly rather than chemical methods. Moreover, it is easier to control conditions of production using microorganisms compared to production in plants and animals. GABA production in fermented foods and beverages has the potential to be optimised to increase the functional effect of fermented foods and beverages.
Collapse
Affiliation(s)
- Novia R.M. Sahab
- Magister of Agro-Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21 Jatinangor 45363, Indonesia
| | - Edy Subroto
- Magister of Agro-Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21 Jatinangor 45363, Indonesia
| | - Roostita L. Balia
- Faculty of Animal Husbandry, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21 Jatinangor 45363, Indonesia
| | - Gemilang L. Utama
- Magister of Agro-Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21 Jatinangor 45363, Indonesia
- Center for Environment and Sustainability Science, Universitas Padjadjaran, Jl. Sekeloa Selatan No. 1 Bandung 40134, Indonesia
| |
Collapse
|
13
|
A Brief Review on the Non-protein Amino Acid, Gamma-amino Butyric Acid (GABA): Its Production and Role in Microbes. Curr Microbiol 2019; 77:534-544. [PMID: 31844936 DOI: 10.1007/s00284-019-01839-w] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022]
Abstract
Gamma-Aminobutyric acid (GABA) is a non-protein amino acid widely distributed in nature. It is produced through irreversible α-decarboxylation of glutamate by enzyme glutamate decarboxylase (GAD). GABA and GAD have been found in plants, animals, and microorganisms. GABA is distributed throughout the human body and it is involved in the regulation of cardiovascular conditions such as blood pressure and heart rate, and plays a role in the reduction of anxiety and pain. Although researchers had produced GABA by chemical method earlier it became less acceptable as it pollutes the environment. Researchers now use a more promising microbial method for the production of GABA. In the drug and food industry, demand for GABA is immense. So, large scale conversion of GABA by microbes has got much attention. So this review focuses on the isolation source, production, and functions of GABA in the microbial system. We also summarize the mechanism of action of GABA and its shunt pathway.
Collapse
|