1
|
Lentschat H, Liessmann F, Tydings C, Schermeng T, Stichel J, Urban N, Schaefer M, Meiler J, Beck-Sickinger AG. Hederagenin is a Highly Selective Antagonist of the Neuropeptide FF Receptor 1 that Reveals Mechanisms for Subtype Selectivity. Angew Chem Int Ed Engl 2025; 64:e202417786. [PMID: 39641914 DOI: 10.1002/anie.202417786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
RF-amide peptide receptors including the neuropeptide FF receptor 1 (NPFFR1) are G protein-coupled receptors (GPCRs) that modulate diverse physiological functions. High conservation of endogenous ligands and receptors makes the identification of selective ligands challenging. Previously identified antagonists mimic the C-terminus of peptide ligands and lack selectivity towards the closely related neuropeptide FF receptor 2 (NPFFR2) or the neuropeptide Y1 receptor (Y1R). In a high-throughput screening, we identified the pentacyclic triterpenoid hederagenin (1) as a novel selective antagonist for the NPFFR1. Hederagenin (1) is a natural product isolated from Hedera helix (ivy). We characterized its mode of activity using in vitro and in silico methods, revealing an overlapping binding site of the small molecule with the orthosteric peptide agonists. Despite the high similarity of the orthosteric binding pockets of NPFFR1 and NPFFR2, hederagenin (1) shows strong subtype selectivity, particularly caused by slight differences in the shape of the binding pockets and the rigidity of the small molecule. Several residues inhibiting the activity of hederagenin (1) at the NPFFR2 were identified. As NPFFR1 antagonists are discussed as potential candidates for the treatment of chronic pain, these insights into the structural determinants governing subtype specificity will facilitate the development of next-generation analgesics with improved safety and efficacy.
Collapse
Affiliation(s)
- Hannah Lentschat
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, 04103, Germany
| | - Fabian Liessmann
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, 04103, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, ScaDS.AI Dresden/Leipzig, Leipzig, 04105, Germany
| | - Claiborne Tydings
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, 37235, United States
| | - Tina Schermeng
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, 04103, Germany
| | - Jan Stichel
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, 04103, Germany
| | - Nicole Urban
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Faculty of Medicine, Leipzig University, Leipzig, 04107, Germany
| | - Michael Schaefer
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Faculty of Medicine, Leipzig University, Leipzig, 04107, Germany
| | - Jens Meiler
- Institute for Drug Discovery, Faculty of Medicine, Leipzig University, Leipzig, 04103, Germany
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, 37232, United States
- Center for Scalable Data Analytics and Artificial Intelligence, ScaDS.AI Dresden/Leipzig, Leipzig, 04105, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, 04103, Germany
| |
Collapse
|
2
|
Wang Y, Qiu W, Kernodle S, Parker C, Padilla MA, Su J, Tomlinson AJ, Oldham S, Field J, Bernard E, Hornigold D, Rhodes CJ, Olson DP, Seeley RJ, Myers MG. Roles for Prlhr/GPR10 and Npffr2/GPR74 in feeding responses to PrRP. Mol Metab 2025; 92:102093. [PMID: 39755369 PMCID: PMC11773474 DOI: 10.1016/j.molmet.2024.102093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/06/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025] Open
Abstract
OBJECTIVE Several groups of neurons in the NTS suppress food intake, including Prlh-expressing neurons (NTSPrlh cells). Not only does the artificial activation of NTSPrlh cells decrease feeding, but also the expression of Prlh (which encodes the neuropeptide PrRP) and neurotransmission by NTSPrlh neurons contributes to the restraint of food intake and body weight, especially in animals fed a high fat diet (HFD). We set out to determine roles for putative PrRP receptors in the response to NTS PrRP and exogenous PrRP-related peptides. METHODS We used animals lacking PrRP receptors GPR10 and/or GPR74 (encoded by Prlhr and Npffr2, respectively) to determine roles for each in the restraint of food intake and body weight by the increased expression of Prlh in NTSPrlh neurons (NTSPrlhOX mice) and in response to the anorectic PrRP analog, p52. RESULTS Although Prlhr played a crucial role in the restraint of food intake and body weight in HFD-fed control animals, the combined absence of Prlhr and Npffr2 was required to abrogate the restraint of food intake in NTSPrlhOX mice. p52 suppressed feeding independently of both receptors, however. CONCLUSIONS Hence, each receptor can participate in the NTSPrlh-mediated suppression of food intake and body weight gain, while PrRP analog treatment can mediate its effects via distinct systems. While Prlhr plays a crucial role in the physiologic restraint of weight gain, the action of either receptor is capable of ameliorating obesity in response to enhanced NTSPrlh signaling.
Collapse
Affiliation(s)
- Yi Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Weiwei Qiu
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Stace Kernodle
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Carly Parker
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Jiaao Su
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Stephanie Oldham
- Early Cardiovascular Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Cambridge, UK
| | - Joss Field
- Early Cardiovascular Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Cambridge, UK
| | - Elise Bernard
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - David Hornigold
- Early Cardiovascular Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Cambridge, UK
| | - Christopher J Rhodes
- Early Cardiovascular Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Cambridge, UK
| | - David P Olson
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Martin G Myers
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Alahwany AM, Arisha AH, Abdelkhalek A, Khamis T, Miyasho T, Kirat D. Impact of Ultraviolet C Radiation on Male Fertility in Rats: Suppression of Autophagy, Stimulation of Gonadotropin-Inhibiting Hormone, and Alteration of miRNAs. Int J Mol Sci 2025; 26:316. [PMID: 39796171 PMCID: PMC11720531 DOI: 10.3390/ijms26010316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
While ultraviolet C (UVC) radiation has beneficial applications, it can also pose risks to living organisms. Nevertheless, a detailed assessment of UVC radiation's effects on mammalian male reproductive physiology, including the underlying mechanisms and potential protective strategies, has not yet been accomplished. This study aimed to examine the critical roles of oxidative stress, autophagy, reproductive hormonal axis, and microRNAs in UVC-induced reproductive challenges in male rats. Semen, biochemical, molecular, and in silico analyses revealed significant dysregulation of testicular steroidogenesis, impaired spermatogenesis, deteriorated sperm quality, and altered reproductive hormonal profiles, which ultimately lead to a decline in fertility in male rats exposed to UVC radiation. Our data indicated that the suppression of autophagy, stimulation of gonadotropin-inhibiting hormone (GnIH), and alteration of microRNAs serve as key mediators of UVC-induced stress effects in mammalian reproduction, potentially contributing to male infertility. Targeting these pathways, particularly through pretreatment with hesperidin (HES), offers a promising strategy to counteract UVC-induced male infertility. In conclusion, the present findings emphasize the importance of understanding the molecular mechanisms behind UVC-induced male infertility and offer valuable insights into the protective mechanisms and prospective role of HES in safeguarding male reproductive health.
Collapse
Affiliation(s)
- Ahmed Mohamed Alahwany
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City 11829, Egypt; (A.M.A.); (A.H.A.)
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City 11829, Egypt; (A.M.A.); (A.H.A.)
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Adel Abdelkhalek
- Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City 11829, Egypt;
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Taku Miyasho
- Laboratory of Animal Biological Responses, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Doaa Kirat
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
4
|
Jászberényi M, Thurzó B, Jayakumar AR, Schally AV. The Aggravating Role of Failing Neuropeptide Networks in the Development of Sporadic Alzheimer's Disease. Int J Mol Sci 2024; 25:13086. [PMID: 39684795 DOI: 10.3390/ijms252313086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease imposes an increasing burden on aging Western societies. The disorder most frequently appears in its sporadic form, which can be caused by environmental and polygenic factors or monogenic conditions of incomplete penetrance. According to the authors, in the majority of cases, Alzheimer's disease represents an aggravated form of the natural aging of the central nervous system. It can be characterized by the decreased elimination of amyloid β1-42 and the concomitant accumulation of degradation-resistant amyloid plaques. In the present paper, the dysfunction of neuropeptide regulators, which contributes to the pathophysiologic acceleration of senile dementia, is reviewed. However, in the present review, exclusively those neuropeptides or neuropeptide families are scrutinized, and the authors' investigations into their physiologic and pathophysiologic activities have made significant contributions to the literature. Therefore, the pathophysiologic role of orexins, neuromedins, RFamides, corticotrope-releasing hormone family, growth hormone-releasing hormone, gonadotropin-releasing hormone, ghrelin, apelin, and natriuretic peptides are discussed in detail. Finally, the therapeutic potential of neuropeptide antagonists and agonists in the inhibition of disease progression is discussed here.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrew V Schally
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
5
|
Mahdavi K, Zendehdel M, Zarei H. The role of central neurotransmitters in appetite regulation of broilers and layers: similarities and differences. Vet Res Commun 2024; 48:1313-1328. [PMID: 38286893 DOI: 10.1007/s11259-024-10312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
The importance of feeding as a vital physiological function, on the one hand, and the spread of complications induced by its disorder in humans and animals, on the other hand, have led to extensive research on its regulatory factors. Unfortunately, despite many studies focused on appetite, only limited experiments have been conducted on avian, and our knowledge of this species is scant. Considering this, the purpose of this review article is to examine the role of central neurotransmitters in regulating food consumption in broilers and layers and highlight the similarities and differences between these two strains. The methodology of this review study includes a comprehensive search of relevant literature on the topic using appropriate keywords in reliable electronic databases. Based on the findings, the central effect of most neurotransmitters on the feeding of broilers and laying chickens was similar, but in some cases, such as dopamine, ghrelin, nitric oxide, and agouti-related peptide, differences were observed. Also, the lack of conducting a study on the role of some neurotransmitters in one of the bird strains made it impossible to make an exact comparison. Finally, it seems that although there are general similarities in appetite regulatory mechanisms in meat and egg-type chickens, the long-term genetic selection appropriate to breeding goals (meat or egg production) has caused differences in the effect of some neurotransmitters. Undoubtedly, conducting future studies while completing the missing links can lead to a comprehensive understanding of this process and its manipulation according to the breeding purposes of chickens.
Collapse
Affiliation(s)
- Kimia Mahdavi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran.
| | - Hamed Zarei
- Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Guo X, Dai T, Wei S, Ma Z, Zhao H, Dan X. Rfamide-related peptide-3(RFRP-3) receptor gene is expressed in mouse ovarian granulosa cells: Potential role of RFRP-3 in steroidogenesis and apoptosis. Steroids 2024; 202:109349. [PMID: 38072091 DOI: 10.1016/j.steroids.2023.109349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
RFRP-3 is a functional ortholog of avian GnIH and regulates reproductive activities in the gonads of animals. However, the role of RFRP-3 in the function of ovarian granulosa cells in mice remains unclear. First, we detected the expression of the RFRP-3 receptor (GPR147) in the ovarian granulosa cells of mice. Second, the effect of RFRP-3 treatment on estradiol and progesterone secretions from granulosa cells was tested by ELISA. Meanwhile, the expression of genes and proteins regulating steroid hormone synthesis was respectively examined by qPCR and western blot. Furthermore, the effect of RFRP-3 treatment on the apoptosis of granulosa cells was analyzed. The results revealed that the GPR147 protein (a RFRP-3 receptor) was expressed in the ovarian granulosa cells of mice. Low and medium doses RFRP-3 treatment significantly reduced progesterone secretion in the granulosa cells (P < 0.05), while RFRP-3 suppressed p450scc, 3β-HSD, StAR, and FSHR expression in a non-dose-dependent manner. Moreover, RFRP-3 treatment might induce the apoptosis of granulosa cells. Additionally, low doses RFRP-3 significantly reduced p-ERK1/2 protein expression (P < 0.05) in the ovarian granulosa cells. We here, for the first time, confirmed that GPR147 was expressed in the ovarian granulosa cells of mice. Our findings suggested that and RFRP-3 regulates the granulosa cell function through the ERK signaling pathway, which will lay the foundation for uncovering molecular mechanisms by which RFRP-3 regulates follicle development in future.
Collapse
Affiliation(s)
- Xingru Guo
- College of Animal Science and Technology, Ningxia University, Yinchuan, PR China
| | - Tianshu Dai
- College of Animal Science and Technology, Ningxia University, Yinchuan, PR China
| | - Shihao Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan, PR China
| | - Ziming Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, PR China
| | - Hongxi Zhao
- College of Animal Science and Technology, Ningxia University, Yinchuan, PR China.
| | - Xingang Dan
- College of Animal Science and Technology, Ningxia University, Yinchuan, PR China; Ningxia Province's Key Laboratory of animal cell and molecular breeding, Yinchuan, PR China.
| |
Collapse
|
7
|
Odetayo AF, Akhigbe RE, Bassey GE, Hamed MA, Olayaki LA. Impact of stress on male fertility: role of gonadotropin inhibitory hormone. Front Endocrinol (Lausanne) 2024; 14:1329564. [PMID: 38260147 PMCID: PMC10801237 DOI: 10.3389/fendo.2023.1329564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Studies have implicated oxidative stress-sensitive signaling in the pathogenesis of stress-induced male infertility. However, apart from oxidative stress, gonadotropin inhibitory hormone (GnIH) plays a major role. The present study provides a detailed review of the role of GnIH in stress-induced male infertility. Available evidence-based data revealed that GnIH enhances the release of corticosteroids by activating the hypothalamic-pituitary-adrenal axis. GnIH also mediates the inhibition of the conversion of thyroxine (T4) to triiodothyronine (T3) by suppressing the hypothalamic-pituitary-thyroidal axis. In addition, GnIH inhibits gonadotropin-releasing hormone (GnRH), thus suppressing the hypothalamic-pituitary-testicular axis, and by extension testosterone biosynthesis. More so, GnIH inhibits kisspeptin release. These events distort testicular histoarchitecture, impair testicular and adrenal steroidogenesis, lower spermatogenesis, and deteriorate sperm quality and function. In conclusion, GnIH, via multiple mechanisms, plays a key role in stress-induced male infertility. Suppression of GnIH under stressful conditions may thus be a beneficial prophylactic and/or therapeutic strategy.
Collapse
Affiliation(s)
- Adeyemi F. Odetayo
- Department of Physiology, Federal University of Health Sciences, Ila Orangun, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Roland E. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | | | - Moses A. Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Nigeria
- The Brainwill Laboratories and Biomedical Services, Osogbo, Nigeria
| | | |
Collapse
|
8
|
Aghajanpour F, Soltani R, Afshar A, Abbaszadeh HA, Fadaei Fathabadi F, Moeinian N, Aliaghaei A, Dehghani Nejad A, Mastery Farahani R, Norouzian M, Abdollahifar MA. Sertoli cell-conditioned medium can improve blood-testis-barrier function and spermatogenesis in azoospermia mice induced by scrotal hyperthermia: An experimental study. Int J Reprod Biomed 2024; 22:17-30. [PMID: 38544670 PMCID: PMC10963876 DOI: 10.18502/ijrm.v22i1.15238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 12/11/2023] [Indexed: 11/10/2024] Open
Abstract
Background An increase in the temperature of the testis is associated with damage to the epithelium of seminiferous tubules and disruption of sperm production. Objective The current study aimed to investigate the effect of the Sertoli cell-conditioned medium (SCCM) on the blood-testis-barrier associated genes and spermatogenesis process following scrotal hyperthermia. Materials and Methods In this experimental study, 40 adult NMRI mice (8 wk, 25-30 gr) were allocated into 4 groups: I) control, II) DMEM (10 μl Dulbecco's Modified Eagle Medium), III) scrotal hyperthermia, and IV) scrotal hyperthermia+SCCM (10 μl SCCM). Hyperthermia was induced by placing the mice scrotum in water at 43 C for 20 min every other day for 10 days. Mice were treated every other day for 5 wk. Then the animals were euthanized, and the tails of epididymis were removed to analyze sperm parameters, testis were taken for stereological assessment, reactive oxygen spices and glutathione levels, and the expression of Ocln, Gja1, Cdh2, and Itgb1. Results The results of sperm analysis indicated that SCCM-treated mice significantly increased sperm count and motility and reduced DNA fragmentation. In addition, histological and molecular findings showed that the volume of testicular tissue, the number of germ cells, the glutathione level, and the expression of Ocln, Gja1, Cdh2, and Itgb1 genes were significantly increased in the SCCM-treated mice. Conclusion Findings suggest that growth factors of SCCM stimulate the proliferation and differentiation of germ cells through paracrine effects and upregulate the blood-testis-barrier-associated genes in mice subjected to scrotal hyperthermia.
Collapse
Affiliation(s)
- Fakhroddin Aghajanpour
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Soltani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azar Afshar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat-Allah Abbaszadeh
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fadaei Fathabadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nafiseh Moeinian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Dehghani Nejad
- Department of Biology and Anatomical Sciences, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Reza Mastery Farahani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Norouzian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Kupcova I, Danisovic L, Grgac I, Harsanyi S. Anxiety and Depression: What Do We Know of Neuropeptides? Behav Sci (Basel) 2022; 12:262. [PMID: 36004833 PMCID: PMC9405013 DOI: 10.3390/bs12080262] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
In modern society, there has been a rising trend of depression and anxiety. This trend heavily impacts the population's mental health and thus contributes significantly to morbidity and, in the worst case, to suicides. Modern medicine, with many antidepressants and anxiolytics at hand, is still unable to achieve remission in many patients. The pathophysiology of depression and anxiety is still only marginally understood, which encouraged researchers to focus on neuropeptides, as they are a vast group of signaling molecules in the nervous system. Neuropeptides are involved in the regulation of many physiological functions. Some act as neuromodulators and are often co-released with neurotransmitters that allow for reciprocal communication between the brain and the body. Most studied in the past were the antidepressant and anxiolytic effects of oxytocin, vasopressin or neuropeptide Y and S, or Substance P. However, in recent years, more and more novel neuropeptides have been added to the list, with implications for the research and development of new targets, diagnostic elements, and even therapies to treat anxiety and depressive disorders. In this review, we take a close look at all currently studied neuropeptides, their related pathways, their roles in stress adaptation, and the etiology of anxiety and depression in humans and animal models. We will focus on the latest research and information regarding these associated neuropeptides and thus picture their potential uses in the future.
Collapse
Affiliation(s)
- Ida Kupcova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (I.K.); (L.D.)
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (I.K.); (L.D.)
| | - Ivan Grgac
- Institute of Anatomy, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (I.K.); (L.D.)
| |
Collapse
|
10
|
The Effect of the Central Administration of the Neuropeptide VF on Feed Intake and Its Possible Interactions with Glutamate and Opioid Systems in Broiler Chicken. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10407-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|