1
|
Luo Y, Guo C, Ling C, Yu W, Chen Y, Jiang L, Luo Q, Wang C, Xu W. Pine pollen reverses the function of hepatocellular carcinoma by inhibiting α-Enolase mediated PI3K/AKT signaling pathway. PLoS One 2024; 19:e0312434. [PMID: 39576845 PMCID: PMC11584142 DOI: 10.1371/journal.pone.0312434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/07/2024] [Indexed: 11/24/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the influence of pine pollen (PP) on hepatocellular carcinoma (HCC) behavior in vitro and in vivo and explore its mechanism of action by focusing on the phosphatidylinositol 3-kinase/protein serine-threonine kinase (PI3K/AKT) signaling pathway and α-Enolase (ENO1) gene expression. METHODS We performed a bioinformatics analysis of ENO1. HCC cells overexpressing ENO1 were developed by lentivirus transfection. Cell proliferation, invasion, and migration were assessed using the cell cytotoxicity kit-8 assay, transwell assay, cell scratch test, and ENO1 inhibiting proliferation experiment. Protein expression was analyzed using Western blot. The in vivo effects of PP on HCC xenografts were also assessed in mice. The serum of nude mice in each group was analyzed for alanine aminotransferase (ALT), aspartate aminotransferase (AST), and AST/ALT. The tumor blocks of nude mice were weighed, and proteins were extracted for Western blot. RESULTS Compared to normal cells, the phosphorylation of ENO1 at the S27 site was most significant in HCC cells and was closely related to cell proliferation. In vitro, the PP solution inhibited the proliferation, invasion, and migration of ENO1 overexpressing cells compared with empty-vector-transfected cells. In mice bearing HCC, PP injection inhibited the overexpression of ENO1, affected serum ALT, AST, and AST/ALT levels, and reduced tumor weight. However, the expression of proliferation-related proteins in tumors overexpressing ENO1 was higher than in empty transfected tumors. CONCLUSION PP inhibits HCC by regulating the expression of ENO1 and MBP-1 and suppressing the PI3K/AKT pathway by inhibiting C-MYC and erb-B2 receptor tyrosine kinase 2.
Collapse
Affiliation(s)
- Yanhong Luo
- Department of Laboratory Medicine Science, Youjiang Medical University for Nationalities, Baise, China
| | - Chun Guo
- Department of Laboratory Medicine Science, Youjiang Medical University for Nationalities, Baise, China
| | - Caixia Ling
- Department of Laboratory Medicine Science, Youjiang Medical University for Nationalities, Baise, China
| | - Wenjun Yu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, United States of America
| | - Yuanhong Chen
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Lihe Jiang
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Qiuxiang Luo
- Department of Laboratory Medicine Science, Youjiang Medical University for Nationalities, Baise, China
| | - Chunfang Wang
- Key Laboratory of Researcmon Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Baise, China
| | - Weixin Xu
- Department of Pharmacy, Yancheng Clinical College of Xuzhou Medical University, The First People’s Hospital of Yancheng, Yancheng, China
| |
Collapse
|
2
|
Lee D, Pan JH, Kim D, Heo W, Shin EC, Kim YJ, Shim YY, Reaney MJT, Ko SG, Hong SB, Cho HT, Kim TG, Lee K, Kim JK. Mycoproteins and their health-promoting properties: Fusarium species and beyond. Compr Rev Food Sci Food Saf 2024; 23:e13365. [PMID: 38767863 DOI: 10.1111/1541-4337.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/13/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024]
Abstract
Filamentous fungal mycoproteins have gained increasing attention as sustainable alternatives to animal and plant-based proteins. This comprehensive review summarizes the nutritional characteristics, toxicological aspects, and health-promoting effects of mycoproteins, focusing on those derived from filamentous fungi, notably Fusarium venenatum. Mycoproteins are characterized by their high protein content, and they have a superior essential amino acid profile compared to soybeans indicating excellent protein quality and benefits for human nutrition. Additionally, mycoproteins offer enhanced digestibility, further highlighting their suitability as a protein source. Furthermore, mycoproteins are rich in dietary fibers, which have been associated with health benefits, including protection against metabolic diseases. Moreover, their fatty acids profile, with significant proportions of polyunsaturated fatty acids and absence of cholesterol, distinguishes them from animal-derived proteins. In conclusion, the future of mycoproteins as a health-promoting protein alternative and the development of functional foods relies on several key aspects. These include improving the acceptance of mycoproteins, conducting further research into their mechanisms of action, addressing consumer preferences and perceptions, and ensuring safety and regulatory compliance. To fully unlock the potential of mycoproteins and meet the evolving needs of a health-conscious society, continuous interdisciplinary research, collaboration among stakeholders, and proactive engagement with consumers will be vital.
Collapse
Affiliation(s)
- Daseul Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Jeong Hoon Pan
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Wan Heo
- Department of Food Science and Engineering, Seowon University, Cheongju, Republic of Korea
| | - Eui Cheol Shin
- Department of Food Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Youn Young Shim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Martin J T Reaney
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seung-Beom Hong
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Hyung Taek Cho
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Tae Gyun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Kangwook Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Jae Kyeom Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
3
|
Sartorius K, Sartorius B, Winkler C, Chuturgoon A, Shen TW, Zhao Y, An P. Serum microRNA Profiles and Pathways in Hepatitis B-Associated Hepatocellular Carcinoma: A South African Study. Int J Mol Sci 2024; 25:975. [PMID: 38256049 PMCID: PMC10815595 DOI: 10.3390/ijms25020975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
The incidence and mortality of hepatocellular carcinoma (HCC) in Sub-Saharan Africa is projected to increase sharply by 2040 against a backdrop of limited diagnostic and therapeutic options. Two large South African-based case control studies have developed a serum-based miRNome for Hepatitis B-associated hepatocellular carcinoma (HBV-HCC), as well as identifying their gene targets and pathways. Using a combination of RNA sequencing, differential analysis and filters including a unique molecular index count (UMI) ≥ 10 and log fold change (LFC) range > 2: <-0.5 (p < 0.05), 91 dysregulated miRNAs were characterized including 30 that were upregulated and 61 were downregulated. KEGG analysis, a literature review and other bioinformatic tools identified the targeted genes and HBV-HCC pathways of the top 10 most dysregulated miRNAs. The results, which are based on differentiating miRNA expression of cases versus controls, also develop a serum-based miRNA diagnostic panel that indicates 95.9% sensitivity, 91.0% specificity and a Youden Index of 0.869. In conclusion, the results develop a comprehensive African HBV-HCC miRNome that potentially can contribute to RNA-based diagnostic and therapeutic options.
Collapse
Affiliation(s)
- Kurt Sartorius
- Faculty of Commerce, Law and Management, University of the Witwatersrand, Johannesburg 2001, South Africa
- School of Laboratory Medicine and Molecular Sciences, University of Kwazulu-Natal, Durban 4041, South Africa;
- Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL 32224, USA
| | - Benn Sartorius
- School of Public Health, University of Queensland, Brisbane, QLD 4102, Australia
| | - Cheryl Winkler
- Centre for Cancer Research, Basic Research Laboratory, National Cancer Institute, Frederick Natifol Laboratory for Cancer Research, National Institute of Health, Frederick, MD 21701, USA
| | - Anil Chuturgoon
- School of Laboratory Medicine and Molecular Sciences, University of Kwazulu-Natal, Durban 4041, South Africa;
| | - Tsai-Wei Shen
- CCR-SF Bioinformatics Group, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Yongmei Zhao
- CCR-SF Bioinformatics Group, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Ping An
- Centre for Cancer Research, Basic Research Laboratory, National Cancer Institute, Frederick Natifol Laboratory for Cancer Research, National Institute of Health, Frederick, MD 21701, USA
| |
Collapse
|
4
|
Liu X, Yan C, Chang C, Meng F, Shen W, Wang S, Zhang Y. FOXA2 Suppression by TRIM36 Exerts Anti-Tumor Role in Colorectal Cancer Via Inducing NRF2/GPX4-Regulated Ferroptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304521. [PMID: 37875418 PMCID: PMC10724393 DOI: 10.1002/advs.202304521] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/14/2023] [Indexed: 10/26/2023]
Abstract
The forkhead box transcription factor A2 (FOXA2) is a transcription factor and plays a key role in embryonic development, metabolism homeostasis and tumor cell proliferation; however, its regulatory potential in CRC is not fully understood. Here, it is found that FOXA2 expression is markedly up-regulated in tumor samples of CRC patients as compared with the normal tissues, which is closely associated with the worse survival in patients with CRC. Notably, a positive correlation between FOXA2 and nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) gene expression is observed in CRC patients. Mechanistically, FOXA2 depletion weakens the activation of Nrf2 pathway and decreases GPX4 level in CRC cells, thereby leading to ferroptosis, which is further supported by bioinformatic analysis. More intriguingly, the E3 ubiquitin ligase tripartite motif containing 36 (TRIM36) is identified as a key suppressor of FOXA2, and it is observed that TRIM36 can directly interact with FOXA2 and induce its K48-linked polyubiquitination, resulting in FOXA2 protein degradation in vitro. Taken together, all the studies demonstrate that FOXA2 mediated by TRIM36 promotes CRC progression by inhibiting the Nrf2/GPX4 ferroptosis signaling pathway, thus providing a new therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Xin Liu
- Department of Gastrointestinal SurgeryShandong Cancer Hospital and InstituteShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
| | - Chunli Yan
- Department of Breast Internal MedicineShandong Cancer Hospital and InstituteShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
| | - Chunxiao Chang
- Ward 2 of GastroenterologyShandong Cancer Hospital and InstituteShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
| | - Fansong Meng
- Department of Medical ManagementShandong Cancer Hospital and InstituteShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
| | - Wenjie Shen
- Clinical Trial Research CenterShandong Cancer Hospital and InstituteShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
| | - Song Wang
- Department of Medical ManagementShandong Cancer Hospital and InstituteShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
| | - Yi Zhang
- Department of Gastrointestinal SurgeryShandong Cancer Hospital and InstituteShandong First Medical University & Shandong Academy of Medical SciencesJinan250117China
| |
Collapse
|
5
|
Zhang J, Zhou Y, Feng J, Xu X, Wu J, Guo C. Deciphering roles of TRIMs as promising targets in hepatocellular carcinoma: current advances and future directions. Biomed Pharmacother 2023; 167:115538. [PMID: 37729731 DOI: 10.1016/j.biopha.2023.115538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023] Open
Abstract
Tripartite motif (TRIM) family is assigned to RING-finger-containing ligases harboring the largest number of proteins in E3 ubiquitin ligating enzymes. E3 ubiquitin ligases target the specific substrate for proteasomal degradation via the ubiquitin-proteasome system (UPS), which seems to be a more effective and direct strategy for tumor therapy. Recent advances have demonstrated that TRIM genes associate with the occurrence and progression of hepatocellular carcinoma (HCC). TRIMs trigger or inhibit multiple biological activities like proliferation, apoptosis, metastasis, ferroptosis and autophagy in HCC dependent on its highly conserved yet diverse structures. Remarkably, autophagy is another proteolytic pathway for intracellular protein degradation and TRIM proteins may help to delineate the interaction between the two proteolytic systems. In depth research on the precise molecular mechanisms of TRIM family will allow for targeting TRIM in HCC treatment. We also highlight several potential directions warranted further development associated with TRIM family to provide bright insight into its translational values in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yuting Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Xuanfu Xu
- Department of Gastroenterology, Shidong Hospital, University of Shanghai for Science and Technology, Shanghai 200433, China.
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
6
|
Separation and Structural Characterization of a Novel Exopolysaccharide from Rhizopus nigricans. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227756. [PMID: 36431857 PMCID: PMC9696503 DOI: 10.3390/molecules27227756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
The present study aims to analyze the structural characterization and antioxidant activity of a novel exopolysaccharide from Rhizopus nigricans (EPS2-1). For this purpose, EPS2-1 was purified through DEAE-52, Sephadex G-100, and Sephadex G-75 chromatography. The structural characterization of EPS2-1 was analyzed using high-performance gel permeation chromatography (HPGPC), Fourier transform infrared spectroscopy (FT-IR), methylation analysis, nuclear magnetic resonance (NMR) spectra, transmission electron microscope (TEM), and atomic force microscope (AFM). The results revealed that EPS2-1 is composed of mannose (Man), galactose (Gal), glucose (Glc), arabinose (Ara), and Fucose (Fuc), and possesses a molecular weight of 32.803 kDa. The backbone of EPS2-1 comprised →2)-α-D-Manp-(1→ and →3)-β-D-Galp-(1→, linked with the O-6 position of (→2,6)-α-D-Manp-(1→) of the main chain is branch α-D-Manp-(1→6)-α-D-Manp-(1→, linked with the O-6 positions of (→3)-β-D-Galp-(1→) of the main chain are branches →4)-β-D-Glcp-(1→ and →3)-β-D-Galp-(1→, respectively. Finally, we demonstrated that EPS2-1 also shows free radical scavenging activity and iron ion reducing ability. At the same time, EPS2-1 could inhibit the proliferation of MFC cells and increase the cell viability of RAW264.7 cells. Our results suggested that EPS2-1 is a novel polysaccharide, and EPS2-1 has antioxidant activity. In addition, EPS2-1 may possess potential immunomodulatory and antitumor activities. This study promoted the application of EPS2-1 as the functional ingredients in the pharmaceutical and food industries.
Collapse
|
7
|
Wang Y, Chen R, Yang Z, Wen Q, Cao X, Zhao N, Yan J. Protective Effects of Polysaccharides in Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:917629. [PMID: 35860666 PMCID: PMC9289469 DOI: 10.3389/fnagi.2022.917629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/02/2022] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by progressive degeneration and necrosis of neurons, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease and others. There are no existing therapies that correct the progression of these diseases, and current therapies provide merely symptomatic relief. The use of polysaccharides has received significant attention due to extensive biological activities and application prospects. Previous studies suggest that the polysaccharides as a candidate participate in neuronal protection and protect against NDs. In this review, we demonstrate that various polysaccharides mediate NDs, and share several common mechanisms characterized by autophagy, apoptosis, neuroinflammation, oxidative stress, mitochondrial dysfunction in PD and AD. Furthermore, this review reveals potential role of polysaccharides in vitro and in vivo models of NDs, and highlights the contributions of polysaccharides and prospects of their mechanism studies for the treatment of NDs. Finally, we suggest some remaining questions for the field and areas for new development.
Collapse
Affiliation(s)
- Yinying Wang
- The Central Laboratory of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Rongsha Chen
- The Central Laboratory of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Zhongshan Yang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sino Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Qian Wen
- The Neurosurgery Department of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xia Cao
- The Central Laboratory of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Ninghui Zhao
- The Neurosurgery Department of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Jinyuan Yan
- The Central Laboratory of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|