1
|
Unabia RB, Reazo RLD, Rivera RBP, Lapening MA, Omping JL, Lumod RM, Ruda AG, Sayson NLB, Dumancas G, Malaluan RM, Lubguban AA, Petalcorin GC, Capangpangan RY, Latayada FS, Alguno AC. Dopamine-Functionalized Gold Nanoparticles for Colorimetric Detection of Histamine. ACS OMEGA 2024; 9:17238-17246. [PMID: 38645311 PMCID: PMC11025080 DOI: 10.1021/acsomega.3c10123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/15/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Histamine, a primary biogenic amine (BA) generated through the decarboxylation of amino acids, concentration increases in protein-rich foods during deterioration. Thus, its detection plays a crucial role in ensuring food safety and quality. This study introduces an innovative approach involving the direct integration of dopamine onto gold nanoparticles (DCt-AuNP), aiming at rapid histamine colorimetric detection. Transmission electron microscopy revealed the aggregation of uniformly distributed spherical DCt-AuNPs with 12.02 ± 2.53 nm sizes upon the addition of histamine to DCt-AuNP solution. The Fourier-transform infrared (FTIR) spectra demonstrated the disappearance of the dicarboxy acetone peak at 1710 cm-1 along with the formation of well-defined peaks at 1585 cm-1, and 1396 cm-1 associated with the N-H bending modes and the aromatic C=C bond stretching vibration in histamine molecule, respectively, confirming the ligand exchange and interactions of histamine on the surface of DCt-AuNPs. The UV-vis spectra of the DCt-AuNP solution exhibited a red shift and a reduction in surface plasmon resonance (SPR) peak intensity at 518 nm along with the emergence of the 650 nm peak, signifying aggregation DCt-AuNPs with increasing histamine concentration. Notably, color transitions from wine-red to deep blue were observed in the DCt-AuNP solution in response to histamine, providing a reliable colorimetric signal. Dynamic Light Scattering (DLS) characterization showed a significant increase in the hydrodynamic diameter, from ∼15 to ∼1690 nm, confirming the interparticle cross-linking of DCt-AuNPs in the presence of histamine. This newly developed DCt-AuNP sensor provides colorimetric results in less than a minute that exhibits a remarkable naked-eye histamine detection threshold of 1.57 μM and a calculated detection limit of 0.426 μM, making it a promising tool for the rapid and sensitive detection of histamine.
Collapse
Affiliation(s)
- Romnick B. Unabia
- Research Center
on Energy Efficient Materials (RCEEM), Premier Research Institute
in Science and Mathematics (PRISM), Mindanao
State University − Iligan Institute of Technology, A. Bonifacio Avenue, Iligan City 9200, Philippines
| | - Renzo Luis D. Reazo
- Research Center
on Energy Efficient Materials (RCEEM), Premier Research Institute
in Science and Mathematics (PRISM), Mindanao
State University − Iligan Institute of Technology, A. Bonifacio Avenue, Iligan City 9200, Philippines
| | - Rolen Brian P. Rivera
- Research Center
on Energy Efficient Materials (RCEEM), Premier Research Institute
in Science and Mathematics (PRISM), Mindanao
State University − Iligan Institute of Technology, A. Bonifacio Avenue, Iligan City 9200, Philippines
| | - Melbagrace A. Lapening
- Research Center
on Energy Efficient Materials (RCEEM), Premier Research Institute
in Science and Mathematics (PRISM), Mindanao
State University − Iligan Institute of Technology, A. Bonifacio Avenue, Iligan City 9200, Philippines
| | - Jahor L. Omping
- Research Center
on Energy Efficient Materials (RCEEM), Premier Research Institute
in Science and Mathematics (PRISM), Mindanao
State University − Iligan Institute of Technology, A. Bonifacio Avenue, Iligan City 9200, Philippines
| | - Ryan M. Lumod
- Research Center
on Energy Efficient Materials (RCEEM), Premier Research Institute
in Science and Mathematics (PRISM), Mindanao
State University − Iligan Institute of Technology, A. Bonifacio Avenue, Iligan City 9200, Philippines
| | - Archie G. Ruda
- Research Center
on Energy Efficient Materials (RCEEM), Premier Research Institute
in Science and Mathematics (PRISM), Mindanao
State University − Iligan Institute of Technology, A. Bonifacio Avenue, Iligan City 9200, Philippines
| | - Noel Lito B. Sayson
- Research Center
on Energy Efficient Materials (RCEEM), Premier Research Institute
in Science and Mathematics (PRISM), Mindanao
State University − Iligan Institute of Technology, A. Bonifacio Avenue, Iligan City 9200, Philippines
| | - Gerard Dumancas
- Department of Chemistry, Loyola Science
Center, The University of Scranton, Scranton, Pennsylvania 18510, United States
| | - Roberto M. Malaluan
- Center for Sustainable Polymers, MSU-Iligan
Institute of Technology, Iligan
City 9200, Philippines
| | - Arnold A. Lubguban
- Center for Sustainable Polymers, MSU-Iligan
Institute of Technology, Iligan
City 9200, Philippines
| | - Gaudencio C. Petalcorin
- Department of Mathematics and Statistics, Mindanao State University-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Rey Y. Capangpangan
- Mindanao State
University at Naawan Campus, Naawan
Misamis Oriental 9023, Philippines
| | - Felmer S. Latayada
- Caraga State University-Main Campus, Ampayon, Butuan City 8600, Philippines
| | - Arnold C. Alguno
- Research Center
on Energy Efficient Materials (RCEEM), Premier Research Institute
in Science and Mathematics (PRISM), Mindanao
State University − Iligan Institute of Technology, A. Bonifacio Avenue, Iligan City 9200, Philippines
| |
Collapse
|
2
|
Abré MG, Kouakou-Kouamé CA, N'guessan FK, Teyssier C, Montet D. Occurrence of biogenic amines and their correlation with bacterial communities in the Ivorian traditional fermented fish adjuevan during the storage. Folia Microbiol (Praha) 2022; 68:257-275. [PMID: 36264452 DOI: 10.1007/s12223-022-01010-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022]
Abstract
Adjuevan is an Ivorian traditional fermented fish used as a condiment. However, the fermentation process and storage conditions may lead to the production of biogenic amines (BA) which can induce severe human toxicological effects. Thus, this study aimed to reveal the bacterial community diversity and the BA contents during the storage. Samples of adjuevan from the fish species Chloroscombrus chrysurus, Galeoides decadactylus, and Thunnus thynnus were collected from local producers, stored at ambient temperature (28-30 °C) and in a refrigerator (4 °C) over a period of 8 weeks. At 2-week intervals, BA were determined by HPLC and the bacterial communities analyzed using high-throughput sequencing (NGS) of the V3-V4 region of the 16S rRNA gene. Results showed that histamine, cadaverine, putrescine, and tyramine were the major compounds. In adjuevan from T. thynnus, the level of histamine was over the maximum level of 200 mg/kg determined by Codex Alimentarius. For the other amines, no safety concerns are related. In total, 21 bacterial genera with a relative abundance ≥ 1% and belonging to 14 families and 5 phyla were detected. The Bacillaceae family was the most found at ambient temperature while Staphylococcaceae and Enterococcaceae were the most abundant in a refrigerator. The analysis of correlation showed that the increase of Lentibacillus leads to a decrease of the major BA at ambient temperature. On the contrary, the increase of Staphylococcus, Lactobacillus, Psychrobacter, Peptostreptococcus, and Fusobacterium leads to an increase of these biogenic compounds. Thus, Lentibacillus acted as BA-oxidizing bacteria while the others were found as BA-producing bacteria during adjuevan storage.
Collapse
Affiliation(s)
- Marina Ghislaine Abré
- Laboratoire de Biotechnologie Et Microbiologie Des Aliments, Unité de Formation Et de Recherche en Sciences Et Technologie Des Aliments (UFR-STA), Université Nangui Abrogoua, Abidjan 02, 02 BP 801, Ivory Coast.
- UMR 95 QualiSud, Centre de Coopération Internationale en Recherche Agronomique Pour Le Développement (CIRAD), Université de Montpellier, Avignon Université, Institut Agro, IRD, Université de La Réunion, Montpellier Cedex 5, 34398, France.
| | - Clémentine Amenan Kouakou-Kouamé
- Laboratoire de Biotechnologie Et Microbiologie Des Aliments, Unité de Formation Et de Recherche en Sciences Et Technologie Des Aliments (UFR-STA), Université Nangui Abrogoua, Abidjan 02, 02 BP 801, Ivory Coast
| | - Florent Kouadio N'guessan
- Laboratoire de Biotechnologie Et Microbiologie Des Aliments, Unité de Formation Et de Recherche en Sciences Et Technologie Des Aliments (UFR-STA), Université Nangui Abrogoua, Abidjan 02, 02 BP 801, Ivory Coast
| | - Corinne Teyssier
- UMR 95 QualiSud, Centre de Coopération Internationale en Recherche Agronomique Pour Le Développement (CIRAD), Université de Montpellier, Avignon Université, Institut Agro, IRD, Université de La Réunion, Montpellier Cedex 5, 34398, France
| | - Didier Montet
- UMR 95 QualiSud, Centre de Coopération Internationale en Recherche Agronomique Pour Le Développement (CIRAD), Université de Montpellier, Avignon Université, Institut Agro, IRD, Université de La Réunion, Montpellier Cedex 5, 34398, France
| |
Collapse
|
3
|
Wang L, Xin S, Zhang C, Ran X, Tang H, Cao D. Development of a novel chromophore reaction-based fluorescent probe for biogenic amines detection. J Mater Chem B 2021; 9:9383-9394. [PMID: 34729573 DOI: 10.1039/d1tb01791h] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biogenic amines (BAs) are important biomarkers to monitor meat spoilage. However, the design of efficient BA fluorescent probes with distinct colorimetric and ratiometric fluorescent dual-channels is still a critical challenge because of similar chemical properties and basicity between BAs and other amines. Herein, pyrrolopyrrole cyanine (PPCy-1) is reported to display distinctly high reactivity toward BAs through an ultrasensitive irreversible chromophore reaction for the first time. The reaction mechanism is ascribed to synergistic aza-Michael addition and B-N detachment, followed by hydrolysis to produce low-conjugated diketopyrrolopyrrole and heteroaromatic acetonitrile compounds. As a result, colorimetric and ratiometric fluorescent dual-channel (Δλab = 188 nm and Δλem = 151 nm) signals and a limit of detection up to 62.1 nM level for BA solution are acquired. In addition, the colorimetric detection of volatile amine vapor using the PPCy-1-loaded filter paper, showing a color change from green to yellow, is feasible. A simple and cost-effective fluorescence "turn on" method using the filter paper or the CAD-40 resin loaded with PPCy-1 to detect TVB (total volatile bases) originating from shrimp spoilage is further demonstrated.
Collapse
Affiliation(s)
- Lingyun Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Shuqi Xin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Chufeng Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Xueguang Ran
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510641, China.
| | - Hao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Derong Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| |
Collapse
|
4
|
Wójcik W, Łukasiewicz M, Puppel K. Biogenic amines: formation, action and toxicity - a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2634-2640. [PMID: 33159318 DOI: 10.1002/jsfa.10928] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/25/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Biogenic amines (BA) are organic compounds commonly found in food, plants and animals, as well as microorganisms that are attributed with the production of BAs. They are formed as an effect of a chemical process: the decarboxylation of amino acids. Factors determining the formation of BAs include the availability of free amino acids and the presence of microorganisms that show activity with respect to carrying out the decarboxylation process. On the one hand, BAs are compounds that are crucial for maintaining cell viability, as well as the proper course of the organism's metabolic processes, such as protein synthesis, hormone synthesis and DNA replication. On the other hand, despite their positive effects on the functioning of the organism, an excessive content of BAs proves to be toxic (diarrhea, food poisoning, vomiting, sweating or tachycardia). Moreover, they can accelerate carcinogenesis. Amines are a natural component of plant and animal raw materials. As a result of the proven negative effects of amines on living organisms, the reduction of these compounds should be the subject of scientific research. The present review aims to synthesize and summarize the information currently available on BAs, as well as discuss the interpretation of the results. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wojciech Wójcik
- Institute of Animal Science, Warsaw University of Life Sciences, Warsaw, Poland
| | - Monika Łukasiewicz
- Institute of Animal Science, Warsaw University of Life Sciences, Warsaw, Poland
| | - Kamila Puppel
- Institute of Animal Science, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Bekhit AEDA, Holman BW, Giteru SG, Hopkins DL. Total volatile basic nitrogen (TVB-N) and its role in meat spoilage: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|