1
|
Li Y, Chen X, Wu L, Huang Z, Xu S, Hong X, Lai J, Qiu S, Zheng X. Impact of the radiotherapy rhythm on prognosis in nasopharyngeal carcinoma. Ann Med 2024; 56:2407061. [PMID: 39310946 PMCID: PMC11421160 DOI: 10.1080/07853890.2024.2407061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024] Open
Abstract
OBJECTIVE The role of chronoradiobiology in nasopharyngeal carcinoma (NPC) has not been fully elucidated. We sought to investigate the impact of radiotherapy rhythm on the survival outcomes of individuals to explore a chronomodulated radiation strategy to improve prognosis of NPC. METHODS A cohort comprising non-metastatic NPC patients subjected to intensity-modulated radiotherapy at Fujian Cancer Hospital between Jan. 2016 and Dec. 2019 was assembled. Rhythmic fluctuation of radiotherapy (RFRT) was quantified based on the temporal distribution of radiation delivery. Cox proportional hazard model was performed to explore the impact of radiotherapy rhythm on all-cause mortality. The maximally selected rank statistics method was employed to discern an optimal cutoff. Sensitivity analyses were conducted to ensure the robustness of observed associations. RESULTS Our analysis encompassed 2245 patients, with a median follow-up duration of 55 months, during which 315 individuals succumbed. Multivariate Cox regression analysis unveiled a significant correlation between prolonged RFRT and heightened mortality risk in NPC patients (HR, 1.17, 95% CI, 1.07-1.27, p < .001), a relationship robust to comprehensive adjustment for confounding variables. A cutoff value of 3 h was selected for potential clinical application, beyond which patients exhibited markedly poorer survival outcomes. Subgroup analyses consistently underscored the directional consistency of observed effects. CONCLUSION Our study sheds light on the potential advantages of scheduling radiotherapy sessions at consistent times. These findings have implications for optimizing radiotherapy schedules and warrant further investigation into personalized chronotherapy approaches in NPC management.
Collapse
Affiliation(s)
- Ying Li
- Radiation Oncology Department, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
| | - Xiaochuan Chen
- Radiation Oncology Department, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
| | - Lishui Wu
- Radiation Oncology Department, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
| | - Zongwei Huang
- Radiation Oncology Department, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
| | - Siqi Xu
- Radiation Oncology Department, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
| | - Xinyi Hong
- Radiation Oncology Department, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
| | - Jinghua Lai
- Radiation Oncology Department, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
| | - Sufang Qiu
- Radiation Oncology Department, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou, Fujian, China
| | - Xiong Zheng
- Radiation Oncology Department, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
| |
Collapse
|
2
|
Duan JL, Liu JJ, Ruan B, Ding J, Fang ZQ, Xu H, Song P, Xu C, Li ZW, Du W, Xu M, Ling YW, He F, Wang L. Age-related liver endothelial zonation triggers steatohepatitis by inactivating pericentral endothelium-derived C-kit. NATURE AGING 2023; 3:258-274. [PMID: 37118422 DOI: 10.1038/s43587-022-00348-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/02/2022] [Indexed: 04/30/2023]
Abstract
Aging leads to systemic metabolic disorders, including steatosis. Here we show that liver sinusoidal endothelial cell (LSEC) senescence accelerates liver sinusoid capillarization and promotes steatosis by reprogramming liver endothelial zonation and inactivating pericentral endothelium-derived C-kit, which is a type III receptor tyrosine kinase. Specifically, inhibition of endothelial C-kit triggers cellular senescence, perturbing LSEC homeostasis in male mice. During diet-induced nonalcoholic steatohepatitis (NASH) development, Kit deletion worsens hepatic steatosis and exacerbates NASH-associated fibrosis and inflammation. Mechanistically, C-kit transcriptionally inhibits chemokine (C-X-C motif) receptor (CXCR)4 via CCAAT enhancer-binding protein α (CEBPA). Blocking CXCR4 signaling abolishes LSEC-macrophage-neutrophil cross-talk and leads to the recovery of C-kit-deficient mice with NASH. Of therapeutic relevance, infusing C-kit-expressing LSECs into aged mice or mice with diet-induced NASH counteracts age-associated senescence and steatosis and improves the symptoms of diet-induced NASH by restoring metabolic homeostasis of the pericentral liver endothelium. Our work provides an alternative approach that could be useful for treating aging- and diet-induced NASH.
Collapse
Affiliation(s)
- Juan-Li Duan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing-Jing Liu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bai Ruan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
- Center of Clinical Aerospace Medicine and Department of Aviation Medicine, Fourth Military Medical University, Xi'an, China
| | - Jian Ding
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhi-Qiang Fang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hao Xu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ping Song
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chen Xu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhi-Wen Li
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Du
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ming Xu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Wei Ling
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fei He
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
3
|
H. Sahraei MS, Meftahi GH, Sahraei H. Covid-19 pandemic quarantine and social jetlag. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
4
|
Suchard MS, Adu-Gyamfi CG, Cumming BM, Savulescu DM. Evolutionary Views of Tuberculosis: Indoleamine 2,3-Dioxygenase Catalyzed Nicotinamide Synthesis Reflects Shifts in Macrophage Metabolism: Indoleamine 2,3-Dioxygenase Reflects Altered Macrophage Metabolism During Tuberculosis Pathogenesis. Bioessays 2021; 42:e1900220. [PMID: 32301149 DOI: 10.1002/bies.201900220] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/13/2020] [Indexed: 12/15/2022]
Abstract
Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme in conversion of tryptophan to kynurenines, feeding de novo nicotinamide synthesis. IDO orchestrates materno-foetal tolerance, increasing human reproductive fitness. IDO mediates immune suppression through depletion of tryptophan required by T lymphocytes and other mechanisms. IDO is expressed by alternatively activated macrophages, suspected to play a key role in tuberculosis (TB) pathogenesis. Unlike its human host, Mycobacterium tuberculosis can synthesize tryptophan, suggesting possible benefit to the host from infection with the microbe. Intriguingly, nicotinamide analogues are used to treat TB. In reviewing this field, it is postulated that flux through the nicotinamide synthesis pathway reflects switching between aerobic glycolysis and oxidative phosphorylation in M. tuberculosis-infected macrophages. The evolutionary cause of such shifts may be ancient mitochondrial behavior related to reproductive fitness. Evolutionary perspectives on the IDO pathway may elucidate why, after centuries of co-existence with the Tubercle bacillus, humans still remain susceptible to TB disease.
Collapse
Affiliation(s)
- Melinda S Suchard
- Centre for Vaccines and Immunology, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, 2192, South Africa.,Chemical Pathology, School of Pathology, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Clement G Adu-Gyamfi
- Centre for Vaccines and Immunology, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, 2192, South Africa.,Chemical Pathology, School of Pathology, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | | | - Dana M Savulescu
- Centre for Vaccines and Immunology, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, 2192, South Africa
| |
Collapse
|
5
|
Barbosa Vieira TK, Jurema da Rocha Leão M, Pereira LX, Alves da Silva LC, Pereira da Paz BB, Santos Ferreira RJ, Feitoza CC, Fernandes Duarte AK, Barros Ferreira Rodrigues AK, Cavalcanti de Queiroz A, Fireman de Farias K, Del Vechio Koike B, de Sales Marques C, Alberto de Carvalho Fraga C. Correlation between circadian rhythm related genes, type 2 diabetes, and cancer: Insights from metanalysis of transcriptomics data. Mol Cell Endocrinol 2021; 526:111214. [PMID: 33610641 DOI: 10.1016/j.mce.2021.111214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/23/2022]
Abstract
Clock genes work as an auto-regulated transcription-translational loop of circadian genes that drives the circadian rhythms in each cell and they are essential to physiological requests. Since metabolism is a dynamic process, it involves several physiological variables that circadian cycling. The clock genes alterations can affect multiple systems concomitantly, because they constitute the promoter factors for relevant metabolic pathways. Considering the intertwined structure of signaling, regulatory, and metabolic processes within a cell, we employed a genome-scale biomolecular network. Accordingly, a meta-analysis of diabetic-associated transcriptomic datasets was performed, and the core information on differentially expressed genes (DEGs) was obtained by statistical analyses. In the current study, meta-analysis was performed on type 2 diabetes, circadian rhythm-related genes, and breast, bladder, liver, pancreas, colon and rectum cancer-associated transcriptome data using the integration of gene expression profiles with genome-scale biomolecular networks in diabetes samples. First, we detected downregulated and upregulated DEGs in mouse cortex and hypothalamus samples of mice with sleep deprivation. In summary, upregulated genes active genes associated with oxidative phosphorylation, cancer and diabetes, mainly in hypothalamus specimens. In cortex, we observed mainly downregulation of immune system. DEGs were combined with 214 circadian rhythm related genes to type 2 DM and cancer samples. We observed that several common genes deregulated in both diseases. Klf10, Ntkr3, Igf1, Usp2, Ezh2 were both downregulated in type 2 DM and cancer samples, while Arntl2 and Agrp were upregulated. It seems that the changes in mRNA are contributing to the phenotypic changes in type 2 DM, resulting in phenotypic changes associated with the malignant transformation. Taking those genes to perform a survival analysis, we found only Igf1, Usp2 and Arntl2 genes associated with patient outcomes. While Igf1 and Usp2 downregulation had a negative impact, Arntl2 upregulation was associated with poor survival both in BLCA and BRCA cancer samples. Our data stimulate efforts in news studies to achieve the experimental and clinical validation about these biomolecules.
Collapse
Affiliation(s)
- Thaysa Kelly Barbosa Vieira
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Myra Jurema da Rocha Leão
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Luciana Xavier Pereira
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | | | - Bruno Batista Pereira da Paz
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Ricardo Jansen Santos Ferreira
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Christiane Cavalcante Feitoza
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Ana Kelly Fernandes Duarte
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | | | - Aline Cavalcanti de Queiroz
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Karol Fireman de Farias
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Bruna Del Vechio Koike
- Federal University of the São Francisco Valley, Petrolina. Av. José de Sá Maniçoba, S/N - Centro, Petrolina, PE, 56304-917, Brazil
| | - Carolinne de Sales Marques
- Federal University of Alagoas, Campus Arapiraca. Av. Manoel Severino Barbosa, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | | |
Collapse
|
6
|
The influence of circadian rhythms and aerobic glycolysis in autism spectrum disorder. Transl Psychiatry 2020; 10:400. [PMID: 33199680 PMCID: PMC7669888 DOI: 10.1038/s41398-020-01086-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Intellectual abilities and their clinical presentations are extremely heterogeneous in autism spectrum disorder (ASD). The main causes of ASD remain unclear. ASD is frequently associated with sleep disorders. Biologic rhythms are complex systems interacting with the environment and controlling several physiological pathways, including brain development and behavioral processes. Recent findings have shown that the deregulation of the core clock neurodevelopmental signaling is correlated with ASD clinical presentation. One of the main pathways involved in developmental cognitive disorders is the canonical WNT/β-catenin pathway. Circadian clocks have a main role in some tissues by driving circadian expression of genes involved in physiologic and metabolic functions. In ASD, the increase of the canonical WNT/β-catenin pathway is enhancing by the dysregulation of circadian rhythms. ASD progression is associated with a major metabolic reprogramming, initiated by aberrant WNT/β-catenin pathway, the aerobic glycolysis. This review focuses on the interest of circadian rhythms dysregulation in metabolic reprogramming in ASD through the aberrant upregulation of the canonical WNT/β-catenin pathway.
Collapse
|
7
|
Guo D, Zhu Y, Wang H, Wang G, Wang C, Ren H. E3 ubiquitin ligase HRD1 modulates the circadian clock through regulation of BMAL1 stability. Exp Ther Med 2020; 20:2639-2648. [PMID: 32765757 PMCID: PMC7401958 DOI: 10.3892/etm.2020.8988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/29/2020] [Indexed: 12/20/2022] Open
Abstract
Circadian rhythm serves an essential role in numerous physiological functions. Circadian oscillations are organized by circadian clock components at the molecular level. The precision of the circadian clock is controlled by transcriptional-translational negative feedback loops, as well as post-translational modifications of clock proteins, including ubiquitination; however, the influence of E3 ligases on clock protein ubiquitination requires further investigation. The results of co-immunoprecipitation and immunofluorescent localization, indicated that the endoplasmic reticulum transmembrane E3 ubiquitin ligase HRD1, encoded by the synoviolin 1 gene, interacted with brain and muscle ARNT-like 1 (BMAL1) and enhanced BMAL1 protein ubiquitination. In addition, the results of western blotting and reverse transcription-quantitative PCR suggested that HRD1 promoted K48-associated polyubiquitination of BMAL1 and thus mediated its degradation via the ubiquitin-proteasome system. Furthermore, gene knockdown and gene overexpression assays revealed that HRD1-dependent degradation of BMAL1 protein regulated the expression of BMAL1 target genes and the amplitude of circadian oscillations in mammalian cells. The findings of the current study indicate that HRD1 may influence the regulation of circadian rhythm via modulation of BMAL1 stability.
Collapse
Affiliation(s)
- Dongkai Guo
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Yao Zhu
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Hongfeng Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Cheng Wang
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Haigang Ren
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China.,Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
8
|
Ye B, Zhu Y, Wang X, Wei S, Liang Y. Association between sleep-wake habits and use of health care services of middle-aged and elderly adults in China. Aging (Albany NY) 2020; 12:3926-3935. [PMID: 32092045 PMCID: PMC7066913 DOI: 10.18632/aging.102860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/04/2020] [Indexed: 05/07/2023]
Abstract
OBJECTIVE To examine the relationship between sleep-wake habits and the use of health care services. RESULTS The proportions of the participants who were "early to bed" and "late to bed" were 48.7% and 51.3%, respectively. In the full sample, compared with those who were early to bed and early to rise, participants who went to bed late were more likely to report physician visits (late to bed and early to rise: OR = 1.13, 95% CI: 1.08-1.19, late to bed and late to rise: OR = 1.27, 95% CI: 1.18-1.38, respectively). We found no significant association between sleep-wake habits and the number of hospitalization. CONCLUSIONS Those middle-aged and elderly people who stayed up late and got up late are more likely to visit the doctors than those who went to bed early and got up early. METHODS We obtained data from a cohort study of retired employees in China, and 36,601 (95.59%) involved in the present study. The participants were allocated into 4 sleep-wake habits groups: Early-bed/Early-rise, Early-bed/Late-rise, Late-bed/Early-rise, and Late-bed/Late-rise. We explored the association between sleep-wake habits with the number of physician visits and hospitalizations.
Collapse
Affiliation(s)
- Beizhu Ye
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yimei Zhu
- School of Media, Communication and Sociology, University of Leicester, Leicester LE1 7JA, UK
| | - Xiaoyu Wang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Sheng Wei
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuan Liang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
9
|
Vallée A, Lecarpentier Y, Vallée R, Guillevin R, Vallée JN. Circadian Rhythms in Exudative Age-Related Macular Degeneration: The Key Role of the Canonical WNT/β-Catenin Pathway. Int J Mol Sci 2020; 21:ijms21030820. [PMID: 32012797 PMCID: PMC7037737 DOI: 10.3390/ijms21030820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Abstract
Age-related macular degeneration (AMD) is considered as the main worldwide cause of blindness in elderly adults. Exudative AMD type represents 10 to 15% of macular degeneration cases, but is the main cause of vision loss and blindness. Circadian rhythm changes are associated with aging and could further accelerate it. However, the link between circadian rhythms and exudative AMD is not fully understood. Some evidence suggests that dysregulation of circadian functions could be manifestations of diseases or could be risk factors for the development of disease in elderly adults. Biological rhythms are complex systems interacting with the environment and control several physiological pathways. Recent findings have shown that the dysregulation of circadian rhythms is correlated with exudative AMD. One of the main pathways involved in exudative AMD is the canonical WNT/β-catenin pathway. Circadian clocks have a main role in some tissues by driving the circadian expression of genes involved in physiological and metabolic functions. In exudative AMD, the increase of the canonical WNT/β-catenin pathway is enhanced by the dysregulation of circadian rhythms. Exudative AMD progression is associated with major metabolic reprogramming, initiated by aberrant WNT/β-catenin pathway, of aerobic glycolysis. This review focuses on the interest of circadian rhythm dysregulation in exudative AMD through the aberrant upregulation of the canonical WNT/β-catenin pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- DACTIM-MIS, Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, CHU de Poitiers, 86021 Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 77100 Meaux, France
| | - Rodolphe Vallée
- University Hospital Group of Paris-Seine-Saint-Denis, APHP, University of Paris-13 Sorbonne Paris-Cité, 93000 Paris, France
| | - Rémy Guillevin
- DACTIM-MIS, Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, CHU de Poitiers, 86021 Poitiers, France
| | - Jean-Noël Vallée
- CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), 80000 Amiens, France
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, 86021 Poitiers, France
| |
Collapse
|
10
|
Beker MC, Caglayan B, Caglayan AB, Kelestemur T, Yalcin E, Caglayan A, Kilic U, Baykal AT, Reiter RJ, Kilic E. Interaction of melatonin and Bmal1 in the regulation of PI3K/AKT pathway components and cellular survival. Sci Rep 2019; 9:19082. [PMID: 31836786 PMCID: PMC6910929 DOI: 10.1038/s41598-019-55663-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023] Open
Abstract
The circadian rhythm is driven by a master clock within the suprachiasmatic nucleus which regulates the rhythmic secretion of melatonin. Bmal1 coordinates the rhythmic expression of transcriptome and regulates biological activities, involved in cell metabolism and aging. However, the role of Bmal1 in cellular- survival, signaling, its interaction with intracellular proteins, and how melatonin regulates its expression is largely unclear. Here we observed that melatonin increases the expression of Bmal1 and both melatonin and Bmal1 increase cellular survival after oxygen glucose deprivation (OGD) while the inhibition of Bmal1 resulted in the decreased cellular survival without affecting neuroprotective effects of melatonin. By using a planar surface immunoassay for PI3K/AKT signaling pathway components, we revealed that both melatonin and Bmal1 increased phosphorylation of AKT, ERK-1/2, PDK1, mTOR, PTEN, GSK-3αβ, and p70S6K. In contrast, inhibition of Bmal1 resulted in decreased phosphorylation of these proteins, which the effect of melatonin on these signaling molecules was not affected by the absence of Bmal1. Besides, the inhibition of PI3K/AKT decreased Bmal1 expression and the effect of melatonin on Bmal1 after both OGD in vitro and focal cerebral ischemia in vivo. Our data demonstrate that melatonin controls the expression of Bmal1 via PI3K/AKT signaling, and Bmal1 plays critical roles in cellular survival via activation of survival kinases.
Collapse
Affiliation(s)
- Mustafa C Beker
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, 34810, Istanbul, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Berrak Caglayan
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, 34810, Istanbul, Turkey
- Department of Medical Biology, International School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Ahmet B Caglayan
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, 34810, Istanbul, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Taha Kelestemur
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, 34810, Istanbul, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Esra Yalcin
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, 34810, Istanbul, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Aysun Caglayan
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, 34810, Istanbul, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Ulkan Kilic
- Department of Medical Biology, School of Medicine, University of Health Sciences, 34668, Istanbul, Turkey
| | - Ahmet T Baykal
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752, Istanbul, Turkey
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, 78229, Texas, USA
| | - Ertugrul Kilic
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, 34810, Istanbul, Turkey.
- Department of Physiology, School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey.
| |
Collapse
|
11
|
Xie Y, Tian R, Jin W, Xie H, Du J, Zhou Z, Wang R. Antithrombin III expression predicts acute kidney injury in elderly patients with sepsis. Exp Ther Med 2019; 19:1024-1032. [PMID: 32010265 PMCID: PMC6966107 DOI: 10.3892/etm.2019.8305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/18/2019] [Indexed: 01/02/2023] Open
Abstract
Elderly people represent the age group most frequently affected by acute kidney injury (AKI). The potential of Antithrombin III (ATIII) level for predicting AKI among elderly patients with sepsis is yet to be elucidated. Therefore, the purpose of the present study was to evaluate the ability of ATIII to predict AKI nondevelopment and prognosis in elderly patients with sepsis, in an intensive care unit (ICU). The present study was retrospective and included 107 elderly patients with sepsis who had been admitted to ICUs between October 2015 and March 2018. An assessment of renal function was performed daily by measuring serum creatinine (Cr) level and urine output, and ATIII level was obtained within 48 h of sepsis diagnosis. Among all enrolled patients, 29 (27.1%) developed AKI. ATIII expression was a predictor of AKI nondevelopment [Area under the curve (AUC)-Receiving operator characteristic (ROC)=0.729; sensitivity, 0.700; specificity, 0.714], and the ATIII/Creatine ratio was also a predictor of AKI nondevelopment (AUC-ROC=0.971; sensitivity, 0.900; specificity, 1). The accuracy of ATIII (AUC-ROC=0.681; sensitivity, 0.802; specificity, 0.542) and ATIII/Cr (AUC-ROC=0.804; sensitivity, 0.596; specificity, 0.875) in predicting survival was intermediate. However, the ATIII serum level was able to accurately predict AKI nondevelopment in elderly patients with sepsis, who were admitted to ICUs. Patients were divided into low- and high-ATIII groups using either 66.95% or 55.7% as cut-off values, both of which were used for further analysis. By comparison, the ICU stay was significantly lower in the high-ATIII group [P=0.020 (69.95%) and 0.049 (55.7%)] and off mechanical ventilation time, off continuous renal replacement therapy time and survival time were significantly higher in the high ATIII group [P=0.049, 0.048, and 0.014, respectively (66.95%); and P=0.041, 0.036, and 0.021, respectively (55.7%)]. The current study indicated that ATIII serum level predicts AKI in elderly patients with sepsis, and that low ATIII levels predicted a poorer prognosis.
Collapse
Affiliation(s)
- Yun Xie
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Songjiang, Shanghai 201600, P.R. China
| | - Rui Tian
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Songjiang, Shanghai 201600, P.R. China
| | - Wei Jin
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Songjiang, Shanghai 201600, P.R. China
| | - Hui Xie
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Songjiang, Shanghai 201600, P.R. China
| | - Jiang Du
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Songjiang, Shanghai 201600, P.R. China
| | - Zhigang Zhou
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Songjiang, Shanghai 201600, P.R. China
| | - Ruilan Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Songjiang, Shanghai 201600, P.R. China
| |
Collapse
|
12
|
Qian YX, Liu JH, Ma QH, Sun HP, Xu Y, Pan CW. Associations of sleep durations and sleep-related parameters with metabolic syndrome among older Chinese adults. Endocrine 2019; 66:240-248. [PMID: 31473919 DOI: 10.1007/s12020-019-02064-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE There is a lack of data on the role of sleep in the development of metabolic syndrome (MetS) in older adults. We aimed to examine the associations of sleep durations at night and other sleep-related parameters with the presence of MetS in older Chinese adults. METHODS Data of 4579 individuals aged 60 years or older from the Weitang Geriatric Disease Study were analyzed. MetS was diagnosed based on the Adult Treatment Panel III (ATP III) criteria. Information regarding sleep durations and other sleep-related parameters was collected by questionnaires. RESULTS Compared with those with daytime napping, individuals without daytime napping were at an increased risk of MetS (odds ratio [OR] = 1.23; 95% confidence interval [CI] = 1.03-1.47). Each hour increase in daytime napping increased the risk of MetS by 33% (OR = 1.33; 95% CI = 1.15-1.52). After adjusting for the effect of age and gender, a J-shaped association between sleep durations at night and the presence of MetS was observed. The risk of MetS was lowest among those who slept 7-8 h at night. Gender-stratified analysis indicated that the J-shaped relationship between sleep durations at night and MetS remained significant in men but not in women. CONCLUSIONS In older Chinese adults, sleep durations at night might have a dual effect on the risk of MetS and this effect was particularly pronounced in men. The results indicated that circadian rhythm might play an important role in the development of MetS in older populations.
Collapse
Affiliation(s)
- Yu-Xi Qian
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jing-Hong Liu
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Qing-Hua Ma
- The 3rd People's Hospital of Xiangcheng District, Suzhou, China
| | - Hong-Peng Sun
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yong Xu
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Chen-Wei Pan
- School of Public Health, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
13
|
Wang BZ, Yang JJ, Zhang H, Smith CA, Jin K. AMPK Signaling Regulates the Age-Related Decline of Hippocampal Neurogenesis. Aging Dis 2019; 10:1058-1074. [PMID: 31595203 PMCID: PMC6764723 DOI: 10.14336/ad.2019.0102] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/02/2019] [Indexed: 12/25/2022] Open
Abstract
The global incidence of age-associated neurological diseases is expected to rise with increasingly greying societies. In the aged brain, there is a dramatic decrease in the number of stem cells, which is a main cause for the decrease in brain function. Intrinsic factors, such as cell metabolism, have been studied but its role in neurogenesis is still unknown. Therefore, this study sought to establish whether AMP-activated protein kinase (AMPK) signaling does indeed regulate hippocampal neurogenesis in the aged brain. We found that i) AMPKα2 was the predominant catalytic subunit in the subgranular and subventricular zones; ii) AMPK activation was at a significantly higher level in the aged vs. young hippocampus; iii) short term (7 days) treatment with selective AMPK signaling inhibitor Compound C (10 mg/kg/day, i.p.) significantly increased the numbers of newborn (BrdU+), Type 2 (MCM2+), and Type 3 (DCX+) neural stem cells, but not Type 1 (GFAP+/Sox2+) cells, in the aged hippocampus. Taken together, our results demonstrate that AMPK signaling plays a critical role in the age-related decline of hippocampal neurogenesis.
Collapse
Affiliation(s)
- Brian Z Wang
- Department of Pharmacology & Neuroscience, UNT Health Science Center, TX 76107, USA
| | - Jane J Yang
- School of Interdisciplinary Studies, University of Texas at Dallas, TX 75080, USA
| | - Hongxia Zhang
- Department of Pharmacology & Neuroscience, UNT Health Science Center, TX 76107, USA
| | - Charity A Smith
- Department of Pharmacology & Neuroscience, UNT Health Science Center, TX 76107, USA
| | - Kunlin Jin
- Department of Pharmacology & Neuroscience, UNT Health Science Center, TX 76107, USA
| |
Collapse
|
14
|
Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Jou MJ, Acuna-Castroviejo D. Melatonin Mitigates Mitochondrial Meltdown: Interactions with SIRT3. Int J Mol Sci 2018; 19:E2439. [PMID: 30126181 PMCID: PMC6121285 DOI: 10.3390/ijms19082439] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023] Open
Abstract
Melatonin exhibits extraordinary diversity in terms of its functions and distribution. When discovered, it was thought to be uniquely of pineal gland origin. Subsequently, melatonin synthesis was identified in a variety of organs and recently it was shown to be produced in the mitochondria. Since mitochondria exist in every cell, with a few exceptions, it means that every vertebrate, invertebrate, and plant cell produces melatonin. The mitochondrial synthesis of melatonin is not photoperiod-dependent, but it may be inducible under conditions of stress. Mitochondria-produced melatonin is not released into the systemic circulation, but rather is used primarily in its cell of origin. Melatonin's functions in the mitochondria are highly diverse, not unlike those of sirtuin 3 (SIRT3). SIRT3 is an NAD+-dependent deacetylase which regulates, among many functions, the redox state of the mitochondria. Recent data proves that melatonin and SIRT3 post-translationally collaborate in regulating free radical generation and removal from mitochondria. Since melatonin and SIRT3 have cohabitated in the mitochondria for many eons, we predict that these molecules interact in many other ways to control mitochondrial physiology. It is predicted that these mutual functions will be intensely investigated in the next decade and importantly, we assume that the findings will have significant applications for preventing/delaying some age-related diseases and aging itself.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Dun Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guardalajara, 4436 Jalisco, Mexico.
| | - Annia Galano
- Departamento de Quimica, Universidad Antonoma Metropolitana-Unidad Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340 Mexico D.F., Mexico.
| | - Mei-Jie Jou
- Department of Physiology and Pharmacology, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan.
| | - Dario Acuna-Castroviejo
- Departamento de Fisiologia, Instituto de Biotecnologia, Universidad de Granada, Avenida de Conocimiento S/U, 18016 Granada, Spain.
| |
Collapse
|
15
|
Vitale JA, Lombardi G, Weydahl A, Banfi G. Biological rhythms, chronodisruption and chrono-enhancement: The role of physical activity as synchronizer in correcting steroids circadian rhythm in metabolic dysfunctions and cancer. Chronobiol Int 2018; 35:1185-1197. [DOI: 10.1080/07420528.2018.1475395] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Jacopo Antonino Vitale
- Laboratory of Biological Structure Biomechanics, IRCCS Istituto Ortopedico Galeazzi, Milano, Italia
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italia
| | - Andi Weydahl
- UiT-The Arctic University of Norway, Alta, Norway
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italia
- Vita-Salute San Raffaele University, Milano, Italia
| |
Collapse
|
16
|
Song J, Chu S, Cui Y, Qian Y, Li X, Xu F, Shao X, Ma Z, Xia T, Gu X. Circadian rhythm resynchronization improved isoflurane-induced cognitive dysfunction in aged mice. Exp Neurol 2018; 306:45-54. [PMID: 29660304 DOI: 10.1016/j.expneurol.2018.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/15/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is a common clinical phenomenon characterized by cognitive deficits in patients after anesthesia and surgery. Advanced age is a significant independent risk factor for POCD. We previously reported that in young mice, sleep-wake rhythm is involved in the isoflurane-induced memory impairment. In present study, we sought to determine whether advanced age increased the risk of POCD through aggravated and prolonged post-anesthetic circadian disruption in the elderly. We constructed POCD model by submitting the mice to 5-h 1.3% isoflurane anesthesia from Zeitgeber Time (ZT) 14 to ZT19. Under novel object recognition assay (NOR) and Morris water maze (MWM) test, We found 5-h isoflurane anesthesia impaired the cognition of young mice for early 3 days after anesthesia but damaged the aged for at least 1 week. With Mini-Mitter continuously monitoring, a 3.22 ± 0.75 h gross motor activity acrophase delay was manifested in young mice on D1, while in the aged mice, the gross motor activity phase shift lasted for 3 days, consistent with the body temperature rhythm trends of change. Melatonin has been considered as an effective remedy for circadian rhythm shift. In aged mice, melatonin was pretreated intragastrically at the dose of 10 mg/kg daily for 7 consecutive days before anesthesia. We found that melatonin prevented isoflurane-induced cognitive impairments by restoring the locomotor activity and temperature circadian rhythm via clock gene resynchronization. Overall, these results indicated that Long-term isoflurane anesthesia induced more aggravated and prolonged memory deficits and circadian rhythms disruption in aged mice. Melatonin could prevent isoflurane-induced cognitive impairments by circadian rhythm resynchronization.
Collapse
Affiliation(s)
- Jia Song
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu 210008, PR China
| | - Shuaishuai Chu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu 210008, PR China
| | - Yin Cui
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu 210008, PR China
| | - Yue Qian
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu 210008, PR China
| | - Xiuxiu Li
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu 210008, PR China
| | - Fangxia Xu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu 210008, PR China
| | - Xueming Shao
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu 210008, PR China
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu 210008, PR China.
| | - Tianjiao Xia
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu 210008, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, PR China.
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical Department of Nanjing University, 321 Zhong Shan Road, Nanjing, Jiangsu 210008, PR China.
| |
Collapse
|
17
|
da Rocha EP, Yokota LG, Sampaio BM, Cardoso Eid KZ, Dias DB, de Freitas FM, Balbi AL, Ponce D. Urinary Neutrophil Gelatinase-Associated Lipocalin Is Excellent Predictor of Acute Kidney Injury in Septic Elderly Patients. Aging Dis 2018; 9:182-191. [PMID: 29896409 PMCID: PMC5963341 DOI: 10.14336/ad.2017.0307] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/07/2017] [Indexed: 12/14/2022] Open
Abstract
Elderly is the main age group affected by acute kidney injury (AKI). There are no studies that investigated the predictive properties of urinary (u) NGAL as an AKI marker in septic elderly population. This study aimed to evaluate the efficacy of uNGAL as predictor of AKI diagnosis and prognosis in elderly septic patients admitted to ICUs. We prospectively studied elderly patients with sepsis admitted to ICUs from October 2014 to November 2015. Assessment of renal function was performed daily by serum creatinine and urine output. The level of uNGAL was performed within the first 48 hours of the diagnosis of sepsis (NGAL1) and between 48 and 96 hours (NGAL2). The results were presented using descriptive statistics and area under the receiver operating characteristic curve (AUC-ROC) and p value was 5%. Seventy-five patients were included, 47 (62.7%) developed AKI. At logistic regression, chronic kidney disease and low mean blood pressure at admission were identified as factors associated with AKI (OR=0.05, CI=0.01-0.60, p=0.045 and OR=0.81, CI=0,13-0.47; p=0.047). The uNGAL was excellent predictor of AKI diagnosis (AUC-ROC >0.95, and sensitivity and specificity>0.89), anticipating the AKI diagnosis in 2.1±0.3 days. Factors associated with mortality in the logistic regression were presence of AKI (OR=2.14, CI=1.42-3.98, p=0.04), chronic obstructive pulmonary disease (OR = 9.37, CI =1.79-49.1, p=0.008) and vasoactive drugs (OR=2.06, CI=0.98-1.02, p=0.04). The accuracy of NGALu 1 and 2 as predictors of death was intermediate, with AUC-ROC of 0.61 and 0.62; sensitivity between 0.65 and 0.77 and specificity lower than 0.6. The uNGAL was excellent predictor of AKI in septic elderly patients in ICUs and can anticipate the diagnosis of AKI in 2.1 days.
Collapse
Affiliation(s)
- Erica Pires da Rocha
- University Sao Paulo State-UNESP, Distrito de Rubiao Junior, without number, Botucatu, Sao Paulo, Brazil
| | - Lais Gabriela Yokota
- University Sao Paulo State-UNESP, Distrito de Rubiao Junior, without number, Botucatu, Sao Paulo, Brazil
| | - Beatriz Motta Sampaio
- University Sao Paulo State-UNESP, Distrito de Rubiao Junior, without number, Botucatu, Sao Paulo, Brazil
| | | | - Dayana Bitencourt Dias
- University Sao Paulo State-UNESP, Distrito de Rubiao Junior, without number, Botucatu, Sao Paulo, Brazil
| | | | - Andre Luis Balbi
- University Sao Paulo State-UNESP, Distrito de Rubiao Junior, without number, Botucatu, Sao Paulo, Brazil
| | - Daniela Ponce
- University Sao Paulo State-UNESP, Distrito de Rubiao Junior, without number, Botucatu, Sao Paulo, Brazil
| |
Collapse
|
18
|
Méndez I, Díaz-Muñoz M. Circadian and Metabolic Perspectives in the Role Played by NADPH in Cancer. Front Endocrinol (Lausanne) 2018; 9:93. [PMID: 29599747 PMCID: PMC5862808 DOI: 10.3389/fendo.2018.00093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/27/2018] [Indexed: 02/05/2023] Open
Abstract
Physiological activity in healthy conditions requires a coordinated interaction between the molecular circadian clock and the network of biochemical pathways. An important metabolic parameter in the interface between these two entities is the redox state. Among the redox coenzymes that regulate the fluxes of enzymatic reactions is the NADP+/NADPH pair. Indeed, the main biosynthetic pathways need NADPH to serve as an electron donor for cellular anabolic transformations. The existence of a metabolic circadian clock is well established, and it was first identified in mammalian red blood cells. The metabolic circadian clock is independent of transcriptional activity and is sustained by the enzymatic complex peroxiredoxin/thioredoxin/NADPH. This complex shows 24-h redox fluctuations metabolizing H2O2 in various tissues and species (fungi, insects, and mammals). Although this NADPH-sensitive metabolic clock is autonomous in erythrocytes that lack a nucleus, it functions in concert with the transcriptional circadian clock in other cell types to accomplish the task of timing cellular physiology. During carcinogenesis, circadian alterations influence cell cycle onset and promote tumoral growth. These alterations also deregulate cellular energetics through a process known as aerobic glycolysis, or the Warburg effect. The Warburg effect is a typical response of cancer cells in which the metabolism turns into glycolysis even in the presence of functional mitochondria. This alteration has been interpreted as a cellular strategy to increase biomass during cancer, and one of its main factors is the availability of NADPH. This minireview explores the potential role of NADPH as a circadian and cancer-promoting metabolite.
Collapse
Affiliation(s)
- Isabel Méndez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
- *Correspondence: Mauricio Díaz-Muñoz,
| |
Collapse
|