1
|
Kumar K, Fornace AJ, Suman S. 8-OxodG: A Potential Biomarker for Chronic Oxidative Stress Induced by High-LET Radiation. DNA 2024; 4:221-238. [PMID: 39268222 PMCID: PMC11391509 DOI: 10.3390/dna4030015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Oxidative stress-mediated biomolecular damage is a characteristic feature of ionizing radiation (IR) injury, leading to genomic instability and chronic health implications. Specifically, a dose- and linear energy transfer (LET)-dependent persistent increase in oxidative DNA damage has been reported in many tissues and biofluids months after IR exposure. Contrary to low-LET photon radiation, high-LET IR exposure is known to cause significantly higher accumulations of DNA damage, even at sublethal doses, compared to low-LET IR. High-LET IR is prevalent in the deep space environment (i.e., beyond Earth's magnetosphere), and its exposure could potentially impair astronauts' health. Therefore, the development of biomarkers to assess and monitor the levels of oxidative DNA damage can aid in the early detection of health risks and would also allow timely intervention. Among the recognized biomarkers of oxidative DNA damage, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodG) has emerged as a promising candidate, indicative of chronic oxidative stress. It has been reported to exhibit differing levels following equivalent doses of low- and high-LET IR. This review discusses 8-OxodG as a potential biomarker of high-LET radiation-induced chronic stress, with special emphasis on its potential sources, formation, repair mechanisms, and detection methods. Furthermore, this review addresses the pathobiological implications of high-LET IR exposure and its association with 8-OxodG. Understanding the association between high-LET IR exposure-induced chronic oxidative stress, systemic levels of 8-OxodG, and their potential health risks can provide a framework for developing a comprehensive health monitoring biomarker system to safeguard the well-being of astronauts during space missions and optimize long-term health outcomes.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
2
|
Wróbel-Nowicka K, Wojciechowska C, Jacheć W, Zalewska M, Romuk E. The Role of Oxidative Stress and Inflammatory Parameters in Heart Failure. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:760. [PMID: 38792942 PMCID: PMC11123446 DOI: 10.3390/medicina60050760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024]
Abstract
Heart failure (HF) remains a major medical and social problem. The NT-pro-brain natriuretic peptide (NT-proBNP) and its active form, brain-type natriuretic peptide (BNP), in a simple blood test are the gold-standard biomarkers for HF diagnosis. However, even good biomarkers such as natriuretic peptides fail to predict all the risks associated with HF due to the diversity of the mechanisms involved. The pathophysiology of HF is determined by numerous factors, including oxidative stress, inflammation, neuroendocrine activation, pathological angiogenesis, changes in apoptotic pathways, fibrosis and vascular remodeling. High readmission and mortality rates prompt a search for new markers for the diagnosis, prognosis and treatment of HF. Oxidative-stress-mediated inflammation plays a crucial role in the development of subsequent changes in the failing heart and provides a new insight into this complex mechanism. Oxidative stress and inflammatory biomarkers appear to be a promising diagnostic and prognostic tool in patients with HF. This systematic review provides an overview of the current knowledge about oxidative stress and inflammation parameters as markers of HF.
Collapse
Affiliation(s)
- Karolina Wróbel-Nowicka
- Medical Laboratory of Teresa Fryda, Katowice, Laboratory Branch in Specialist Hospital in Zabrze, 10, M.C-Skłodowska St., 41-800 Zabrze, Poland;
| | - Celina Wojciechowska
- 2nd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 10, M.C-Skłodowska St., 41-800 Zabrze, Poland; (C.W.); (W.J.)
| | - Wojciech Jacheć
- 2nd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 10, M.C-Skłodowska St., 41-800 Zabrze, Poland; (C.W.); (W.J.)
| | - Marzena Zalewska
- Department of Basic Medical Sciences, Faculty of Public Health in Bytom, Medical University of Silesia, Piekarska St., 41-902 Bytom, Poland;
| | - Ewa Romuk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19, Jordan St., 41-808 Zabrze, Poland
| |
Collapse
|
3
|
Zheng J, Lu Y, Lin Y, Si S, Guo B, Zhao X, Cui L. Epitranscriptomic modifications in mesenchymal stem cell differentiation: advances, mechanistic insights, and beyond. Cell Death Differ 2024; 31:9-27. [PMID: 37985811 PMCID: PMC10782030 DOI: 10.1038/s41418-023-01238-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
RNA modifications, known as the "epitranscriptome", represent a key layer of regulation that influences a wide array of biological processes in mesenchymal stem cells (MSCs). These modifications, catalyzed by specific enzymes, often termed "writers", "readers", and "erasers", can dynamically alter the MSCs' transcriptomic landscape, thereby modulating cell differentiation, proliferation, and responses to environmental cues. These enzymes include members of the classes METTL, IGF2BP, WTAP, YTHD, FTO, NAT, and others. Many of these RNA-modifying agents are active during MSC lineage differentiation. This review provides a comprehensive overview of the current understanding of different RNA modifications in MSCs, their roles in regulating stem cell behavior, and their implications in MSC-based therapies. It delves into how RNA modifications impact MSC biology, the functional significance of individual modifications, and the complex interplay among these modifications. We further discuss how these intricate regulatory mechanisms contribute to the functional diversity of MSCs, and how they might be harnessed for therapeutic applications. The review also highlights current challenges and potential future directions in the study of RNA modifications in MSCs, emphasizing the need for innovative tools to precisely map these modifications and decipher their context-specific effects. Collectively, this work paves the way for a deeper understanding of the role of the epitranscriptome in MSC biology, potentially advancing therapeutic strategies in regenerative medicine and MSC-based therapies.
Collapse
Affiliation(s)
- Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Shanshan Si
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bing Guo
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
| |
Collapse
|
4
|
Crosstalk between Oxidative Stress and Aging in Neurodegeneration Disorders. Cells 2023; 12:cells12050753. [PMID: 36899889 PMCID: PMC10001353 DOI: 10.3390/cells12050753] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The world population is aging rapidly, and increasing lifespan exacerbates the burden of age-related health issues. On the other hand, premature aging has begun to be a problem, with increasing numbers of younger people suffering aging-related symptoms. Advanced aging is caused by a combination of factors: lifestyle, diet, external and internal factors, as well as oxidative stress (OS). Although OS is the most researched aging factor, it is also the least understood. OS is important not only in relation to aging but also due to its strong impact on neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer's disease (AD), and Parkinson's disease (PD). In this review, we will discuss the aging process in relation to OS, the function of OS in neurodegenerative disorders, and prospective therapeutics capable of relieving neurodegenerative symptoms associated with the pro-oxidative condition.
Collapse
|
5
|
Kim ME, Kim DH, Lee JS. Transcription Factors as Targets of Natural Compounds in Age-Related Diseases and Cancer: Potential Therapeutic Applications. Int J Mol Sci 2022; 23:ijms232213882. [PMID: 36430361 PMCID: PMC9696520 DOI: 10.3390/ijms232213882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Inflammation exacerbates systemic pathophysiological conditions and chronic inflammation is a sustained and systemic phenomenon that aggravates aging that can lead to chronic age-related diseases. These inflammatory phenomena have recently been redefined and delineated at the molecular, cellular, and systemic levels. Many transcription factors that are activated in response to tumor metabolic state have been reported to be regulated by a class of histone deacetylase called sirtuins (SIRTs). Sirtuins play a pivotal role in the regulation of tumor cell metabolism, proliferation, and angiogenesis, including oxidative stress and inflammation. The SIRT1-mediated signaling pathway in diabetes and cancer is the SIRT1/forkhead-box class O (FoxO)/nuclear factor-kappa B (NF-κB) pathway. In this review, we describe the accumulation of SIRT1-, NF-κB-, and FoxO-mediated inflammatory processes and cellular proinflammatory signaling pathways. We also describe the proinflammatory mechanisms underlying metabolic molecular pathways in various diseases such as liver cancer and diabetes. Finally, the regulation of cancer and diabetes through the anti-inflammatory effects of natural compounds is highlighted. Evidence from inflammation studies strongly suggests that cells may be a major source of cytokines secreted during various diseases. A better understanding of the mechanisms that underpin the inflammatory response and palliative role of natural compounds will provide insights into the molecular mechanisms of inflammation and various diseases for potential intervention.
Collapse
Affiliation(s)
- Mi Eun Kim
- Department of Life Science, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Dong-gu, Gwangju 61452, Korea
| | - Dae Hyun Kim
- Department of Life Science, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Dong-gu, Gwangju 61452, Korea
- Correspondence: (D.H.K.); (J.S.L.); Tel.: +82-062-230-6651 (J.S.L.)
| | - Jun Sik Lee
- Department of Life Science, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Dong-gu, Gwangju 61452, Korea
- LKBio Inc., Chosun University Business Incubator (CUBI) Building, Dong-gu, Gwangju 61452, Korea
- Correspondence: (D.H.K.); (J.S.L.); Tel.: +82-062-230-6651 (J.S.L.)
| |
Collapse
|
6
|
Negre-Salvayre A, Swiader A, Salvayre R, Guerby P. Oxidative stress, lipid peroxidation and premature placental senescence in preeclampsia. Arch Biochem Biophys 2022; 730:109416. [PMID: 36179910 DOI: 10.1016/j.abb.2022.109416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022]
Abstract
Accelerated placental senescence is associated with preeclampsia (PE) and other pregnancy complications. It is characterized by an accelerated decline in placental function due to the accumulation of senescence patterns such as telomere shortening, mitochondrial dysfunction, oxidative damages, increased expression of phosphorylated (serine-139) histone γ-H2AX, a sensitive marker of double-stranded DNA breaks, accumulation of cross-linked ubiquitinated proteins and sirtuin inhibition. Among the lipid oxidation products generated by the peroxidation of polyunsaturated fatty acids, aldehydes such as acrolein, 4-hydroxy-2-nonenal, 4-oxo-2-nonenal, are present in the blood and placenta from PE-affected women and could contribute to PE pathogenesis and accelerated placental aging. In this review we summarize the current knowledge on premature placental senescence and the role of oxidative stress and lipid oxidation-derived aldehydes in this process, as well as their links with PE pathogenesis. The interest of developing (or not) new therapeutic strategies targeting lipid peroxidation is discussed, the objective being a better understanding of accelerated placental aging in PE pathophysiology, and the prevention of PE bad outcomes.
Collapse
Affiliation(s)
| | | | | | - Paul Guerby
- lnfinity, CNRS, Inserm UMR 1291, University Toulouse III and Gynecology/Obstetrics Department, Paule-de-Viguier Hospital, Toulouse, France
| |
Collapse
|
7
|
Zhang H, Liu X, Liu Y, Liu J, Gong X, Li G, Tang M. Crosstalk between regulatory non-coding RNAs and oxidative stress in Parkinson’s disease. Front Aging Neurosci 2022; 14:975248. [PMID: 36016854 PMCID: PMC9396353 DOI: 10.3389/fnagi.2022.975248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease is the second most common neurodegenerative disease after Alzheimer’s disease, which imposes an ever-increasing burden on society. Many studies have indicated that oxidative stress may play an important role in Parkinson’s disease through multiple processes related to dysfunction or loss of neurons. Besides, several subtypes of non-coding RNAs are found to be involved in this neurodegenerative disorder. However, the interplay between oxidative stress and regulatory non-coding RNAs in Parkinson’s disease remains to be clarified. In this article, we comprehensively survey and overview the role of regulatory ncRNAs in combination with oxidative stress in Parkinson’s disease. The interaction between them is also summarized. We aim to provide readers with a relatively novel insight into the pathogenesis of Parkinson’s disease, which would contribute to the development of pre-clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xun Gong
- Department of Rheumatology & Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Gang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
- *Correspondence: Gang Li Min Tang
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- *Correspondence: Gang Li Min Tang
| |
Collapse
|
8
|
Liu Q, Liu Z, Wang C, Gao X, Li C, Wang M, Wang Q, Cai JP. Increased production of 8-oxo-7,8-dihydroguanine in human urine, a novel biomarker of osteoporosis. Free Radic Res 2022; 56:358-365. [PMID: 35880390 DOI: 10.1080/10715762.2022.2106224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Osteoporosis is a worldwide disease that seriously affects the quality of life and survival rate of the elderly. The detection of bone biomarkers will provide supplementary information of bone mineral density, contributing to the accurate diagnosis of osteoporosis and better health care for prevention. This study aimed to investigate the efficacy of oxidative stress markers-8-oxo-7,8-dihydroguanine (8-oxoGsn) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGsn) in the assessment of osteoporosis. We conducted a cross-sectional study among menopausal women with a mean (standard deviation) age of 62.967 (7.798) years old (n = 151). Participants were recruited for the bone mineral density (BMD) assessment, blood and urinary samples. Urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydro-guanine concentrations were measured by ultra performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS). The urinary 8-oxoGsn/Cre value differed significantly between normal and osteoporotic participants (p < 0.001), while the 8-oxodGsn/Cre value did not (p = 0.720). Even after adjusting for the age and body mass index, the BMD was still associated with urinary 8-oxoGsn/Cre value. ROC analysis showed that 8-oxoGsn has a strong diagnostic value for osteoporosis (AUC =0.744). The results show for the first time that 8-oxoGsn may be a biomarker for the future diagnosis of osteoporosis in women.
Collapse
Affiliation(s)
- Qian Liu
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, P.R. China
| | - Zhen Liu
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, P.R. China
| | - Chenchen Wang
- Department of Pharmacy, Quzhou KeCheng People's Hospital, Quzhou, Zhejiang, China
| | - Xin Gao
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, P.R. China
| | - Chuanbao Li
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Meng Wang
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Qiang Wang
- Department of Orthopedics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Ping Cai
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, P.R. China
| |
Collapse
|
9
|
Cui Z, Zhao X, Amevor FK, Du X, Wang Y, Li D, Shu G, Tian Y, Zhao X. Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism. Front Immunol 2022; 13:943321. [PMID: 35935939 PMCID: PMC9355713 DOI: 10.3389/fimmu.2022.943321] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Quercetin, a naturally non-toxic flavonoid within the safe dose range with antioxidant, anti-apoptotic and anti-inflammatory properties, plays an important role in the treatment of aging-related diseases. Sirtuin 1 (SIRT1), a member of NAD+-dependent deacetylase enzyme family, is extensively explored as a potential therapeutic target for attenuating aging-induced disorders. SIRT1 possess beneficial effects against aging-related diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), Depression, Osteoporosis, Myocardial ischemia (M/I) and reperfusion (MI/R), Atherosclerosis (AS), and Diabetes. Previous studies have reported that aging increases tissue susceptibility, whereas, SIRT1 regulates cellular senescence and multiple aging-related cellular processes, including SIRT1/Keap1/Nrf2/HO-1 and SIRTI/PI3K/Akt/GSK-3β mediated oxidative stress, SIRT1/NF-κB and SIRT1/NLRP3 regulated inflammatory response, SIRT1/PGC1α/eIF2α/ATF4/CHOP and SIRT1/PKD1/CREB controlled phosphorylation, SIRT1-PINK1-Parkin mediated mitochondrial damage, SIRT1/FoxO mediated autophagy, and SIRT1/FoxG1/CREB/BDNF/Trkβ-catenin mediated neuroprotective effects. In this review, we summarized the role of SIRT1 in the improvement of the attenuation effect of quercetin on aging-related diseases and the relationship between relevant signaling pathways regulated by SIRT1. Moreover, the functional regulation of quercetin in aging-related markers such as oxidative stress, inflammatory response, mitochondrial function, autophagy and apoptosis through SIRT1 was discussed. Finally, the prospects of an extracellular vesicles (EVs) as quercetin loading and delivery, and SIRT1-mediated EVs as signal carriers for treating aging-related diseases, as well as discussed the ferroptosis alleviation effects of quercetin to protect against aging-related disease via activating SIRT1. Generally, SIRT1 may serve as a promising therapeutic target in the treatment of aging-related diseases via inhibiting oxidative stress, reducing inflammatory responses, and restoring mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Xiaoling Zhao,
| |
Collapse
|
10
|
Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin. Inflamm Res 2022; 71:817-831. [PMID: 35748903 PMCID: PMC9307547 DOI: 10.1007/s00011-022-01598-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 02/08/2023] Open
Abstract
Background Excessive exposure of the skin to UV radiation (UVR) triggers a remodeling of the immune system and leads to the photoaging state which is reminiscent of chronological aging. Over 30 years ago, it was observed that UVR induced an immunosuppressive state which inhibited skin contact hypersensitivity. Methods Original and review articles encompassing inflammation and immunosuppression in the photoaging and chronological aging processes were examined from major databases including PubMed, Scopus, and Google Scholar. Results Currently it is known that UVR treatment can trigger a cellular senescence and inflammatory state in the skin. Chronic low-grade inflammation stimulates a counteracting immunosuppression involving an expansion of immunosuppressive cells, e.g., regulatory T cells (Treg), myeloid-derived suppressor cells (MDSC), and regulatory dendritic cells (DCreg). This increased immunosuppressive activity not only suppresses the function of effector immune cells, a state called immunosenescence, but it also induces bystander degeneration of neighboring cells. Interestingly, the chronological aging process also involves an accumulation of pro-inflammatory senescent cells and signs of chronic low-grade inflammation, called inflammaging. There is also clear evidence that inflammaging is associated with an increase in anti-inflammatory and immunosuppressive activities which promote immunosenescence. Conclusion It seems that photoaging and normal aging evoke similar processes driven by the remodeling of the immune system. However, it is likely that there are different molecular mechanisms inducing inflammation and immunosuppression in the accelerated photoaging and the chronological aging processes.
Collapse
|
11
|
Lu L, Dai M, Mullins CS, Schafmayer C, Linnebacher M. Global Association of Cause-specific Mortality between the Major Gastrointestinal Cancers and Parkinson's Disease for the First Two Decades of the New Millennium. Aging Dis 2022; 13:534-539. [PMID: 35371614 PMCID: PMC8947825 DOI: 10.14336/ad.2021.1016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/15/2021] [Indexed: 11/01/2022] Open
Abstract
Parkinson's disease (PD) and gastrointestinal (GI) cancers are both "age-related diseases" sharing several environmental risk factors, but possess opposite underlying biological mechanisms. Aim of this study was to evaluate the correlations between GI cancers and PD using national cause-specific mortality data of 183 countries extracted from the Global Health Observatory database. The association between PD- and GI cancers- (i.e. esophagus cancer, EC; stomach cancer, SC; colorectal cancer, CRC; liver cancer, LC and pancreatic cancer, PC) specific mortality on the country level was evaluated using Spearman correlation and logistic regression analysis. A global increase in mortality from 2000 to 2019 was observed in PD, CRC and PC, whereas in EC, SC and LC it decreased. We see the consistent diminishment of correlation intensities between PD and GI cancer mortalities from 2000 to 2019 as a positive development. In 2019, PD inversely correlated with CRC (rs = -0.39) and PC (rs = -0.40, all P < 0.001) but not with EC and SC. Of note, an exceptionally positive correlation of PD with LC (rs = 0.26, P < 0.001) and its two hepatitis B and C virus-associated subtypes was revealed. Logistic regression analysis further determined that PD associated negatively with CRC (OR = 0.25) and PC (OR = 0.21, both P < 0.001), but positively with LC (OR = 2.27, P = 0.007). Consequently, future research aiming to unravel the functional biological link between neurodegeneration, hepatitis and tumor development holds great potential for developing novel therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Michael Linnebacher
- Clinic of General, Thoracic, Vascular and Transplantation Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
12
|
Mukli P, Wu DH, Csipo T, Owens CD, Lipecz A, Racz FS, Zouein FA, Tabak A, Csiszar A, Ungvari Z, Tsitouras PD, Yabluchanskiy A. Urinary Biomarkers of Oxidative Stress in Aging: Implications for Prediction of Accelerated Biological Age in Prospective Cohort Studies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6110226. [PMID: 35571254 PMCID: PMC9106456 DOI: 10.1155/2022/6110226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/05/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022]
Abstract
Background Aging is a major risk factor for a range of chronic diseases. Oxidative stress theory of aging has been previously proposed as one of the mechanisms responsible for the age-related decline in organ/tissue function and the development of age-related diseases. Urine contains rich biological information on the health status of every major organ system and can be an important noninvasive source for biomarkers of systemic oxidative stress in aging. Aims The objective of this cross-sectional study was to validate a novel panel of urinary oxidative stress biomarkers. Methods Nucleic acid oxidation adducts and oxidative damage markers of lipids and proteins were assessed in urine samples from nondiabetic and currently nonsmoking subjects (n = 198) across different ages (20 to 89 years old). Urinary parameters and chronological age were correlated then the biological age of enrolled individuals was determined from the urinary oxidative stress markers using the algorithm of Klemera and Doubal. Results Our findings showed that 8-oxo-7,8-deoxyguanosine (8-oxoG), 8-oxo-7,8-dihydroguanosine (8-OHdG), and dityrosine (DTyr) positively correlated with chronological age, while the level of an F2-isoprostane (iPF2 α-VI) correlated negatively with age. We found that 8-oxoG, DTyr, and iPF2 α-VI were significantly higher among accelerated agers compared to nonaccelerated agers and that a decision tree model could successfully identify accelerated agers with an accuracy of >92%. Discussion. Our results indicate that 8-oxoG and iPF2 α-VI levels in the urine reveal biological aging. Conclusion Assessing urinary biomarkers of oxidative stress may be an important approach for the evaluation of biological age by identifying individuals at accelerated risk for the development of age-related diseases.
Collapse
Affiliation(s)
- Peter Mukli
- 1Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- 2Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Dee H. Wu
- 3Department of Radiological Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- 4The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tamas Csipo
- 1Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- 5International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Cameron D. Owens
- 1Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Agnes Lipecz
- 1Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- 5International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Frigyes Samuel Racz
- 2Department of Physiology, Semmelweis University, Budapest, Hungary
- 6Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Fouad A. Zouein
- 7The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
- 8Department of Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Inserm, Université Paris-Saclay, France
- 9Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Adam Tabak
- 5International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- 101st Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anna Csiszar
- 1Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- 4The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- 11International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- 1Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- 3Department of Radiological Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- 4The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- 5International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- 12Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Panayiotis D. Tsitouras
- 1Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- 1Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- 4The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- 12Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
13
|
Lynn J, Park M, Ogunwale C, Acquaah-Mensah GK. A Tale of Two Diseases: Exploring Mechanisms Linking Diabetes Mellitus with Alzheimer's Disease. J Alzheimers Dis 2021; 85:485-501. [PMID: 34842187 DOI: 10.3233/jad-210612] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dementias, including the type associated with Alzheimer's disease (AD), are on the rise worldwide. Similarly, type 2 diabetes mellitus (T2DM) is one of the most prevalent chronic diseases globally. Although mechanisms and treatments are well-established for T2DM, there remains much to be discovered. Recent research efforts have further investigated factors involved in the etiology of AD. Previously perceived to be unrelated diseases, commonalities between T2DM and AD have more recently been observed. As a result, AD has been labeled as "type 3 diabetes". In this review, we detail the shared processes that contribute to these two diseases. Insulin resistance, the main component of the pathogenesis of T2DM, is also present in AD, causing impaired brain glucose metabolism, neurodegeneration, and cognitive impairment. Dysregulation of insulin receptors and components of the insulin signaling pathway, including protein kinase B, glycogen synthase kinase 3β, and mammalian target of rapamycin are reported in both diseases. T2DM and AD also show evidence of inflammation, oxidative stress, mitochondrial dysfunction, advanced glycation end products, and amyloid deposition. The impact that changes in neurovascular structure and genetics have on the development of these conditions is also being examined. With the discovery of factors contributing to AD, innovative treatment approaches are being explored. Investigators are evaluating the efficacy of various T2DM medications for possible use in AD, including but not limited to glucagon-like peptide-1 receptor agonists, and peroxisome proliferator-activated receptor-gamma agonists. Furthermore, there are 136 active trials involving 121 therapeutic agents targeting novel AD biomarkers. With these efforts, we are one step closer to alleviating the ravaging impact of AD on our communities.
Collapse
Affiliation(s)
- Jessica Lynn
- Massachusetts College of Pharmacy & Health Sciences (MCPHS University)/Takeda Pharmaceuticals Biopharmaceutical Industry Fellowship Program, Boston, MA, USA
| | - Mingi Park
- Massachusetts College of Pharmacy & Health Sciences (MCPHS University)/Takeda Pharmaceuticals Biopharmaceutical Industry Fellowship Program, Boston, MA, USA
| | | | - George K Acquaah-Mensah
- Massachusetts College of Pharmacy & Health Sciences (MCPHS University)/Takeda Pharmaceuticals Biopharmaceutical Industry Fellowship Program, Boston, MA, USA
| |
Collapse
|
14
|
Deng B, Zheng Z, Zheng J, Yang W, Huang Y, Luo Y, Jin D, Shen L, Jin K, Wang Q. FTD-PSP is an Unusual Clinical Phenotype in A Frontotemporal Dementia Patient with A Novel Progranulin Mutation. Aging Dis 2021; 12:1741-1752. [PMID: 34631218 PMCID: PMC8460311 DOI: 10.14336/ad.2021.0309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/09/2021] [Indexed: 12/28/2022] Open
Abstract
Progranulin (GRN) mutations are a major cause of frontotemporal dementia (FTD); the spectrum of clinical phenotypes of FTD is much more extensive than previously reported. The frequency and locations of GRN mutations in Chinese patients with FTD remain uncertain. We performed cDNA sequencing in one sporadic male patient who initially presented FTD symptoms. Brain magnetic resonance imaging (MRI) and positron emission computed tomography/computed tomography (PET/CT) were applied to further confirm the diagnosis of FTD from this patient. Cellular apoptosis and survival test were performed to identify the function of GRN. We identified one novel missense GRN mutation (c.1498G>A, p.V500I) in this patient, who initially presented typical behavioral-variant frontotemporal dementia (bvFTD) features but then presented progressive supranuclear palsy (PSP) clinical characteristics 5 years after onset. Besides, WT GRN protein showed an adequate trophic stimulus to preserve the survival of SH-SY5Y cells in the medium free of serum, while GRN mutation (c.1498G>A, p.V500I) may impair the ability of supporting cell survival. This study owns significant implications for genetic counseling and clinical heterogeneity. We illustrate the fact that FTD presenting features of bvFTD and PSP in one patient could be considered as a specific phenotype in patients with GRN mutations. GRN p.V500I led to the neuronal degeneration in vitro; this finding provides a significant evidence that this mutation may be a new causative mutation in patients with FTD.
Collapse
Affiliation(s)
- Bin Deng
- 1Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Zhe Zheng
- 1Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Jialing Zheng
- 1Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Wanlin Yang
- 1Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Yu Huang
- 1Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Yuqi Luo
- 1Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Dana Jin
- 3College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Lu Shen
- 2Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Kunlin Jin
- 4Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Qing Wang
- 1Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, China
| |
Collapse
|
15
|
Frantsiyants E, Neskubina I, Shikhlyarova A, Cheryarina N, Kaplieva I, Bandovkina V, Trepitaki L, Nemashkalova L, Lysenko I, Kachesova P, Sheiko E, Morozova M, Kotieva I. The effect of diabetes mellitus under tumor growth on respiratory function and free radical processes in heart cell mitochondria in rats. CARDIOMETRY 2021. [DOI: 10.18137/cardiometry.2021.18.5055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The aim is to study the effect of comorbid pathology, namely, diabetes mellitus, on free radical oxidation in the mitochondria in the heart cells in female rats with experimental Guerin carcinoma.
Collapse
|