1
|
Qin L, Tong F, Li S, Ren C. Beyond Pharmacology: The Biological Mechanisms of Remote Ischemic Conditioning in Cerebrovascular Disease. Biomolecules 2024; 14:1408. [PMID: 39595584 PMCID: PMC11592304 DOI: 10.3390/biom14111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Cerebrovascular diseases (CVDs), comprising predominantly ischemic stroke and chronic cerebral hypoperfusion (CCH), are a significant threat to global health, often leading to disability and mortality. Remote ischemic conditioning (RIC) has emerged as a promising, non-pharmacological strategy to combat CVDs by leveraging the body's innate defense mechanisms. This review delves into the neuroprotective mechanisms of RIC, categorizing its effects during the acute and chronic phases of stroke recovery. It also explores the synergistic potential of RIC when combined with other therapeutic strategies, such as pharmacological treatments and physical exercise. Additionally, this review discusses the pathways through which peripheral transmission can confer central neuroprotection. This review concludes by addressing the challenges regarding and future directions for RIC, emphasizing the need for standardized protocols, biomarker identification, and expanded clinical trials to fully realize its therapeutic potential.
Collapse
Affiliation(s)
| | | | | | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (L.Q.); (F.T.); (S.L.)
| |
Collapse
|
2
|
Jearjaroen P, Thangwong P, Tocharus C, Lungkaphin A, Chaichompoo W, Srijun J, Suksamrarn A, Tocharus J. Hexahydrocurcumin Attenuates Neuronal Injury and Modulates Synaptic Plasticity in Chronic Cerebral Hypoperfusion in Rats. Mol Neurobiol 2024; 61:4304-4317. [PMID: 38087168 DOI: 10.1007/s12035-023-03821-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/20/2023] [Indexed: 07/11/2024]
Abstract
Dementia is the most common age-related problem due predominantly to Alzheimer's disease (AD) and vascular dementia (VaD). It has been shown that these contributors are associated with a high amount of oxidative stress that leads to changes in neurological function and cognitive impairment. The aim of study was to explore the mechanism by which hexahydrocurcumin (HHC) attenuates oxidative stress, amyloidogenesis, phosphorylated Tau (pTau) expression, neuron synaptic function, and cognitive impairment and also the potential mechanisms involved in induced permanent occlusion of bilateral common carotid arteries occlusion (BCCAO) or 2-vessel occlusion (2VO) in rats. After surgery, rats were treated with HHC (40 mg/kg) or piracetam (600 mg/kg) by oral gavage daily for 4 weeks. The results showed that HHC or piracetam attenuated oxidative stress by promoting nuclear factor erythroid 2-related factor 2 (Nrf2) activity, and alleviated expression of synaptic proteins (pre- and post-synaptic proteins) mediated by the Wingless/Integrated (Wnt)/β-catenin signaling pathway. Moreover, HHC or piracetam also improved synaptic plasticity via the brain-derived neurotrophic factor (BDNF)/Tyrosine receptor kinase B (TrkB)/cAMP responsive element binding protein (CREB) signaling pathway. In addition, HHC reduced amyloid beta (Aβ) production and pTau expression and improved memory impairment as evidenced by the Morris water maze. In conclusion, HHC exerted remarkable improvement in cognitive function in the 2VO rats possibly via the attenuation of oxidative stress, improvement in synaptic function, attenuation of amyloidogenesis, pTau, and neuronal injury, thereby improving cognitive performance.
Collapse
Affiliation(s)
- Pranglada Jearjaroen
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Phakkawat Thangwong
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Jaranwit Srijun
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
3
|
Lu Y, Li M, Zhuang Y, Lin Z, Nie B, Lei J, Zhao Y, Zhao H. Combination of fMRI and PET reveals the beneficial effect of three-phase enriched environment on post-stroke memory deficits by enhancing plasticity of brain connectivity between hippocampus and peri-hippocampal cortex. CNS Neurosci Ther 2024; 30:e14466. [PMID: 37752881 PMCID: PMC10916434 DOI: 10.1111/cns.14466] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
AIM The three-phase enriched environment (EE) intervention paradigm has been shown to improve learning and memory function after cerebral ischemia, but the neuronal mechanisms are still unclear. This study aimed to investigate the hippocampal-cortical connectivity and the metabolic interactions between neurons and astrocytes to elucidate the underlying mechanisms of EE-induced memory improvement after stroke. METHODS Rats were subjected to permanent middle cerebral artery occlusion (pMCAO) or sham surgery and housed in standard environment or EE for 30 days. Memory function was examined by Morris water maze (MWM) test. Magnetic resonance imaging (MRI) was conducted to detect the structural and functional changes. [18 F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) was conducted to detect brain energy metabolism. PET-based brain connectivity and network analysis was performed to study the changes of hippocampal-cortical connectivity. Astrocyte-neuron metabolic coupling, including gap junction protein connexin 43 (Cx43), glucose transporters (GLUTs), and monocarboxylate transporters (MCTs), was detected by histological studies. RESULTS Our results showed EE promoted memory function improvement, protected structure integrity, and benefited energy metabolism after stroke. More importantly, EE intervention significantly increased functional connectivity between the hippocampus and peri-hippocampal cortical regions, and specifically regulated the level of Cx43, GLUTs and MCTs in the hippocampus and cortex. CONCLUSIONS Our results revealed the three-phase enriched environment paradigm enhanced hippocampal-cortical connectivity plasticity and ameliorated post-stroke memory deficits. These findings might provide some new clues for the development of EE and thus facilitate the clinical transformation of EE.
Collapse
Affiliation(s)
- Yun Lu
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Beijing Key Lab of TCM Collateral Disease Theory ResearchBeijingChina
| | - Mingcong Li
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Beijing Key Lab of TCM Collateral Disease Theory ResearchBeijingChina
| | - Yuming Zhuang
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Beijing Key Lab of TCM Collateral Disease Theory ResearchBeijingChina
| | - Ziyue Lin
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Beijing Key Lab of TCM Collateral Disease Theory ResearchBeijingChina
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
| | - Jianfeng Lei
- Core Facilities CenterCapital Medical UniversityBeijingChina
| | - Yuanyuan Zhao
- Core Facilities CenterCapital Medical UniversityBeijingChina
| | - Hui Zhao
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Beijing Key Lab of TCM Collateral Disease Theory ResearchBeijingChina
| |
Collapse
|
4
|
Cheng J, Hu H, Ju Y, Liu J, Wang M, Liu B, Zhang Y. Gut microbiota-derived short-chain fatty acids and depression: deep insight into biological mechanisms and potential applications. Gen Psychiatr 2024; 37:e101374. [PMID: 38390241 PMCID: PMC10882305 DOI: 10.1136/gpsych-2023-101374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/25/2023] [Indexed: 02/24/2024] Open
Abstract
The gut microbiota is a complex and dynamic ecosystem known as the 'second brain'. Composing the microbiota-gut-brain axis, the gut microbiota and its metabolites regulate the central nervous system through neural, endocrine and immune pathways to ensure the normal functioning of the organism, tuning individuals' health and disease status. Short-chain fatty acids (SCFAs), the main bioactive metabolites of the gut microbiota, are involved in several neuropsychiatric disorders, including depression. SCFAs have essential effects on each component of the microbiota-gut-brain axis in depression. In the present review, the roles of major SCFAs (acetate, propionate and butyrate) in the pathophysiology of depression are summarised with respect to chronic cerebral hypoperfusion, neuroinflammation, host epigenome and neuroendocrine alterations. Concluding remarks on the biological mechanisms related to gut microbiota will hopefully address the clinical value of microbiota-related treatments for depression.
Collapse
Affiliation(s)
- Junzhe Cheng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hongkun Hu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yumeng Ju
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Jin Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Mi Wang
- Department of Mental Health Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bangshan Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Yan Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha, Hunan, China
| |
Collapse
|
5
|
Li H, Yu W, Yang Y, Li S, Xu J, Gao C, Zhang W, Shi W, Jin K, Ji X, Ren C. Combination of Atractylenolide I, Atractylenolide III, and Paeoniflorin promotes angiogenesis and improves neurological recovery in a mouse model of ischemic Stroke. Chin Med 2024; 19:3. [PMID: 38178130 PMCID: PMC10768365 DOI: 10.1186/s13020-023-00872-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Prognosis is critically important in stroke cases, with angiogenesis playing a key role in determining outcomes. This study aimed to investigate the potential protective effects of Atractylenolide I (Atr I), Atractylenolide III (Atr III), and Paeoniflorin (Pae) in promoting angiogenesis following cerebral ischemia. METHODS The bEnd.3 cell line was used to evaluate the effects of these three compounds on vascular endothelial cell proliferation, migration, and tube formation. Male C57BL/6 mice underwent transient middle cerebral artery occlusion (MCAO), followed by daily intragastric administration of the Chinese medicine compounds to assess their impact on brain protection and angiogenesis. In vivo experiments included measuring infarct size and assessing neurological function. Immunofluorescence staining and an angiogenesis antibody array were used to evaluate angiogenesis in ischemic brain tissue. Functional enrichment analysis was performed to further investigate the pathways involved in the protective effects of the compounds. Molecular docking analysis explored the potential binding affinity of the compounds to insulin-like growth factor 2 (IGF-2), and Western blotting was used to measure levels of angiogenesis-related proteins. RESULTS In vitro, the combination of Atr I, Atr III, and Pae enhanced cell proliferation, promoted migration, and stimulated tube formation. In vivo, the combined treatment significantly facilitated neurological function recovery and angiogenesis by day 14. The treatment also increased levels of angiogenesis-related proteins, including IGF-2. Pearson correlation analysis revealed a strong positive association between IGF-2 levels in ischemic brain tissue and angiogenesis, suggesting a good affinity of the compounds for the IGF-2 binding site, as supported by molecular docking analysis. CONCLUSION The administration of Atr I, Atr III, and Pae has shown significant enhancements in long-term stroke recovery in mice, likely due to the promotion of angiogenesis via increased activation of the IGF-2 pathway in ischemic brain tissue.
Collapse
Affiliation(s)
- Haiyan Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Chang Chun Road 45, Beijing, 100053, China
- School of Chinese Medicine, Beijing University of Chines Medicine, Beijing, 100029, China
| | - Wantong Yu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Chang Chun Road 45, Beijing, 100053, China
| | - Yong Yang
- School of Chinese Medicine, Beijing University of Chines Medicine, Beijing, 100029, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Chang Chun Road 45, Beijing, 100053, China
| | - Jun Xu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Chang Chun Road 45, Beijing, 100053, China
| | - Chen Gao
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Chang Chun Road 45, Beijing, 100053, China
| | - Wei Zhang
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Chang Chun Road 45, Beijing, 100053, China
| | - Wenjie Shi
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Chang Chun Road 45, Beijing, 100053, China
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, Texas Health Science Center, University of North, Fort Worth, TX, 76107, USA
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Chang Chun Road 45, Beijing, 100053, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Chang Chun Road 45, Beijing, 100053, China.
| |
Collapse
|
6
|
Xu J, Li S, Wehbe A, Ji X, Yang Y, Yang Y, Qin L, Liu FY, Ding Y, Ren C. Abdominal Aortic Occlusion and the Inflammatory Effects in Heart and Brain. Mediators Inflamm 2023; 2023:2730841. [PMID: 38131062 PMCID: PMC10735730 DOI: 10.1155/2023/2730841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2023] Open
Abstract
Background Abdominal aortic occlusion (AAO) occurs frequently and causes ischemia/reperfusion (I/R) injury to distant organs. In this study, we aimed to investigate whether AAO induced I/R injury and subsequent damage in cardiac and neurologic tissue. We also aimed to investigate the how length of ischemic time in AAO influences reactive oxygen species (ROS) production and inflammatory marker levels in the heart, brain, and serum. Methods Sixty male C57BL/6 mice were used in this study. The mice were randomly divided into either sham group or AAO group. The AAO group was further subdivided into 1-4 hr groups of aortic occlusion times. The infrarenal abdominal aorta was clamped for 1-4 hr depending on the AAO group and was then reperfused for 24 hr after clamp removal. Serum, hippocampus, and left ventricle tissue samples were then subjected to biochemical and histopathological analyses. Results AAO-induced I/R injury had no effect on cell necrosis, cell apoptosis, or ROS production. However, serum and hippocampus levels of malondialdehyde (MDA) and lactate dehydrogenase (LDH) increased in AAO groups when compared to sham group. Superoxide dismutase and total antioxidant capacity decreased in the serum, hippocampus, and left ventricle. In the serum, AAO increased the level of inducible nitric oxide synthase (iNOS) and decreased the levels of anti-inflammatory factors (such as arginase-1), transforming growth factor- β1 (TGF-β1), interleukin 4 (IL-4), and interleukin 10 (IL-10). In the hippocampus, AAO increased the levels of tumor necrosis factor (TNF-α), interleukin 1β (IL-1β), interleukin 6 (IL-6), IL-4, and IL-6, and decreased the level of TGF-β1. In the left ventricle, AAO increased the level of iNOS and decreased the levels of TGF-β1, IL-4, and IL-10. Conclusions AAO did not induce cell necrosis or apoptosis in cardiac or neurologic tissue, but it can cause inflammation in the serum, brain, and heart.
Collapse
Affiliation(s)
- Jun Xu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Alexandra Wehbe
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Yong Yang
- School of Chinese Medicine, Beijing University of Chines Medicine, Beijing 100029, China
| | - Yu Yang
- School of Chinese Medicine, Beijing University of Chines Medicine, Beijing 100029, China
| | - Linhui Qin
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Feng-Yong Liu
- Department of Interventional Radiology, Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| |
Collapse
|
7
|
Li N, Ren C, Li S, Yu W, Jin K, Ji X. Remote ischemic conditioning alleviates chronic cerebral hypoperfusion-induced cognitive decline and synaptic dysfunction via the miR-218a-5p/SHANK2 pathway. Prog Neurobiol 2023; 230:102514. [PMID: 37574039 DOI: 10.1016/j.pneurobio.2023.102514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
Vascular cognitive impairment (VCI) due to chronic cerebral hypoperfusion (CCH), is the second leading cause of dementia. Although synaptic impairment plays a critical role in VCI, its exact mechanism remains unknown. Our previous research revealed that remote ischemic conditioning (RIC) could alleviate cognitive decline resulting from CCH, however, its effects on synaptic impairment remain unclear. In this study, we confirmed that RIC alleviated both cognitive decline and its associated synaptic dysfunction caused by CCH. RNA sequencing revealed that CCH increased in miR-218a-5p expression, which was decreased by RIC. Elevated miR-218a-5p levels limited the benefits of RIC, however, inhibiting miR-218a-5p in hippocampal CA1 neurons rescued synaptic dysfunction. Additionally, we found that SHANK2 is a downstream target of miR-218a-5p, and inhibiting SHANK2 expression reduced the alleviation caused by hypoxic conditioning in synaptic impairment in vitro. In conclusion, our results suggested that RIC alleviated synaptic impairment via the miR-218a-5p/SHANK2 pathway, which could be a potential biomarker or therapeutic target for cognitive impairment caused by CCH.
Collapse
Affiliation(s)
- Ning Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Wantong Yu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Kunlin Jin
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Xuming Ji
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorder, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
8
|
Zheng J, Peng S, Cui L, Liu X, Li T, Zhao Z, Li Y, Hu Y, Zhang M, Xu L, Zhang J. Enriched environment attenuates hippocampal theta and gamma rhythms dysfunction in chronic cerebral hypoperfusion via improving imbalanced neural afferent levels. Front Cell Neurosci 2023; 17:985246. [PMID: 37265581 PMCID: PMC10231328 DOI: 10.3389/fncel.2023.985246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 02/27/2023] [Indexed: 06/03/2023] Open
Abstract
Chronic cerebral hypoperfusion (CCH) is increasingly recognized as a common cognitive impairment-causing mechanism. However, no clinically effective drugs to treat cognitive impairment due to CCH have been identified. An abnormal distribution of neural oscillations was found in the hippocampus of CCH rats. By releasing various neurotransmitters, distinct afferent fibers in the hippocampus influence neuronal oscillations in the hippocampus. Enriched environments (EE) are known to improve cognitive levels by modulating neurotransmitter homeostasis. Using EE as an intervention, we examined the levels of three classical neurotransmitters and the dynamics of neural oscillations in the hippocampus of the CCH rat model. The results showed that EE significantly improved the balance of three classical neurotransmitters (acetylcholine, glutamate, and GABA) in the hippocampus, enhanced the strength of theta and slow-gamma (SG) rhythms, and dramatically improved neural coupling across frequency bands in CCH rats. Furthermore, the expression of the three neurotransmitter vesicular transporters-vesicular acetylcholine transporters (VAChT) and vesicular GABA transporters (VGAT)-was significantly reduced in CCH rats, whereas the expression of vesicular glutamate transporter 1 (VGLUT1) was abnormally elevated. EE partially restored the expression of the three protein levels to maintain the balance of hippocampal afferent neurotransmitters. More importantly, causal mediation analysis showed EE increased the power of theta rhythm by increasing the level of VAChT and VGAT, which then enhanced the phase amplitude coupling of theta-SG and finally led to an improvement in the cognitive level of CCH. These findings shed light on the role of CCH in the disruption of hippocampal afferent neurotransmitter balance and neural oscillations. This study has implications for our knowledge of disease pathways.
Collapse
Affiliation(s)
- Jiaxin Zheng
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sisi Peng
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingling Cui
- Department of Anesthesiology, Tongren Hospital of Wuhan University, Wuhan, China
| | - Xi Liu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tian Li
- Clinical Medical Research Center for Dementia and Cognitive Impairment in Hubei Province, Wuhan, China
| | - Zhenyu Zhao
- Clinical Medical Research Center for Dementia and Cognitive Impairment in Hubei Province, Wuhan, China
| | - Yaqing Li
- Clinical Medical Research Center for Dementia and Cognitive Impairment in Hubei Province, Wuhan, China
| | - Yuan Hu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Miao Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linling Xu
- Clinical Medical Research Center for Dementia and Cognitive Impairment in Hubei Province, Wuhan, China
| | - JunJian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Li S, Yang Y, Li N, Li H, Xu J, Zhao W, Wang X, Ma L, Gao C, Ding Y, Ji X, Ren C. Limb Remote Ischemic Conditioning Promotes Neurogenesis after Cerebral Ischemia by Modulating miR-449b/Notch1 Pathway in Mice. Biomolecules 2022; 12:biom12081137. [PMID: 36009031 PMCID: PMC9405712 DOI: 10.3390/biom12081137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Neurogenesis plays an important role in the prognosis of stroke patients and is known to be promoted by the activation of the Notch1 signaling pathway. Studies on the airway epithelium have shown that miR-449b represses the Notch pathway. The study aimed to investigate whether limb remote ischemic conditioning (LRIC) was able to promote neurogenesis in cerebral ischemic mice, and to investigate the role of the miR-449b/Notch1 pathway in LRIC-induced neuroprotection. Male C57BL/6 mice (22–25 g) were subjected to transient middle cerebral artery occlusion (MCAO), and LRIC was performed in the bilateral lower limbs immediately after MCA occlusion. Immunofluorescence staining was performed to assess neurogenesis. The cell line NE-4C was used to elucidate the proliferation of neuronal stem cells in 8% O2. After LRIC treatment on day 28, mice recovered neurological function. Neuronal precursor proliferation was enhanced in the SVZ, and neuronal precursor migration was enhanced in the basal ganglia on day 7. LRIC promoted the improvement of neurological function in mice on day 28, promoted neuronal precursor proliferation in the SVZ, and enhanced neuronal precursor migration in the basal ganglia on day 7. The neurological function score was negatively correlated with the number of BrdU-positive/DCX-positive cells in the SVZ and striatum. LRIC promoted activated Notch1 protein expression in the SVZ and substantially downregulated miR-449b levels in the SVZ and plasma. In vitro, miR-449b was found to target Notch1. Lentivirus-mediated miR-449b knockdown increased Notch1 levels in NE-4C cells and increased proliferation in the cells. The effects of miR-449b inhibition on neurogenesis were ablated by the application of Notch1 shRNA. Our study showed that LRIC promoted the proliferation and migration of neural stem cells after MCAO, and these effects were modulated by the miR-449b/Notch1 pathway.
Collapse
Affiliation(s)
- Sijie Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
- Emergency Department, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
| | - Yong Yang
- School of Traditional Chinese Medicine, Beijing University of Chines Medicine, Beijing 100029, China
| | - Ning Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Haiyan Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
- School of Traditional Chinese Medicine, Beijing University of Chines Medicine, Beijing 100029, China
| | - Jiali Xu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Wenbo Zhao
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Xiaojie Wang
- Department of Neurology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen 518054, China
| | - Linqing Ma
- Department of Neurology, The People’s Hospital of Suzhou New District, Suzhou 215129, China
| | - Chen Gao
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
- Correspondence: ; Tel.: +86-10-83198931; Fax: +86-10-63010085
| |
Collapse
|
10
|
Hedayatpour A, Shiasi M, Modarresi P, Bashghareh A. Remote ischemic preconditioning combined with atorvastatin improves memory after global cerebral ischemia-reperfusion in male rats. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.75753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Damage to hippocampus can occur through ischemia. Memory problems are among the most significant disabilities after stroke. Therefore, improving memory is of great interest in helping post-stroke patients. This study demonstrated that intraperitoneally injection of atorvastatin with a short cycle of ischemia-reperfusion in the left femoral artery improved hippocampal CA1 neurons injury and memory problems after global cerebral ischemia.
Materials and methods: In this article survey, we used 64 animals. Rats were divided into 8 groups, (n=8). Group 1: control; group 2: sham; group 3: global cerebral ischemia (GCI) only; group 4: remote ischemic preconditioning (RIP) + GCI; group 5: GCI + atorvastatin (ATO); group 6: GCI + vehicle; group 7: RIP + GCI + ATO; group 8: RIP + GCI + vehicle. We created global cerebral ischemia (GCI) with 20 min occlusion of the Common carotid artery.
Results and discussion: Remote ischemic preconditioning could improve rats performance in water maze tests along with a decrease in neuronal death. Also, atorvastatin combined with remote ischemic preconditioning was more effective for memory improvement and reduction of neuronal death. Inconsistent with our result, the function of the animals in the ischemia group was impaired. CA1 hippocampal neurons have an important role in memory and learning, and they can be damaged after cerebral ischemia. Therefore, ischemia can create memory problems. Remote ischemic preconditioning and atorvastatin had a neuroprotective effect and could improve rat performance in water maze test.
Conclusion: This study showed that remote ischemic preconditioning with atorvastatin could improve CA1 neuronal injury and memory.
Graphical abstract:
Collapse
|
11
|
Xiao W, Su J, Gao X, Yang H, Weng R, Ni W, Gu Y. The microbiota-gut-brain axis participates in chronic cerebral hypoperfusion by disrupting the metabolism of short-chain fatty acids. MICROBIOME 2022; 10:62. [PMID: 35430804 PMCID: PMC9013454 DOI: 10.1186/s40168-022-01255-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/28/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND Chronic cerebral hypoperfusion (CCH) underlies secondary brain injury following certain metabolic disorders and central nervous system (CNS) diseases. Dysregulation of the microbiota-gut-brain axis can exacerbate various CNS disorders through aberrantly expressed metabolites such as short-chain fatty acids (SCFAs). Yet, its relationship with CCH remains to be demonstrated. And if so, it is of interest to explore whether restoring gut microbiota to maintain SCFA metabolism could protect against CCH. RESULTS Rats subjected to bilateral common carotid artery occlusion (BCCAO) as a model of CCH exhibited cognitive impairment, depressive-like behaviors, decreased gut motility, and compromised gut barrier functions. The 16S ribosomal RNA gene sequencing revealed an abnormal gut microbiota profile and decreased relative abundance of some representative SCFA producers, with the decreased hippocampal SCFAs as the further evidence. Using fecal microbiota transplantation (FMT), rats recolonized with a balanced gut microbiome acquired a higher level of hippocampal SCFAs, as well as decreased neuroinflammation when exposed to lipopolysaccharide. Healthy FMT promoted gut motility and gut barrier functions, and improved cognitive decline and depressive-like behaviors by inhibiting hippocampal neuronal apoptosis in BCCAO rats. Long-term SCFA supplementation further confirmed its neuroprotective effect in terms of relieving inflammatory response and hippocampal neuronal apoptosis following BCCAO. CONCLUSION Our results demonstrate that modulating the gut microbiome via FMT can ameliorate BCCAO-induced gut dysbiosis, cognitive decline, and depressive-like behaviors, possibly by enhancing the relative abundance of SCFA-producing floras and subsequently increasing SCFA levels. Video abstract.
Collapse
Affiliation(s)
- Weiping Xiao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040 China
- Institute of Neurosurgery, Fudan University, Shanghai, 200052 China
| | - Jiabin Su
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040 China
- Institute of Neurosurgery, Fudan University, Shanghai, 200052 China
| | - Xinjie Gao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040 China
- Institute of Neurosurgery, Fudan University, Shanghai, 200052 China
| | - Heng Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040 China
- Institute of Neurosurgery, Fudan University, Shanghai, 200052 China
| | - Ruiyuan Weng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040 China
- Institute of Neurosurgery, Fudan University, Shanghai, 200052 China
| | - Wei Ni
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040 China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200052 China
| | - Yuxiang Gu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040 China
- Institute of Neurosurgery, Fudan University, Shanghai, 200052 China
| |
Collapse
|
12
|
Systematic Understanding of Mechanism of Danggui Shaoyao San against Ischemic Stroke Using a Network Pharmacology Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3747285. [PMID: 35035503 PMCID: PMC8754614 DOI: 10.1155/2022/3747285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022]
Abstract
Purpose Danggui Shaoyao San (DSS) was developed to treat the ischemic stroke (IS) in patients and animal models. The purpose of this study was to explore its active compounds and demonstrate its mechanism against IS through network pharmacology, molecular docking, and animal experiment. Methods All the components of DSS were retrieved from the pharmacology database of TCM system. The genes corresponding to the targets were retrieved using OMIM, CTD database, and TTD database. The herb-compound-target network was constructed by Cytoscape software. The target protein-protein interaction network was built using the STRING database. The core targets of DSS were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Then, we achieved molecular docking between the hub proteins and the key active compounds. Finally, animal experiments were performed to verify the core targets. Triphenyltetrazolium chloride (TTC) staining was used to calculate the infarct size in mice. The protein expression was determined using the Western blot. Results Compound-target network mainly contained 51 compounds and 315 corresponding targets. Key targets contained MAPK1, SRC, PIK3R1, HRAS, AKT1, RHOA, RAC1, HSP90AA1, and RXRA FN1. There were 417 GO items in GO enrichment analysis (p < 0.05) and 119 signaling pathways (p < 0.05) in KEGG, mainly including negative regulation of apoptosis, steroid hormone-mediated signaling pathway, neutrophil activation, cellular response to oxidative stress, and VEGF signaling pathway. MAPK1, SRC, and PIK3R1 docked with small molecule compounds. According to the Western blot, the expression of p-MAPK 1, p-AKT, and p-SRC was regulated by DSS. Conclusions This study showed that DSS can treat IS through multiple targets and routes and provided new insights to explore the mechanisms of DSS against IS.
Collapse
|
13
|
Geng X, Duan H, Kohls W, Ilagan R, Ding Y. Mini review: Hyperglycemia in ischemic stroke. ENVIRONMENTAL DISEASE 2022. [DOI: 10.4103/ed.ed_26_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|