1
|
Zhang S, Dong Z, Guo J, Li Z, Wu H, Zhang L, Min F, Zeng T. Exploratory analysis of a Novel RACK1 mutation and its potential role in epileptic seizures via Microglia activation. J Neuroinflammation 2025; 22:27. [PMID: 39891152 PMCID: PMC11786535 DOI: 10.1186/s12974-025-03350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025] Open
Abstract
Seizures is a prevalent neurological disorder with a largely elusive pathogenesis. In this study, we identified the key gene RACK1 and its novel mutation RACK1-p.L206P as being associated with seizures through single-cell transcriptome sequencing (scRNA-seq) and whole exome sequencing (WES) techniques. Our findings reveal that the RACK1-p.L206P mutation significantly enhances proliferation, migration, phagocytic ability, and inflammatory activation in human microglia, which in turn affects neuronal excitability and synaptic function, culminating in typical seizure symptoms in the seizures. These effects were further validated in a mouse model using CRISPR/Cas9 gene editing technology. Mutant microglia exhibited increased activation and induced apoptosis in hippocampal neurons, leading to higher action potential frequency and excitatory synaptic marker expression. In vivo experiments demonstrated that RACK1-p.L206P mutant mice displayed classic seizure symptoms, with increased neuronal excitability and a tendency for action potential bursts during initial depolarization, along with more frequent spike discharges. Additionally, excitatory synapse density and size in the hippocampal CA1 region of mutant mice were significantly elevated, accompanied by increased expression of VGLUT1 and PSD95 within microglia. This study offers novel insights into the molecular mechanisms underlying seizures in the seizures and presents valuable clues for the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Sai Zhang
- Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, 510000, Guangdong, China
| | - Zhaofei Dong
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Jing Guo
- Department of Neurology, Guangdong Sanjiu Brain Hospital, Guangzhou, 510000, China
| | - Ze Li
- Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, 510000, Guangdong, China
| | - Hong Wu
- Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, 510000, Guangdong, China
| | - Linming Zhang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| | - Fuli Min
- Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, 510000, Guangdong, China.
| | - Tao Zeng
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
2
|
Yizhi M, Liang L, Zhihong L, Yahui H, Huaying W, Ping Y, Qinghua P. Chaihu Longgu Muli Decoction relieving temporal lobe epilepsy in rats by inhibiting TLR4 signaling pathway through miR-146a-3p and miR-146a-5p. DIGITAL CHINESE MEDICINE 2022. [DOI: 10.1016/j.dcmed.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
3
|
Molecular Mechanisms of Epilepsy: The Role of the Chloride Transporter KCC2. J Mol Neurosci 2022; 72:1500-1515. [PMID: 35819636 DOI: 10.1007/s12031-022-02041-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/07/2022] [Indexed: 10/17/2022]
Abstract
Epilepsy is a neurological disease characterized by abnormal or synchronous brain activity causing seizures, which may produce convulsions, minor physical signs, or a combination of symptoms. These disorders affect approximately 65 million people worldwide, from all ages and genders. Seizures apart, epileptic patients present a high risk to develop neuropsychological comorbidities such as cognitive deficits, emotional disturbance, and psychiatric disorders, which severely impair quality of life. Currently, the treatment for epilepsy includes the administration of drugs or surgery, but about 30% of the patients treated with antiepileptic drugs develop time-dependent pharmacoresistence. Therefore, further investigation about epilepsy and its causes is needed to find new pharmacological targets and innovative therapeutic strategies. Pharmacoresistance is associated to changes in neuronal plasticity and alterations of GABAA receptor-mediated neurotransmission. The downregulation of GABA inhibitory activity may arise from a positive shift in GABAA receptor reversal potential, due to an alteration in chloride homeostasis. In this paper, we review the contribution of K+-Cl--cotransporter (KCC2) to the alterations in the Cl- gradient observed in epileptic condition, and how these alterations are coupled to the increase in the excitability.
Collapse
|
4
|
Wang Y, Wei P, Yan F, Luo Y, Zhao G. Animal Models of Epilepsy: A Phenotype-oriented Review. Aging Dis 2022; 13:215-231. [PMID: 35111370 PMCID: PMC8782545 DOI: 10.14336/ad.2021.0723] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022] Open
Abstract
Epilepsy is a serious neurological disorder characterized by abnormal, recurrent, and synchronous discharges in the brain. Long-term recurrent seizure attacks can cause serious damage to brain function, which is usually observed in patients with temporal lobe epilepsy. Controlling seizure attacks is vital for the treatment and prognosis of epilepsy. Animal models, such as the kindling model, which was the most widely used model in the past, allow the understanding of the potential epileptogenic mechanisms and selection of antiepileptic drugs. In recent years, various animal models of epilepsy have been established to mimic different seizure types, without clear merits and demerits. Accordingly, this review provides a summary of the views mentioned above, aiming to provide a reference for animal model selection.
Collapse
Affiliation(s)
- Yilin Wang
- 2Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Penghu Wei
- 1Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China.,4Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| | - Feng Yan
- 2Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yumin Luo
- 2Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,3Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,4Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| | - Guoguang Zhao
- 1Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China.,3Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,4Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Kirmani BF, Shapiro LA, Shetty AK. Neurological and Neurodegenerative Disorders: Novel Concepts and Treatment. Aging Dis 2021; 12:950-953. [PMID: 34221540 PMCID: PMC8219500 DOI: 10.14336/ad.2021.0530] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 05/30/2021] [Indexed: 01/06/2023] Open
Abstract
The journal "Aging and Disease" has released a special issue focused on novel concepts in understanding the pathophysiology and treatment of neurological and neurodegenerative disorders. The special issue comprises review and original research articles discussing the various disease mechanisms and/or treatment updates on aging, mild cognitive impairment, dementia, acute stroke, pediatric stroke, super-refractory status epilepticus, reflex epilepsy, drug-resistant epilepsy, Parkinson's disease, and traumatic brain injury. This editorial discusses the highlights from these articles.
Collapse
Affiliation(s)
- Batool F Kirmani
- Comprehensive Epilepsy and Functional Neurosurgery Program, Endovascular Therapy & Interventional Stroke Program, Department of Neurology, St. Joseph Bryan Regional Hospital, CHI St. Joseph Health, Bryan, TX, USA.
- Texas A&M University College of Medicine, College Station, TX, USA.
| | - Lee A Shapiro
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University College of Medicine, Brayan, TX, USA.
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
| |
Collapse
|