1
|
Lee HS, Ku B, Shin HC, Kim SJ. Structural analysis of the FERM domain of human protein tyrosine phosphatase non-receptor type 21. Acta Crystallogr F Struct Biol Commun 2024; 80:148-153. [PMID: 38940939 PMCID: PMC11229555 DOI: 10.1107/s2053230x24005260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024] Open
Abstract
Protein tyrosine phosphatase non-receptor type 21 (PTPN21) is a cytosolic protein tyrosine phosphatase that regulates cell growth and invasion. Due to its oncogenic properties, PTPN21 has recently emerged as a potential therapeutic target for cancer. In this study, the three-dimensional structure of the PTPN21 FERM domain was determined at 2.1 Å resolution by X-ray crystallography. The crystal structure showed that this domain harbors canonical FERM folding and consists of three subdomains that are tightly packed via highly conserved intramolecular hydrophobic interactions. Consistent with this, the PTPN21 FERM domain shares high structural homology with several other FERM domains. Moreover, structural superimposition demonstrated two putative protein-binding sites of the PTPN21 FERM domain, which are presumed to be associated with interaction with its binding partner, kinesin family member 1C. Thus, these data suggest that the FERM domain of PTPN21 serves as a module that mediates protein-protein interaction, like other FERM domains.
Collapse
Affiliation(s)
- Hye Seon Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Ho Cheol Shin
- Critical Disease Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Seung Jun Kim
- Critical Disease Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Chen L, Qian Z, Zheng Y, Zhang J, Sun J, Zhou C, Xiao H. Structural analysis of PTPN21 reveals a dominant-negative effect of the FERM domain on its phosphatase activity. SCIENCE ADVANCES 2024; 10:eadi7404. [PMID: 38416831 PMCID: PMC10901363 DOI: 10.1126/sciadv.adi7404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/24/2024] [Indexed: 03/01/2024]
Abstract
PTPN21 belongs to the four-point-one, ezrin, radixin, moesin (FERM) domain-containing protein tyrosine phosphatases (PTP) and plays important roles in cytoskeleton-associated cellular processes like cell adhesion, motility, and cargo transport. Because of the presence of a WPE loop instead of a WPD loop in the phosphatase domain, it is often considered to lack phosphatase activity. However, many of PTPN21's biological functions require its catalytic activity. To reconcile these findings, we have determined the structures of individual PTPN21 FERM, PTP domains, and a complex between FERM-PTP. Combined with biochemical analysis, we have found that PTPN21 PTP is weakly active and is autoinhibited by association with its FERM domain. Disruption of FERM-PTP interaction results in enhanced ERK activation. The oncogenic HPV18 E7 protein binds to PTP at the same location as PTPN21 FERM, indicating that it may act by displacing the FERM domain from PTP. Our results provide mechanistic insight into PTPN21 and benefit functional studies of PTPN21-mediated processes.
Collapse
Affiliation(s)
- Lu Chen
- Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zijun Qian
- Department of Hematology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Yuyuan Zheng
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jie Zhang
- Department of Hematology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Jie Sun
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chun Zhou
- Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Haowen Xiao
- Department of Hematology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
3
|
Lee SY, Koo IS, Hwang HJ, Lee DW. WITHDRAWN: In Vitro three-dimensional (3D) cell culture tools for spheroid and organoid models. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023:100131. [PMID: 38101575 DOI: 10.1016/j.slasd.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 12/17/2023]
Abstract
The Publisher regrets that this article is an accidental duplication of an article previously published at http://dx.doi.org/10.1016/j.slasd.2023.03.006. This duplication was due to an error in the publishing workflow and was not the responsibility of the authors or editors. As a result, the duplicate article has been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Sang-Yun Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, 13120, Republic of Korea; Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon, 16229, Republic of Korea
| | - In-Seong Koo
- Department of Biomedical Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Hyun Ju Hwang
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon, 16229, Republic of Korea
| | - Dong Woo Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
4
|
Jung S, Lee HS, Shin HC, Choi JS, Kim SJ, Ku B. Crystal Structures of Plk1 Polo-Box Domain Bound to the Human Papillomavirus Minor Capsid Protein L2-Derived Peptide. J Microbiol 2023; 61:755-764. [PMID: 37684534 DOI: 10.1007/s12275-023-00071-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
Human papillomaviruses (HPVs) can increase the proliferation of infected cells during HPV-driven abnormalities, such as cervical cancer or benign warts. To date, more than 200 HPV genotypes have been identified, most of which are classified into three major genera: Alphapapillomavirus, Betapapillomavirus, and Gammapapillomavirus. HPV genomes commonly encode two structural (L1 and L2) and seven functional (E1, E2, E4-E7, and E8) proteins. L2, the minor structural protein of HPVs, not only serves as a viral capsid component but also interacts with various human proteins during viral infection. A recent report revealed that L2 of HPV16 recruits polo-like kinase 1 (Plk1), a master regulator of eukaryotic mitosis and cell cycle progression, for the delivery of viral DNA to mitotic chromatin during HPV16 infection. In this study, we verified the direct and potent interactions between the polo-box domain (PBD) of Plk1 and PBD-binding motif (S-S-pT-P)-containing phosphopeptides derived from L2 of HPV16/HPV18 (high-risk alphapapillomaviruses), HPV5b (low-risk betapapillomavirus), and HPV4 (low-risk gammapapillomavirus). Subsequent structural determination of the Plk1 PBD bound to the HPV18 or HPV4 L2-derived phosphopeptide demonstrated that they interact with each other in a canonical manner, in which electrostatic interactions and hydrogen bonds play key roles in sustaining the complex. Therefore, our structural and biochemical data imply that Plk1 is a broad binding target of L2 of various HPV genotypes belonging to the Alpha-, Beta-, and Gammapapillomavirus genera.
Collapse
Affiliation(s)
- Sujin Jung
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Biochemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hye Seon Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Ho-Chul Shin
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Joon Sig Choi
- Department of Biochemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
5
|
Lee SY, Koo IS, Hwang HJ, Lee DW. In Vitro Three-dimensional (3D) Cell Culture Tools for Spheroid and Organoid Models. SLAS DISCOVERY 2023:S2472-5552(23)00028-X. [PMID: 36997090 DOI: 10.1016/j.slasd.2023.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Three-dimensional (3D) cell culture technology has been steadily studied since the 1990's due to its superior biocompatibility compared to the conventional two-dimensional (2D) cell culture technology, and has recently developed into an organoid culture technology that further improved biocompatibility. Since the 3D culture of human cell lines in artificial scaffolds was demonstrated in the early 90's, 3D cell culture technology has been actively developed owing to various needs in the areas of disease research, precision medicine, new drug development, and some of these technologies have been commercialized. In particular, 3D cell culture technology is actively being applied and utilized in drug development and cancer-related precision medicine research. Drug development is a long and expensive process that involves multiple steps-from target identification to lead discovery and optimization, preclinical studies, and clinical trials for approval for clinical use. Cancer ranks first among life-threatening diseases owing to intra-tumoral heterogeneity associated with metastasis, recurrence, and treatment resistance, ultimately contributing to treatment failure and adverse prognoses. Therefore, there is an urgent need for the development of efficient drugs using 3D cell culture techniques that can closely mimic in vivo cellular environments and customized tumor models that faithfully represent the tumor heterogeneity of individual patients. This review discusses 3D cell culture technology focusing on research trends, commercialization status, and expected effects developed until recently. We aim to summarize the great potential of 3D cell culture technology and contribute to expanding the base of this technology.
Collapse
|
6
|
Hendriks WJAJ, van Cruchten RTP, Pulido R. Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty? Front Cell Dev Biol 2023; 10:1051311. [PMID: 36755664 PMCID: PMC9900141 DOI: 10.3389/fcell.2022.1051311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Protein tyrosine phosphatases, together with protein tyrosine kinases, control many molecular signaling steps that control life at cellular and organismal levels. Impairing alterations in the genes encoding the involved proteins is expected to profoundly affect the quality of life-if compatible with life at all. Here, we review the current knowledge on the effects of germline variants that have been reported for genes encoding a subset of the protein tyrosine phosphatase superfamily; that of the thirty seven classical members. The conclusion must be that the newest genome research tools produced an avalanche of data that suggest 'guilt by association' for individual genes to specific disorders. Future research should face the challenge to investigate these accusations thoroughly and convincingly, to reach a mature genotype-phenotype map for this intriguing protein family.
Collapse
Affiliation(s)
- Wiljan J. A. J. Hendriks
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen, The Netherlands,*Correspondence: Wiljan J. A. J. Hendriks,
| | | | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
7
|
De Santis I, Zanoni M, Pignatta S, Longobardi P, Tesei A, Bevilacqua A. Pro-inflammatory RNA:DNA Hybrids Are p53 Independently Boosted by Hyperbaric Oxygen: a Subcellular Distribution Analysis by Automated Quantitative Imaging. Mol Imaging Biol 2022; 25:504-512. [PMID: 36261778 PMCID: PMC10172224 DOI: 10.1007/s11307-022-01778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE RNA:DNA hybrids are co-transcriptional products with acknowledged cytoplasmic pro-inflammatory role as activators of the cGAS-STING pathway. We recently proved them also as radiation-induced senescence messages for the abscopal effect mediation, demonstrating the need for a functional p53 for their production and release in A549 and H1299 tumour cells. However, little is known about their role under different stress conditions, especially in cancer cells. METHODS In this work, we open the investigation making use of automated quantitative imaging to characterize the hybrid subcellular distribution in HeLa cells grown under different oxygen pressures or exposed to different ionizing radiation doses. After cell imaging by confocal fluorescent microscopy, we apply automated imaging methods developed on purpose to quantify hybrid foci and nuclear cluster intensity, regional and local density and dimension. RESULTS We show that alteration of culture oxygenation increases hybrid cytoplasmic presence, especially when caused by an hyperoxic environment, with evident hybrid gathering at the cell membrane. Ionizing radiations always fail to increase hybrids, in accordance with the absence of functional p53 in HeLa cells. However, dose-dependent effects are still evident and suggest a threshold dose of 7.5 Gy for remarkable hybrid reduction. CONCLUSION Together with our previous results, these data demonstrate for the first time that different types of stress can increase hybrid production in cancer cells and by at least two different pathways, one p53-dependent triggerable by ionizing radiations and one p53-independent triggerable by oxidative stress. Together, our findings provide a starting point for understanding hybrid role in tumour stress response.
Collapse
Affiliation(s)
- Ilaria De Santis
- Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, I-40126, Bologna, Italy
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", I-47014, Meldola, Italy
| | - Sara Pignatta
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", I-47014, Meldola, Italy
| | | | - Anna Tesei
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", I-47014, Meldola, Italy.
| | - Alessandro Bevilacqua
- Advanced Research Center on Electronic Systems (ARCES) for Information and Communication Technologies "E. De Castro", University of Bologna, I-40125, Bologna, Italy.
- Department of Computer Science and Engineering (DISI), University of Bologna, I-40136, Bologna, Italy.
| |
Collapse
|
8
|
Inhibition of PTPN21 has antitumor effects in glioma by restraining the EGFR/PI3K/AKT pathway. Toxicol Appl Pharmacol 2022; 451:116180. [PMID: 35907586 DOI: 10.1016/j.taap.2022.116180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/10/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
Abstract
Protein tyrosine phosphatase non-receptor type 21 (PTPN21) has been recognised as a new tumour-associated protein that is implicated in diverse tumours. However, the correlation between PTPN21 and glioma remains unaddressed. This investigation focused on the relevance of PTPN21 in glioma. The Cancer Genome Atlas (TCGA) analysis identified PTPN21 as being up-regulated in glioma tissue. The elevation of PTP21 in glioma was validated by evaluating clinical specimen. Kaplan-Meier plot analysis revealed that a high PTPN21 level predicted poor survival rate in glioma patient. Silencing of PTPN21 produced remarkable anticancer effects in glioma cells including proliferation inhibition, cell cycle arrest, metastasis suppression and enhanced chemosensitivity. Mechanistic studies uncovered that PTPN21 contributes to mediation of the phosphatidyl-inositole-3 kinase (PI3K)/AKT pathway via the regulation of epidermal growth factor receptor (EGFR). Restraint of EGFR diminished PTPN21 overexpression-induced promoting effect on PI3K/AKT pathway. Reactivation of AKT reversed PTPN21 silencing-evoked antitumor effect. The tumorigenic potential of PTPN21-silenced glioma cells in vivo was markedly compromised. In summary, this study demonstrates that silencing of PTPN21 produces remarkable anticancer effects in glioma by restraining the EGFR/PI3K/AKT pathway.
Collapse
|
9
|
Manivannan SN, Roovers J, Smal N, Myers CT, Turkdogan D, Roelens F, Kanca O, Chung HL, Scholz T, Hermann K, Bierhals T, Caglayan HS, Stamberger H, Mefford H, de Jonghe P, Yamamoto S, Weckhuysen S, Bellen HJ. De novo FZR1 loss-of-function variants cause developmental and epileptic encephalopathies. Brain 2022; 145:1684-1697. [PMID: 34788397 PMCID: PMC9166542 DOI: 10.1093/brain/awab409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/21/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023] Open
Abstract
FZR1, which encodes the Cdh1 subunit of the anaphase-promoting complex, plays an important role in neurodevelopment by regulating the cell cycle and by its multiple post-mitotic functions in neurons. In this study, evaluation of 250 unrelated patients with developmental and epileptic encephalopathies and a connection on GeneMatcher led to the identification of three de novo missense variants in FZR1. Whole-exome sequencing in 39 patient-parent trios and subsequent targeted sequencing in an additional cohort of 211 patients was performed to identify novel genes involved in developmental and epileptic encephalopathy. Functional studies in Drosophila were performed using three different mutant alleles of the Drosophila homologue of FZR1 fzr. All three individuals carrying de novo variants in FZR1 had childhood-onset generalized epilepsy, intellectual disability, mild ataxia and normal head circumference. Two individuals were diagnosed with the developmental and epileptic encephalopathy subtype myoclonic atonic epilepsy. We provide genetic-association testing using two independent statistical tests to support FZR1 association with developmental and epileptic encephalopathies. Further, we provide functional evidence that the missense variants are loss-of-function alleles using Drosophila neurodevelopment assays. Using three fly mutant alleles of the Drosophila homologue fzr and overexpression studies, we show that patient variants can affect proper neurodevelopment. With the recent report of a patient with neonatal-onset with microcephaly who also carries a de novo FZR1 missense variant, our study consolidates the relationship between FZR1 and developmental and epileptic encephalopathy and expands the associated phenotype. We conclude that heterozygous loss-of-function of FZR1 leads to developmental and epileptic encephalopathies associated with a spectrum of neonatal to childhood-onset seizure types, developmental delay and mild ataxia. Microcephaly can be present but is not an essential feature of FZR1-encephalopathy. In summary, our approach of targeted sequencing using novel gene candidates and functional testing in Drosophila will help solve undiagnosed myoclonic atonic epilepsy or developmental and epileptic encephalopathy cases.
Collapse
Affiliation(s)
- Sathiya N Manivannan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston 77030, USA
| | - Jolien Roovers
- Neurogenetics Group, VIB Centre for Molecular Neurology, Antwerp 2610, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium
| | - Noor Smal
- Applied and Translational Neurogenomics Group, VIB Centre for Molecular Neurology, VIB, Antwerp 2610, Belgium
| | - Candace T Myers
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology St. Jude Children's Research Hospital, Memphis, TN 30105, USA
| | - Dilsad Turkdogan
- Division of Child Neurology, Department of Paediatrics, Marmara University, Faculty of Medicine, Turkey
| | | | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston 77030, USA
| | - Hyung-Lok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston 77030, USA
| | - Tasja Scholz
- Institute of Human Genetics, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Katharina Hermann
- Department of Paediatrics, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Hande S Caglayan
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| | - Hannah Stamberger
- Applied and Translational Neurogenomics Group, VIB Centre for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Department of Neurology, University Hospital Antwerp, Antwerp 2650, Belgium
| | - Heather Mefford
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology St. Jude Children's Research Hospital, Memphis, TN 30105, USA
| | - Peter de Jonghe
- Neurogenetics Group, VIB Centre for Molecular Neurology, Antwerp 2610, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp 2610, Belgium
- Department of Neurology, University Hospital Antwerp, Antwerp 2650, Belgium
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah Weckhuysen
- Applied and Translational Neurogenomics Group, VIB Centre for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Department of Neurology, University Hospital Antwerp, Antwerp 2650, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp 2650, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
10
|
Analysis of Gene Expression Microarray Data Reveals Androgen-Responsive Genes of Muscles in Polycystic Ovarian Syndrome Patients. Processes (Basel) 2022. [DOI: 10.3390/pr10020387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Polycystic ovarian syndrome (PCOS) is an endocrine disorder that is characterized by hyperandrogenism. Therefore, information about androgen-induced molecular changes can be obtained using the tissues of patients with PCOS. We analyzed two microarray datasets of normal and PCOS muscle samples (GSE8157 and GSE6798) to identify androgen-responsive genes (ARGs). Differentially expressed genes were determined using the t-test and a meta-analysis of the datasets. The overlap between significant results of the meta-analysis and ARGs predicted from an external database was determined, and differential coexpression analysis was then applied between these genes and the other genes. We found 313 significant genes in the meta-analysis using the Benjamini–Hochberg multiple testing correction. Of these genes, 61 were in the list of predicted ARGs. When the differential coexpression between these 61 genes and 13,545 genes filtered by variance was analyzed, 540 significant gene pairs were obtained using the Benjamini–Hochberg correction. While no significant results were obtained regarding the functional enrichment of the differentially expressed genes, top-level gene ontology terms were significantly enriched in the list of differentially coexpressed genes, which indicates that a broad range of cellular processes is affected by androgen administration. Our findings provide valuable information for the identification of ARGs.
Collapse
|
11
|
Lee HS, Yun HY, Lee EW, Shin HC, Kim SJ, Ku B. Structural and biochemical analysis of the PTPN4 PDZ domain bound to the C-terminal tail of the human papillomavirus E6 oncoprotein. J Microbiol 2022; 60:395-401. [PMID: 35089587 DOI: 10.1007/s12275-022-1606-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022]
Abstract
High-risk genotypes of human papillomaviruses (HPVs) are directly implicated in various abnormalities associated with cellular hyperproliferation, including cervical cancer. E6 is one of two oncoproteins encoded in the HPV genome, which recruits diverse PSD-95/Dlg/ZO-1 (PDZ) domain-containing human proteins through its C-terminal PDZ-binding motif (PBM) to be degraded by means of the proteasome pathway. Among the three PDZ domain-containing protein tyrosine phosphatases, protein tyrosine phosphatase non-receptor type 3 (PTPN3) and PTPN13 were identified to be recognized by HPV E6 in a PBM-dependent manner. However, whether HPV E6 associates with PTPN4, which also has a PDZ domain and functions as an apoptosis regulator, remains undetermined. Herein, we present structural and biochemical evidence demonstrating the direct interaction between the PBM of HPV16 E6 and the PDZ domain of human PTPN4 for the first time. X-ray crystallographic structure determination and binding measurements using isothermal titration calorimetry demonstrated that hydrophobic interactions in which Leu158 of HPV16 E6 plays a key role and a network of intermolecular hydrogen bonds sustain the complex formation between PTPN4 PDZ and the PBM of HPV16 E6. In addition, it was verified that the corresponding motifs from several other high-risk HPV genotypes, including HPV18, HPV31, HPV33, and HPV45, bind to PTPN4 PDZ with comparable affinities, suggesting that PTPN4 is a common target of various pathogenic HPV genotypes.
Collapse
Affiliation(s)
- Hye Seon Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Hye-Yeoung Yun
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, 34113, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Ho-Chul Shin
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, 34113, Republic of Korea.
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, 34113, Republic of Korea.
| |
Collapse
|